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SETS OF INDEPENDENT POSTULATES FOR THE ALGEBRA 

OF LOGIC* 

BY 

EDWARD V. HUNTINGTON 

, The algebra of symbolic logic, as developed by LEIBNIz, BOOLE, C. S. 
PEIRCE, E. SCHR6DER, and others, t is described by WHITEHEAD as "the only 
known member of the non-numerical genus of universal algebra." t This algebra, 
although originally studied merely as a means of handling certaini problems in 
the logic of classes and the logic of propositions, has recently assumed some 
importance as an independent calculus; it may therefore be not without interest 
to consider it from a purely mathematical or abstract point of view, and to show 
how the whole algebra, in its abstract form, may be developed from a selected 
set of fundamental propositions, or postulates, which shall be independent of 
each other, and from which all the other propositions of the algebra can be 
deduced by purely formal processes. 

In other words, we are to consider the construction of a purely deductive 
theory, withouit regard to its possible applications. 

introductory remarks on deductive theories in general.? The first step in 
such a discussion is to decide on thefundamental concepts or undefined symbols, 
concerning which the statements of the algebra are to be made. 

One such concept, common to every mathematical theory, is the notioni of 
1) a class (-X-) of elements (a, b, c, )1 

*Presented to the Society: ? 1, September 1, 1903; ? 2, December 28, 1903 (and since 
revised) ; ? 3 and the appendix, April 30, 1904. Received for publication, April 30, 1904. 

t For an extensive bibliography, see SCHRODER'S Algebra der Logik, vol. 1 (1890). 
t A. N. WHITEHEAD, Universal Algebra, vol. 1 (1898), p. 35. 
Q Cf. papers by A. PADOA, cited in Transactions, vol. 4 (1903), p. 358. 
A class is determined by stating some condition which every entity in the universe must 

either satisfy or not satisfy; every entity which satisfies the condition is said to belong to the 
class. (If the condition is such that no entity can satisfy it, the class is called a " null " class.) 
Every entity which belongs to the class in question is called an element (cf. H. WEBER, Algebra, 
vol. 2 (1899), p. 3). 

No further analysis of this concept class, or of similar concepts introduced below, is here 
attempted. For an elaborate discussion of the logical processes which underlie all mathematical 
thinking, see B. RUSSELL'S work on The Principles of Mathematics, vol. 1, 1903. 
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If two elements a and 6 are, for the purposes of the discussion in hand, 
equivalent, that is, if either may replace the other in every proposition of the 
algebra in question, we write a = 6; otherwise, a 1 6. * 

In regard to the other fundamental concepts, one has usually a considerable 
freedom of choice; several different sets of uindefined symbols may serve as the 
basis of the same algebra; the only logical requirement is that the symbols of 
every such set must be definable in terms of the symbols of every other set. t 

Thus for the algebra of logic the fundamental concepts (besides the notion of 
class) may be selected at pleasure from the following: t 

2) a rule of combination, ? denoted, say, by e (read, for convenience, " plus"; 
see remark on these symbols below); 

3) another rule of combination, denoted, say, by D (read, "times"); 
4) a dyadic relation, 11 denoted, say, by ? (read, " within "). 
Any two of these symbols can be defined, as we shall see, in terms of the 

third. T 
In the present paper, I choose the fuindanmental concepts as follows: In ? 1; 

* Concerning the symbol - we have the following obvious theorems: 1) a = a, 2) if a =b, 
then b = a; and 3) if a = b and b = c, then a = c; which are taken by many writers as the prop- 
erties by which the symbol = is to be defined. But cf. 0. HOLDER, Die Axiomne der Quantitit und 
die Lehre vom Mass, Leipziger Beric.hte, Math.-Phys. Classe, vol. 53 (1901), p. 4, footnote. 

t Cf. remarks by M. PIERI, in his article called: Nuovo modo di svolgere deduttivamente la geo- 
metria pr-jettiva, Reale Istituto Lombardo di scienze e lettere (Milano), Rendi- 
conti, ser. 2, vol. 31 (1898), especially p. 797. 

+ For a quite different point of departure, see A. B. KEMPE, On the relation between the logical 
theory of c(lasses and the geometrical theory of points, P r o c e e d i n g s o f t h e L o n d o n M a t h e - 
matical Society, vol. 21, pp. 147-182, January, 1890, and The subject-matter of exact thought, 
Nature, vol. 43. pp. 156-162, December, 1890. 

Q A rule of conibination o, in the given class, is a convention according to which every two ele- 
ments a and b (whether a= b or a $ b), in a definite order, determine uniquely an entity 

aob (read " awithb"), 

which is, however, not necessarily an element of the class. In the class of quantities or numbers, 
familiar examples of rules of combination are +, -, X, . , etc. 

11 A dyadic relation, R, in the given class, is determined when, if any two elements a and b 
are given in a definite order, we can decide whether a stands in the relation R to b or not; if it 
does, we write 

aRb, or, equally well, bHa. 

In the class of quantities or numbers, familiar examples of dyadic relations are =, <, >, c, 
etc. Relationships among human beings furnish other examples. [If R is such that aRa for 
every element a, then R is called a reflexive relation; if R is such that aRb and bRc together 
always imply aRc, then R is called a transitive relation ; if R is such that aRb always implies 
bRa, then R is called a symmetric relation. Thus the relation c is reflexive and transitive, but 
not symmetric; the relation of equivalence is reflexive, transitive and symmetric.] 

- ? In all discussions like the present, definitions are purely nominal definitions, introducing a 
new symbol as an abbreviation for an old concept. Cf. papers by PEANO and BURALI-FORTI in 
Bibliotheque du congr6s international de philosophie, Paris, 1900, vol. 3 (pub- 
lished in 1901). 
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the two rules of combination, CD and o; in ? 2, the relation 0; in ? 3, a single 
rule of combination, ED . The three sections form properly three separate papers. 

Having chosen the fundamental concepts, the next step is to decide on the 
fundamental propositions, or postulates, which are to stand at the basis of the 
algebra. These postulates are simply conditions arbitrarily imposed on the 
fundamental concepts and must not, of course, be inconsistent among themselves. 
Any set of consistent * postulates would give rise to a corresponding algebra, 
namely the totality of propositions which follow from these postulates by logical 
deduction.t For the sake of elegance, every set of postulates should be free 
from redundancies; in other words, the postulates of every set should be inde- 
pendent, no one of them deducible from the rest.4 For, if any one of the pos- 
tulates were a consequence of the others, it should be counited among the derived, 
not among the fundamental propositions. Furthermore, each postulate should 
be as nearly as possible a simple statement, not decomposable into two or more 
parts; but the idea of a simple statement is a very elusive one, which has not 
yet been satisfactorily defined, much less attained.? 

