

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Boolean Algebra

Administrative Stuff

- HW1 is due today @ 10 pm
- Sample solutions will be posted on Canvas after the deadline.
- No late homeworks will be accepted.

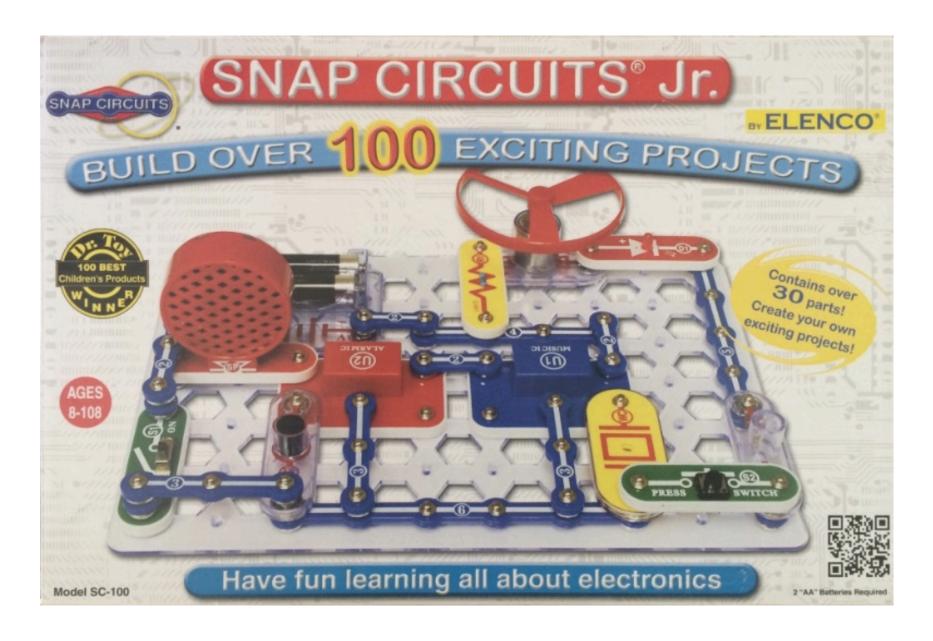
Administrative Stuff

HW2 is out