In selecting a set of consistent, independent postulates for any particular 
algebra, one has usually a considerable freedom of choice; several different sets 
of independent postulates (on a given set of fulndamental concepts) may serve 
as the basis of the same algebra; II the only logical requirement is that every 
such set of postulates must be deducible from every other. ?1 

Thus, for the algebra of logic, several different sets of postulates might be 
given on each of the three sets of fundamental concepts which we have selected. 
In the present paper a single set of postulates is chosen for each of the three 
sections. 

Object of the present paper. The object of the paper can now be stated as 
follows: Having chosen a set of fundamental concepts and a set of fundamental 
propositions for. each of the three sections, I show, first, that the fundamental 

* On the consistency (Widerspruchslosigkeit) of a set of postulates, see a problem of HILBERT'S 
cited in Transactions, vol. 4 (1903), p. 361, and an article by A. PADOA, Le probWme no. 2 de 
M. David Hilbert, L'Enseignement Mathelmatique, vol. 5 (1903), pp. 85-91. 

f The processes involved in " logical deduction " have been subjected in recent years to a very 
searching analysis; see especially the work of G. PEANO and others in the R e v u e d e M a t h &- 
mat i q u e s, and B RUSSELL'S Principles of MJlatheematics. 

t The method of proving the independence of a postulate used and explained below, has been 
made familiar especially by the works of PEANO, PADOA, PIERI, and HILBERT. 

? Compare remarks by E. H. MOORE, in his paper on A definition of abstract groups, T ran s- 
acti o n s, vol. 3 (1902), especially pp. 488-489. 

For a striking example, see the postulates for a field in recent articles by L. E. DIcKsoN 
and E. V. HUNTINGTON, Transactions, vol. 4 (1903), p. 13 and p. 3]. 

? Cf. M. PIERI, loc? cit. Even if the postulates could be made strict]y simple statements, I see 
no reason why several different sets of consistent, independent, and simple postulates might not 
be possible for the same algebra. (Cf. SCHRODER, loc. cit., vol. 3, p. 19.) 
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propositions of each set are consistent (and independent); and secondly, that the 
fundamental concepts of each section can be defined in terms of the fundamental 
concepts of each of the other sections, while the fundamental propositions of 
each section can be deduced from the fundamental propositions of each of the 
other sections. Then we may say, first, that each section determines a definite 
algebra, and secondly, that the three algebras are equivalenit. 

Finally, in order to justify the name "algebra of logic" for the algebra thus 
established, I show that the fundamental theorems of that algebra, as set forth 
in standard treatises like those of SCHRODER and WHITEHEAD, can be derived 
from either of my three sections. And the development of the theory in the 
present paper is carried only so far as is necessary for this object. 

In, working out the set of postulates in ? 1, I have followed WHITEHEAD 

closely. The postulates Ia-V are substantially the same as the fundamental 
propositions given in his Uniiversal Algebra, Book II; except that the associa- 
tive laws for addition and multiplication, which are there adinitted as funda- 
mental, are here deduced as theorems. 

In ? 2, postulates 1-10 are substantially the same as the fundamental pro- 
sitions (called by various niames*) in SCHRODER'S Algebra der Logik; except 
that postulate 9 here replaces a much less simple postulate of SCHRODER'S which 
I cite for reference as 92* For the possibility of this simplification I am especi- 
ally indebted to Mr. C. S. PEIRCE, who has kindly communicated to me a proof 
of the second part of the distributive law ( 22a, b ) on the basis of this postulate 
9. (See footnote below.) A further problem in regard to postulate 9 is pro- 
posed at the end of ? 2. 

The third set of postulates (? 3) is a fairly obvious modification of the second. 
The only part of the paper for which I can claim any originality (except pos- 

sibly the proofs of XIIIa, b in ? 1 and 20a, b in ? 2) is the establishment of the 
complete independence of all the postulates of each set. There has been no dis- 
cussion of this question, as far as I know, except an only partially successful 
attempt of SCHRdDER'S to prove the independence of 92. t 

A simple interpretation of the algebra. Although the algebra is necessarily 
treated here solely in its abstract form, without reference to its possible applica- 
tions-that is, without reference to the possible interpretations of the symbols 
K, ED, , and o -nevertheless it may be well to mention at once one of the 
simplest of these applications, so that the reader may give a concrete interpre- 

* "Prinzipien," "Postulaten," " Definitionen." See loc. cit., pp. 168, 170, 184, 188, 196, 
293, 303. 

t He succeeded in showing, by a very complicated method, that 92 is independent of postu- 
lates 1-7, omitting postulate 8. (Loc. cit., pp. 286-288, 617-628, 633-640, 642-643.) But the 
question whether 92 is independent of the full list of postulates 1-8 was left undecided ; see loc. 
cit. p. 310, bottom. 
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tation, if he so desires, to all the propositions of the algebra. Any system 
(K, E, o, o) which satisfies the postulates and definitions of ? 1, ? 2, or ? 3 
will answer the purpose. One of the simplest of such systems is the following: * 

K= the class of regions in the plane including the " null region" [= A 
read "i nothing " ] and the whole plane [ = V ; read " everything ]; 

a e b = the smnallest region which includes both a and b, called the "logical 
sum" of a and b; 

a ( b = the largest region which lies within both a and b, called the "logical 
product" of a and b; 

= = the relation of inclusion; that is, a o b signifies that the region a lies 
within or coincides with the region b. 

Remarks on the symbols ED, o, etc. The symbols D, o, and o are chosen 
with a double object in view. On account of the circles around them they 
are sufficiently unfamiliar to remind us of their true character as undefined 
symbols which have no properties not expressly stated in the postulates; while 
the +, *, and < within the circles enable us to adopt, with the least mental 
effort, the interpretation which is likely to be the niost useful. The symbol f 
was used by LEIBNIZ for the same purpose about 1700. t 

The symbols A and V, which occur below, I take from PEANO's F o r m u- 
laire de Mathematiques, vol. 4 (1903), pp. 27-28. The resemblance which 
these symbols bear to an empty glass and a full glass will facilitate the inter- 
pretation of them as " nothing " and " everything " respectively. 

? 1. THE FIRST SET OF POSTULATES. 

In ? 1 we take as the fundamental concepts a class, K, with two rules of 
combination, ED and o; and as the fundamental propositions, the following ten 
postulates: 

la. a ED b is in the class whenever a and b are in the class. 

lb. a o b is in the class whenever a and b are in the class. 

IIa. There is an element A such that a ED A = a for every element a. 

IIb. There is an element V such that a ? V = a for every element a. 

Ila. a e b b e a whenever a., b, a. e b, and b ED a are in the class. 

IIIb. a ? b =b a whenever a, b, a ? b, and b o a are in the class. 

IVa. a ED (b ? c) (a e b) ? (a e c) whenever a, b, c, a E b, a e c, b c, 

a ED (b o c), and (a ED b) (o (a ED c) are in the class. 
* Compare EULER'S diagrams, in works on logic. 
t LEIBNIZ, Philosophische Schriften, herausgegeben von GERHARDT, vol. 7 (1890), p. 237; cf. 

Formulaire de Mathenmatiques, vol. 3 (1901), p. 19. On the use of the circles around 
these symbols, see also CHRISTINE LADD [Mrs. FRANKLIN], On the algebra of logic, in Studies in 
Logic by merabers of Johns Hopkins University, 1883, p. 18. 
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IVb. a ? (b e c) = (a o b) eD (a o c) whenever a, b, c, a o b, a o c, b (D c, 
a o (b e c) and (a o b) e (a ? c) are in the class. 

V. If the elements /\ and \/ in postulates IIa and IIb exist and are unique, 
then for every element a there is an element a such that a a-= V arnd a ? a = /\. 

VI. Ihere are at least two elements, x and y, in the class such that x * y. 

Consistency of the postulates of the first set. 

To show the consistency of the postulates, we have only to exhibit some system 
(K. qD, o ) in which K, , and ? are so interpreted that all the postulates are 
satisfied. For then the postulates themselves, and all their consequences, will 
be simply expressiolns of the properties of this system, and therefore cannot 
involve contradiction (since no system which really exists can have contradictory 
properties). 

One such system is the following: K= the class of regions in the plane 
including the "null region " and the whole plane; a e b - the "logical sum" 
of a and b (that is, the smallest region which includes them both); a o b = the 
" logical product " of a and b (that is, the largest region which lies within them 
both). 

Anlother such system, in fact the simplest possible one, is this: K= a class 
comprising only two elements, say 0 and 1, with D and o defined by the tables 

!D 0 1 0 1 

o o 1 0 0 0 

1 1 1 0 1 

For other such systems, see the appendix.- The existence of any one of these 
systems is sufficient to prove the consistency of the postulates. 

Deductions from the postulates qf the first set. 

The following theorems follow readily from the postulates Ia-VI; the proofs 
are given in the next paragraph. 

VIIa. The element /\ in IIa is unique: a (D =a. 

VlIb. The element V in lIb is unique: a ? V a. 
VIIIa. a e a = a. 
VIlIb. a ? a =a. 
IXa. a / \ V 
IXb. a o A/=\\. 
Xa. a 3 (a o b) = a. (The " law of absorption.") 
Xb. a ( (a D b) = a. 
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XI. The element a- in V is uniquely determined by a: 

a =V and aoai=A. 

DEFINITION. The element a is called non-a, or the supplement of a. By IIIa, 
IIIb, if b is the supplement of a then a is the supplement of b; that is, if b =a, 
then a b, or, a= a. 

XIIa. a b.D b a o b, and 
XIIb. aob =aDb; 

that is, a (D b and a- o b are supplementary elements as are also a o b and a- E b. 
These theorems establish the principle of duality between (D and o, which is a 
characteristic feature of the algebra. They also enable us to define either 
multiplication or addition in terms of the other and negation. 

XIIIa. (a D b) D c = a (D (b (D c). (Associative law for addition.) 
XIIIb. (a o b) o c = a ? (b o c). (Associative law for multiplication.) 
These theorems are sufficient to make the connection between the postulates 

here adopted and the usual treatment of the subject. See, for example, WHITE- 
HEAD's Universal Algebra, vol. 1, book II, where two lists of fundamental 
propositions for the algebra of logic are given; the first list (p. 35) comprises 
(besides Ia, b) IIa, b, IIIa, b, IVa, V, VIIIa, b, Xa, and XIIIa, b; the second 
list (p. 37), which is more symmetric, includes lIa, b, IIIa, b, IVa, b, IXa, b, 
Xa, b, XI, and XIIIa, b. 

The further development of the subject is based on the definition of ?, which 
may be given in various forms, thus, 

DEFINITION. If a e b=b; or, if a(3 b a; or, if ED b V; or, if a( b_ A; 
then we write a ? b (or b O a). 

It is easily seen that these definitions are all equivalent, and that the prop- 
erties of ? used as postulates in ? 2 can be readily deduced. 

Proofs of theorems in the preceding paragraph. 

In the following proofs we write, for brevity, a o b = ab. The proofs for 
the theorems " b " may be obtained from the proofs for the corresponding the- 
orems " a " by interchanging E with ? and A with V. 

Proof of VIIa. Suppose there were two elements, A1 and A2, such that 
a e A1 = a and a E A2 =a for every element a. Then, putting a = A2 in 
the first equation and a = A1 in the second, we should have ,2 A1 = A2 
and /\A1 / A2= A1; whence, by IIIa, A1= A2. 

Proof of VIIIa. By V (in view of VIIa, b) take a so that a a= V and 
aa = A. Then by Ia, IIa, b, and IVa we have 

a e a= (a e a) V =(a 3 a)(a D a) = a e (aai) = a = A= a. 
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Proof of IXa. By V (in view of VIIa, b) take a- so that a (D = V. Then 
by Ia, Ilb, IIIb, alnd IVa we have 

a E V = (a ED V) V= V(a E V)-(a e a-)(a (D V) = a D (a\V) a 3 a-=V. 

Proof of Xa. By Ia, b, IIb, IVb, IlIa, and IXa we have 

a D (ab) = (aV ) ED (ab) = a( V b)=a(b ED V) = aV=a. 

Proof of XI. Suppose that for a given element a there were two elements, 
a7 and a2 such that a e a= a ED a2- V and aal- aa2 A; then using Ia, 
b, Ila, b, IlIb, IVb, and V we should have 

a2 Va2 = (a D al)a2= (aa2) ED (ala2)=A ED (,j2) 

- (a1a) ED (a j2)= l (a (D a2)=al V - al- 

Proof of XIIa. We notice first that 

aD(aEDc)= V and a(ac)= .A 

for, by Ia, b, l1b, IIlb, IVa, V, and Xb, 

a ED (tcED)= V [a ED (i aD c)] = (a D Ft) [a ED (i ea c)] 

=a (f [a(a ED c)] = a D a =V 

and similarly for the reciprocal proposition. 
Then, using IVa, b, IIla, b, and XI, 

(a ED b) ED (ab) = [(a. fD b) (D a] [(a D b) D b] = V V V 
and 

(a ED b)(a.b) - [a(a.b)] e [b(a.b)] = A A = 

whence, by XI, a e b and a.b are supplemenitary elements. 
Proof of XIIIa. Let (a ED b) ED c = x and a ED (b E c) y; then 

(a.6) c = x by XIJa, and in order to prove that x = y it is sufficient (by XI) 
to show that : and y are supplementary elements. 

Now 
(1) y ED a= y ED b = y Ec=V. 

For, first, y ED a = a ED [a D (b ED c)] = V as in the proof of XIIa; secondly, 

y e b= V(b D y) =(b D b)(b fe y) = b E3 (by) by IVa, 
while 

by = b [a ED (b c)] (ba) e [bb ED b)] = (ba) ED b = b, by IVb and Xa, b, 

so that y Db = D b =V; and similarly, y ED c= V* 
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Also, by a similar method, 
(2) xa=Tb=xc=A. 

Therefore, by IVa, 

y D X _ y D [(a.b)c] [(y (D a)(y ED b)] (y D c)= (V V)\= V 
and, by IVb, 

xy = [a D (b D c)] (ta) D [(b) D (0c)] = A D (A D A ) = A; 

whence, by XI, and y are suipplementary elements. Therefore x = y. 
Theorem XIIIb follows at once from XIIIa by XIIa, b. 

Independence of the postulates of the first set. 

The ten postulates of the first set are independent; that is, no one of them 
can be deduced from the other nine. To show this, we exhibit, in the case of 
each postulate, a system ( K, ED o ) which satisfies all the other postulates, but 
not the one in question. This postulate, then, cannot be a consequence of the 
others; for if it were, every system which had the other properties would have 
this property also, which is not the case. 

For postulate VI take K= the class comprising a single element, a, with 
a ED a = a and a ? a = a. 

For the other postulates, take K= a class containing two elements, say 0 and 
1, with ED and o defined appropriately for each case, as indicated in the fol- 
lowing scheme: 

0 ED0 0f1 1E0 11 0o0 0Go1 1? 0lot 

Ia) 0 1 1 x 0 0 0 1 
Ib) 0 1 1 1 x 0 0 1 

|Ia) 0 0 0 0 0 0 0 1 
IIb) 0 1 1 1 1 1 1 1 

Illa) 0 0 1 1 0 0 0 1 
lb) 0 1 1 1 0 0 1 1 

IVa) 0 1 1 0 0 0 0 1 
IVb) 0 1 1 1 1 0 0 .1 
V) 0 1 1 1 0 1 1 1 

In verifying these results, notice that the system for IIa (or JIb) satisfies 
postulate V ",vacuously," since no element having the properties of A (or \/) 
exists; while the system for Illa (or IJJb) also satisfies V vacuously, since the 
element /\ (or V) is not uniquely determined. In the other systemns, A = 0 
and V- = 1, except in the system for V, where fA = 0 and \/ = 0. 
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? 2. THE SECOND SET OF POSTULATES. 

In ? 2 we take as the fundamental concepts a class, K, with a dyadic relation, 
t; and as the fundamental propositions, the following ten postulates. (Note 
that a t b and b o a mean the same thing.) 

1. a E a whenever a belongs to the class. 
2. If aEDbandalsoacb,thena =b. 
3. If a E b and b E c, then a E c. 
4. There is an element A\ such that /\ t a for every element a * A. 
5. There is an element V such that V O a for every element a * V. 
6. If a * b, and neither a t b nor a O b, there is an element s such that 

1V) s a; 2?) sob; and 

30) if y, * s, is such that y O a and y O b, then y O s. 

7. If a * b, and neither a o b nor a O b, there is an element p such that 
1')p a; 20) p E b; and 

30) if x, *p, is such that x c? a and x e b, then x e p. 

8. If the elements A\ and V in 4 and 5 exist and are unique, then for every 
element a there is an element a such that 

10) if x E a and x D a, then x x= ; and 
20) if y O a and y a, then y=V. 

9. If postulates 1, 4, 5, and 8 hold, and if a t b is false, then there is ani 
element x ? /\ such that x t a and x t b. 

10. There are at least two elements, x and y, such that x ? y. 
In this list, postulates 1-7 are independent among themselves, and postulates 

8 and 9 are independent of the first seven (ordinally independent). Taking the 
whole list together, however, either 6 or 7 can be deduced from the rest, as 
shown in 25 below. Both postulates 6 and 7 are allowed to stand in the list for 
reasons of symmetry; but if a set of absolutely (not merely ordinally) inde- 
pendent postulates is desired, either one or the other must be omitted. 

Consistency of the postulates of the second set. 

To show the consistenev of the postulates, we have only to exhibit some sys- 
tem (K, e) in which K and t are so interpreted that all the postulates are 
satisfied. 

One such system is the following: K= the class of regions in the plane 
(including the null-region and the whole plane); a t b signifying that the region 
a lies within (or coincides with) the region b. 
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Another such system is the class composed of two elements, 0 and 1 with 
0 t 0, 0 t 1, and 1 1, but not 1 ? 0. 

For other such systems, see the appendix. 

Deductions from the postulates of the second set. 

The following theorems are deduced from the postulates of the second set, and 
are sufficient to connect these postulates with the usual presentation of the 
theory; the proofs wherever needed are given in the next paragraph. The pos- 
tulates oil which each theorem depends are indicated at the right. 

lla. The element /A in 4 is unique. (2, 4) 
Hence /A t a for every element a; and if x A , then x = (1, 2, 4) 

llb. The element V in 5 is unique. (2, 5) 
Hence V O a for every element a; and if y O V, then y=V. (1, 2, 4) 

12a. The element s in 6 is uniquely determined by a and b; hence we may 
define a ED b as follows: 

DEFINITION. Ifa c? b, a E b=b; if a O b, a b =a; if a =b, a E a= a; 
otherwise, a b =s (in 6). Hence a Eb a and a bo b; and if y a and 
y O b, then y O a E b. Obviously, a E b = b E a. (1, 2, 6) 

12b. The element p in 7 is uniquely determined by a and b; hence we may 
define a o b, or ab, as follows: 

DEFINITION. If a ? b, ab= a; if a O b, ab =b; if a= b, aa a; other- 
wise, ab =p (in 7). Hence ab O a and ab O b; and if xc a and x t b then 
x O ab. Obviously ab = ba. (1, 2, 7) 

13a. a E A= a and a V =V. (1, 2, 4, 5, 6) 
13b. aV=a and aA=A. (1 2, 4, 5, 7) 
14a. If y O a ED b, then y o a and y o b. (1, 2, 3, 6) 
14b. If x Q ab, then x ? a and x Q b. (1, 2, 3, 7) 
15a. If ao b andx y, then a EDxo b fEDy. (1, 2, 3, 6) 

In particular, if x o y, then a ED x o a ED y. 
15b. If a ? b and x ? y, then ax?ct by. (1, 2, 3, 7) 

In particular, if x E y, then ax E ay. 
16a. (a E b) E c = a E (b ED c). (1, 2, 3, 6) 
16b. (ab)c=a(bc). (1, 2, 3, 7) 
17. The element a in 8 is uniquely determined by a; lhence 

DEFINITION. The element a (in 8) is called non-a, or the supplement of a. 
Hence, a e a V and ai= A . Obviously, A = V and V = A 

(1, 2, 4, 5, 8, 9) 
18. If =b, then a b;hence, a a, by 17. (1, 2, 4, 5, 8, 9) 
19. If a O b then, inversely, b c a. (1, 2, 3, 4, 5, 8, 9) 



1904] THE ALGEBRA OF LOGIC 299 

20a. a E b =ia Gb. (1, 2, 3, 4, 5, 6, 7, 8, 9) 
20b. a o b = a e b. (1, 2, 3, 4, 5, 6, 7, 8, 9) 

These last theorems, 20a and 20b, establish the duality between a ED b and 
a? b. 

21a. a(b E c) ? ab ED ac. (1, 2, 39, , 97) 
21b. a ED bc ED (a ED b) (a (ED c). (1, 29 39 69 7) 
22a. al(b EDc) ab EDac. (1, 2, 39,49 59 6, 79 89 9) 
22b. a EDbc (aEDb) (aEDc). (1,29,39,49,59,69,79,89,9) 
From theorems 21 and 22 the distributive laws follow at once, by 2, namely, 
23a. a(b E c) = b bE ac. (1, 2, 3, 4, 5, 6, 7,8 , 9) 
23b. a E bc= (a E b)(a ED c). (1, 2, 3, 4,5 , 6, 7, 8, 9) 

All these theorems would hold for a class containing only a single element a, 
with a ? a. This trivial case is excluded by postulate 10, however, and we 
have: 

24. a * a; in particular, A 1 V\. (1, 2, 4, 5, 6, 7, 8, 10) 
25a. Postulate 6 is a consequence of postulates 1, 2, 3, 4, 5, 7, 8, and 9 ; 

the required element s being s = a (D 6. 
25b. Postulate 7 is a consequence of postulates 1, 2, 3, 4, 5, 6, 8, and 9; 

the required element p being p = i b. 

Proofs of theorems in the preceding paragraph. 

The theorems lla, b and 12a, b follow immediately from the postulates indi- 
cated. In theorems 13a, b it is sufficient to notice that the sunm or product 
given has the properties stated in 12a, b. Theorems 14a and 14b follow from 
12a and 12b by 3. The remaining theorems may be proved as follows, the proof 
for any theorem "6 b " being in each case readily supplied from the proof for the 
corresponding theorem " a" by interchanging ? with >, D with b(, and f 
with V.* 

Proof of 15a. By 12a, a e x c a and a 3 x c x. From a e x c a and 
a O b, by 3, a D ac b ; from a e x O x and x O y, by 3, a D x > y; therefore, 
by 12a, a e x > b 3 y. 

Proof of 16a. By 12a, (a e b) e c O a e b, and a e b O a; bence, by 39 
(a D b) D c > a. But also, a ffl b e b, whence (a 6 b) e c 6 b; and further, 
(a e b) e c O c, by 12a; hence, by 12a, (a e b) e c O (b 3 c). Therefore,by 
12a, (a e b) e c O a e (b 3 c). 

Similarly, a e (b e c) O (a b6) e c. Hence the theorem, by 2. 

* Theorems 21b, 22b, and 23b may also be inferred directly from 21a, 22a, and 23a, by the aid 
of the principle of duality established in 20a and 20b. 
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Proof qf 17. Let iia and a2 be two elements having the properties of ii in 8. 
Then iia ? a2; for if not, we should have, by 9, an element x * A such that 

x ? iia and x ? a, whence, by 8 and lla, x /\. 
Again, ii2 2) a; for, if not, we should have, by 9, an element y * A such 

that y ? a2 and y ? a, whence, by 8 and hla, Y = A. 
Therefore iia = J by 2. 
Proof of 18. From i =b we have: if x c a and x ? b, then x A ; and 

if y > a and y > b, then y V. But these are precisely the conditions under 
which a =, by 8. 

Proof of 19. If b ? a were false, we should have, by 9, an element x * A\ 
such that x ? b and x t a. But from x ? a and a ? b follows x ?) b, by 3; 
and from x ? b and x ? b follows x =A, by 8 and lla, which contradicts the 
condition x * A* 

Proof of 20a. Let a (D b = s and a b p; it is required to prove (see 18) 
that s = p. 

By 12a, s > a and s > b; hence by 19, s ? a and s ? b, or, by 12b, s? a.b; 
that is s ? p, or by 19, p ? s. 

Again, by 12b, p ?c a andp ? b; hence, by 19, p > a and p > b, or, by 12a, 
p O a (D b; that is, p o s. 

Therefore s = p, by 2. 
Proqf qf 21a. By 12b, ab ? a and ac ? a, whence, by 12a, 

ab e ac ? a. 
Again, ab ? b and ac ? c, by 12b; hence, by 15a, 

a6b ac ? b e c. 

Therefore, ab e ac ? a(b e c), by 12b. 
Proof qf 22a.* In order to facilitate the proof of this theorem, we first 

establish the following 
LEMMA: a(b c c a b ED ac. 
* This demonstration is borrowed, almost verbatim, from a letter of Mr. C. S. PEIRCE'S, dated 

December 24, 1903. Mr. PEIRCE uses the symbol -< where I have used C), and in a slightly 
different sense; so that he is enabled to state that the principle here called postulate 9 " follows 
from the definition of Pi -< C(i on page 18 " of his article of 1880. The demonstration was origi- 
nally worked out for that article (American Journal of Mathematics, vol. 3 (1880), 
p. 33), but is now published for the first time (compare ibid., vol. 7, p. 190, footnote, 1885 
[wrongly cited as 1884 in SCHR6DER's bibliography], and SCHER6DER, loc. cit., p. 291). 

Under the date February 14, 1904, Mr. PEIRCE writes as follows: 
"Dear Mr. HUNTINGTON: Should you decide to print the proof of the distributive principle 

(and this would not only relieve me from a long procrastinated duty, but would have a certain 
value for exact logic, as removing the eclipse under which the method of developing the subject 
followed in mypaperin vol. 3 oftheAmerican Journal of Mathematicshas been obscured) 
I should feel that it was incumbent upon me, in decency, to explain its having been so long with- 
held. The truth is that the paper aforesaid was written during leisure hours gained to me by 
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Suppose the lemma to be false. Then, by 9 anid 18, there is an element 
x * A such that 

x o a(b e3 c), (1?0) 
and x ? b e ac, 

whence, by 19, x o bf 6 ac. (20) 

From (10), by 14b, x o a, (30) 

and x ? b ec . (40) 

From (20), by 14a, 
- 
o b and x' k5 ac, whence, by 19, 

X ? b, (50) 

and x C ac. (60) 

From (60) and (30) it follows that x o c must be false; for if x o c alnd 
x ? a, then x ? ac by 12b, whence x = A, by 17, which contradicts the condi- 
tion x =1= A. 

Therefore, by 9 and 18, there is an element y * A such that 
y 0 x, (70) 

and y e c 
whence, by 19, y O c. (80) 
From (70) and (50), by 3, y 6 b, whence by 19, 

y (D h. (90) 
From (80) and (90) by 12a, yo b e c, whence, by 19, 

ye b f c. (100) 

But from (70) and (40), by 3, we have 
y?b c, (110) 

and from (100) and (110), by 17, y= A , which contradicts the condition y ? A/. 

my being shut up with a severe influenza. In writing it, I omitted the proof, as there said, be- 
couse it was 'too tedious ' and because it seemed to me very obvious. Nevertheless, when Dr. 
SCHRSDER questioned its possibility, I found myself unable to reproduce it, and so concluded 
that it was to be added to the list of blunders, due to the grippe, with which that paper abounds, 
-a conclusion that was strengthened when SCHRnDER thought he demonstrated the indemon- 
strability of the law of distributiveness. (I must confess that I never carefully examined his 
proof, having my table loaded with logical books for the perusal of which life was not long 
enough.) It was not until many years afterwards that, looking over my papers of 1880 for a 
diffei ent purpose, I stumbled upon this proof written out in full for the press, though it was 
eventually cut out, and, at first, I was inclined to think that it employed the principle that all 
existence is individual, which my method, in the paper in question, did not permit rue to em- 
ploy at that stage. I venture to opine that it fully vindicates my characterization of it as 
'tedious.' But this is how I have a new apology to make to exact logicians. " 

Trans. Am. Math. Soc. 20 
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Therefore the supposition from which we started is impossible, and the lemma 
is established. 

The proof of the main theorem then proceeds as follows: By the lemma, 

a(b E c) ? b E ac. 
Therefore, by 15b, a [a(b D c)] ? a [b D ac]. (120) 
But, by 16b and 12b, 

a [a(b (D c)] =(aa)(b ED c) =a(b ED c), (130) 
and by 12a and the lemma again, 

a [b E ac] =a(ac E b) ac D ab =ab E ac. (140) 

Therefore, by 3, 
a(b e c) ? ab E ac. 

Proqf of 23a. This theorem follows at once from 21a and 22a by 2. 
Proof of 24. If a a for any particular element a, then a = /\, by 8, 1, 

and lla. But if /\ /A , then /\A=V, by 8, 1, and llb; whence, every ele- 
ment coincides with A, by 2-a result which is impossible by 10. Therefore 
a $ a, for every element a. 

Proof of 25a. Let s = o b; we have then to show that this element s 
has the properties 10), 2?), and 30) demanded by postulate 6. By 18 and 12b, 
a b a and a o Tb; hence, by 19, sO a and so b. Further, if ycXa 
and y O b, then, by 19, y c a andy?b; whence, by 12b, ya , or, by 
19, y O s. 

Independence of the postulates of the second set. 

The independence of the nine postulates of the second set (either 6 or 7 being 
omitted) is shown by the following systems (K, ?), each of which satisfies all 
the other postulates, but not the one for which it is numbered. 

(1) K= a class of four elemelnts, say 0, 1, 2, 3, with ? defined by the 
accompanying "relation table." In a table of this kind,* a dot standing to 

D 2 011 3 

2. 

1 
3 0 

* SCHR6DER makes extensive use of tables of this kind in his Algebra der Logik; see vol. 3 

(1895), p. 44. 
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the right of a and underneath b indicates that the relation a ? b is true; the 
absence of such a dot indicates that a ? b is false. Here postulate 1 is not 
satisfied, for 0 ? 0 and 1 ? 1 are not true. In postulates 4 and 5, take /\ = 0 
and V = 1. In postulate 8, take 1, 2 = 3, and conversely. Postulate 9 
is satisfied vacuously. 

(2) K = a class of two elements, a and /3, with o interpreted as " equal to 
or different from," so that a o b is always true. 

Here postulate 2 is clearly false. Postulate 9 is satisfied vacuously, since 
a o b is never false. 

(3) K= a class of six elements, 0, 1, 2, ..., 5, with ? defined as in the 
accompanying table. 

4 2 0 0 3 5 

2.. 

3 . S S 

5 00 

Here postulate 3 is false, since 2 ? 4 and 4 ? 3, but not 2 ? 3. In postu- 
lates 4 and 5, take A 0, \/ 1. In postulate 8,take 0 -1 2- 3 4- 5 
and conversely. 

(4) K= the class of all the finite sets of integers which include the integer 
1; with ? interpreted as "1 the same as or includes." (Thus, a ? b means that 
every integer in the set b is also in the set a.) 

Postulate 4 fails, since there is no set which includes all the other sets. In 
5, take V = 1. In 6 and 7, let s be the set of integers common to the sets a 
and b, and p the sets composed of a and b together. Postulates 8 and 9 are 
satisfied vacuously. 

(5) K= the class of all the finite sets of integers which include the integer 
0; with o interpreted as "4 the same as or part of." (Thus, a ? b means that 
every integer in the set a is also in the set b.) 

Postulate 5 fails, since there is no set of which every other set is a part. In 
4, take A = 0. In 6 and 7, let s be the set composed of sets a and b together, 
and p the set of integers common to the sets a and b. 

(6 and 7). K= a class of fourteen elements, denoted, say, by uO; uO1, U02, U03 

u04 ; U012) U013 , U024 9 U034 ; U0123 9 U0124 u U0134 , U0234 ; u01234 ; with ? defined as follows: 
UA D UB when and only when the digits in the subscript A are all included 
anmong the digits in the subscript B. (Notice that u014 and u023 are not included 
in the class.) 
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Here postulates 1-5 clearly hold. Postulate 6 fails when a = u 01 u 0= 
and also when a = u 02, b =u03 Postulate 7 fails when a u0124, b u0134, and 
also when a = u0123 b =u0234. Postulates 8 and 9 hold. 

(8) K= a class of three elemenits, 0, 1, 2, with ? defined, by the accom- 
panying table. 

0 2 . 
2 .. 

Here postulates 4 and 5 hold, and A and \/ are unique: =0, V = 1 
But postulate 8 is false for the case a = 2. 

(9) K= a class of five elements, 0, 1, 2, 3, 4, with ? defined by the 
accomnpanying table. 

0 2 3 4 1 

0 00 @ 

2 . * 
3 0 0 

4 

Here postulates 4 and 5 are satisfied: A =0, \y= 1 and also postulate 8, 
although the element a is not always uniquely determined by a: thus, 0 = 1, 
2 = 3,3 2 or 4, 4 3, 1 0. Postulates 9 fails, since 4 ? 2 is false, 
while x 0 is the only element x such that x O 4 and x ? 3. 

I have not been able to find a system for (9) in which a, is always uniquely 
determined by a; see the unsolved problem proposed below. 

(10) K= a class comprising a single element a, with a ? a. (Postulate 9 
is satisfied vacuously.) 

Thus the postulates of ? 2, omitting either 6 or 7, are independent, as was to 
be proved. 

It is interesting to notice also that, if we confine ourselves to the first seven 
postulates, then postulates 6 and 7 are independent of each other. This is 
proved by the following systems, each of which satisfies all the postulates 1-7 
except the one for which it is numbered. 

(6) K= a class composed of the following areas: all the squares which lie 
within a given square (with sides parallel to the sides of the given square); the 
given square itself, and the " null " square; a fixed circle, lying wholly within 
the given square; and all areas formed by the addition of two or more of these 
areas;- with ? interpreted as "includes or coincides with." 
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Postulates 1-5 clearly hold. (In 4, A = the whole square; in 5, V = the 
null-square). Postulate 6 fails when a = the circle and b = a square which 
overlaps the circle; for there is no largest area (belonging to the class) which 
lies within both a and b. Postulate 7 holds, the area p being the combined 
area of a and b. 

(7) K-= the same class as used above in the proof of the independence of 6; 
with E interpreted as ", within or coincident with." 

Postulates 1-5 clearly hold. (In 4, /\ = the null-square; in 5, \/=the 
whole square). Postulate 6 holds, the area s being the combined area of a and 
b. Postulate 7 fails when a = the circle and b = a square which overlaps the 
circle; for there is no largest area (belonging to the class) which lies within 
both a and b. 

A problem connected with postulate 9. 
Other forms which may be used in place of postulate 9 are the following 

[assamniig such of the postulates 1-8 as may be necessary, and defining a ED b 
aind a o b ( = ab) as above]: 

91. If bc = , then b ? c. 
92.* If bc A, then a(b e c) E ab ED ac [whence a(b ff c) ab ED ac, by 

2 and 21a]. 
9,.t a ? ab ED ab [whence a = ab f ab, by 2 and 21a]. 
The form 91 canl be deduced from 92 or 93 as follows: if bc = then 

bcW bc= bCE =b(c Ec)= bV =b; whence, b?c. 
The form 9 can be deduced from 91 as follows: if a ? b is false, there must be 

some element x * /\, such that x ? a and x ? b; for, if there were no element 
except /\ which is c a aud ? b, then by 12b, ab = A whence, by 91, a ? b, which 
contradicts the hypothesis. 

The form 91 is clearly simpler than 92 or even than 93; but all these forms 
are in so far unsatisfactory as they lack the symmetry which corresponds to the 
principle of duality between ED and o. 

I therefore propose the following problem: if postulate 9 is replaced by 94, 
namely: 

94. If the elements /\ and V in postuilates 4 and 5 exist and are unique, 
and if postulates 8 is true, then the element -a in 8 is uniquely determined 
by the elenment a; 

can 9 then be deduced from 94, or must some other postulate be added ? 
In this connectioni, 19 is clearly of special importance. 
*This is SCHR6DER'S " Prinzip lIIx " (loc. cit., p. 293), from which he showed that the dis- 

tributive law, 23, can be deduced. 
t This is SCHRODER'S " Prinzip II1I ," a weaker form of his " Prinzip III ," and not, as far 

as he could see without the knowledge of a proof like that of PEIRcE'S in the present paper, suf- 
ficient for his purpose. 
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? 3. THE THIRD SET OF POSTULATES. 

In ? 3 we take as the fundamental concepts a class, K, with a rule of com- 
bination, ED; and as the fundamental propositions, the following nine postulates: 

A. a ED a = a whenever a and a ED a belong to the class. 

B. aED b =b D a whenever a, b, a 6b, and b E a belong to the class. 

C. (a ED b) @ c = a ED (b ED c) whenever a, b, c, a ED b, 6b ED c, (a ED b) f c, 
and a f (b ff c) belong to the class. 

D. There is an element A\ such that a f A afor every element a. 

E. There is an element V such that V ED a V for every element a. 

F. If a and b belong to the class, then a ED b belongs to the class. 

G. If the elements A and V in postulates D and E exist and are unique, 
then for every elemnent a there is an element a such that 

1?) if axa=aandx(a_i=d,thenx=A; 

and 20) a E V. 

H. If postulates A, ID, E, and G hold, and if a ED b * then there is 
an elemnent x * A such that a ED x= a and b ED x b. 

J. There are at least two elements, x and y, such that x * y. 

Consistency qf the postulates of the third set. 

The consistency of the postulates is shown by the existence of the following 
system (K, ED), in which all the postulates are satisfied: 

K= the class of regions in the plane (including the null region and the whole 
plane); a E b = the " logical sumn " of the regions a and b, that is, the smallest 
region which includes them both. 

Another such system is the class composed of two elements, 0 and 1, with ED 
defined by the table 

O 0 1 

For other such systems, see the appendix. 

Deductions from the postulates of the third set. 

All the postulates of ? 2 are very easily deduced from the postulates of ? 3 
when ? is defined as follows: 
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DEFINITION. We shall write a ? b (or b o a) when and only when a ED b b. 
The proof of 6, for example, is as follows: By F, B, C and A, 

(a e b) e a a e (a f 6) (a e a) e 6 a e 6, 

and similarly ( a e b ) e b a e b; whence, a e b O a and a e b O b . Further, 
if yoa and yob, then afly =y and b EDy- y, whence (aED y)ED (b EDy) = yEDy, 
or (aEDb)EDy =y, or yo(a EDb). 

Postulate 7 follows as in 25b, anid we may define a o b thus: 
DEFINITION. a b = a 3 b. 
The equivalence between the algebra of ? 3 and the algebras of ? 1 and ? 2 is 

thus readily established. 

Independence of the postulates oJ the third set. 

The independence of the nine postulates of the third set is shown by the fol- 
lowing systems (K, ED ), each of which satisfies all the other postulates, but not 
the one for which it is lettered. 

(A) The class of positive integers, and 0 and ox; with a e b = a + b. 
Here postulates B-F clearly hold. In G take a =x o when a ? ox, and 

a = any other element when a = ox. Postulate H is satisfied vacuously. 
(B) A class of two or more elements, with a e b = a. 
Here B clearly fails. In D, E, and F, any elements will answer as tA and 

V. Postulate G is satisfied vacuously, since A and V are not uniquely deter- 
mined. In H, x = any element. 

(C) A class of six elements, 0, 1, 2, * , 5, with D defined as in the accom- 
panying table. 

D 4 2 0 1 3 5 

4 4 4 4 1 3 1 

2 4 2 2 1 1 2 

0 4 2 0 1 3 5 

1 1 11 11 1 

3 3 1 3 1 3 5 

5 1 2 5 1 5 5 

Here C fails, since (2 (D 4) e 3 =4 e 3 3, while 2 D ( 4 ED 3) 2 D 3- 
In D and E, take A =.0 and V = 1. Postulate G holds: 0-1, 2-3, 4-5. 
and conversely. Postulate H also holds. 

(D) The class of all the finite sets of integers which include the integer 1; 
with a (D b defined as the set of integers common to the sets a and b. 
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Here D fails, since no set includes all the rest. In E, take \, = 1. Postu- 
lates G and H ate satisfied vacuously. 

(E) The class of all the finite sets of integers which include the integer 0; 
with a D b defined as the set composed of the sets a and b together. 

Here E fails, since no set inieludes all the rest. In D, take A = 0. Postu- 
lates G and H are satisfied vacuously. 

(F) The class of fourteen elements used in proving the independence of 6 
and 7 in ? 2; with (D defined as follows: UA D = us? , where the subscript S 
includes all the digits in the subscript A and also all those in the subscript B. 

Here F fails when a =u01 b= u04, and also when a =u02, b= U03'. 

(G) A class of three elements, 0, 1, 2, with (D defined as in the accompany- 
ing table. 

(D 0 2 1 

0 0 2 1 

2 2 2 1 

I 1 1 1 

Here G fails when a 2. In D and E, take f\ = 0 and V 1. Postu- 
late H is satisfied vacuously. 

(H) A class of five elements, 0, 1, 2, 3, 4 with (D defined as in the accom- 
panying table. 

D 0 2 3 4 1 

O 0 2 3 4 1 

2 2 2 1 4 1 

3 3 1 3 1 1 

4 4 4 1 4 1 

1 1 1 1 1 1 

Here A and B clearly hold. Postulate C holds, when a or b or c is 
0 or 1; when a= c; alnd in the other cases by trial. Postulate G holds: 
0 1, 2 _ 3, 3 2 or 4, 4 =3, 1 = 0; but notice that a is not uniquely 
determined by a in the case a = 3. Postulate H fails in the case a = 4, b.= 3, 

= 2. (Compare proof of independence of postulate 9 in ? 2, and the unsolved 
problem proposed at the end of that section.) 

(J) A class composed of a single element a, with a (D a = a. 

APPENDIX. 

Any system (K, (D, o, ) which obeys the laws of the algebra of logic miay 
be called a logical field (a term which I venture to suggest as analogous to 
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" Galois field "). In this appendix * we consider all possible finite logical fields, 
that is, all possible finite classes, K, in which the rules of combination, E and 
?, and the dyadic relation, ?, can be so defined as to satisfy the postulates of 
?1, ?2, or ?3. 

1. The number of elements in every finite logical field must be 2m, where 
m =1, 2, 3, 

For, if a ? b, and a + b, we can always find an element x * A+ namely 
x = ab, such that a e x = 6 and ax= / . Hence, in aniy finite logical field 
we can find a set of mn elements different from / , say u1, u2, * ... I Umn such that 

U?+ U2+ U3+ -+?Um= V 
while 

Iu1= f\ (i#j). 

These m elements may be called irreducible. 
Every element except /A is then the sum of k of these irreducible elements 

(1 c k ci m), whence, by a familiar theorem in combinations, t the total num- 
ber of elements is 2rn. 

2. Any class the number of whose elements is a power of' 2, say 2m, can be 
made into a logical field by properly defining e, X and t; and this in essen- 
tially only one way. 

The process of constructing the requisite "4 addition-," " multiplication-," and 
" relation-tables " is the following: 

Select one element to serve as /X. Select ni other elements to serve as the 
" irreducible " elements of the system, and denote them by u1l u2, u, .U , Urm. 

Select m02 other elements to serve as the elements which are the sums of two of 
the irreducible elements, and denote them by u12, u13, u23, etc., so that we shall 
have u12 u1 e u2 etc. Select mC3 other elements to serve as the elements 
which are the sums of three of the irreducible elements, and denote them by 
U123, U124 qU234. etc.; so that we shall have U123 = Ul I u2 (I) U3, etc. And so on. 
Finally, u123.. m =v 

The construction of the tables is then obvious. Thus, UA ? UB when and only 
when the digits in the subscript A are all contained among the digits in the sub- 
script B; UA e) UB = u8 where the subscript S contains all the digits that occur 
in A and also all that occur in B; uA o UB = Up, where the subscript P con- 
tains only those digits which are common to the subscripts A and B. 

HARVARD UNIVERSITY, 
CAMBRIDGE, MASS. 

* Cf. P. PORETSKII, Theoarie des egalites logiques a trois termes a, b et c; B i b l i o t h e q u e d u 
congr6s international de philosophie, Paris 1900, vol. 3 (1901), pp. 201-233; and 
SCHRODER, loc. cit., vol. 1, p. 658. The notation and method of proof here used were suggested 
to me by Professor E. H. MooRu. 

t This theorem: 1+ m0i + m02 + m3+ ? + mOm 2m, is, oddly enough, not explicitly 
mentioned in CHRYSTAL's Algfbra; see vol. 2 (2d edition). chap. XXIlI, ? 13. 
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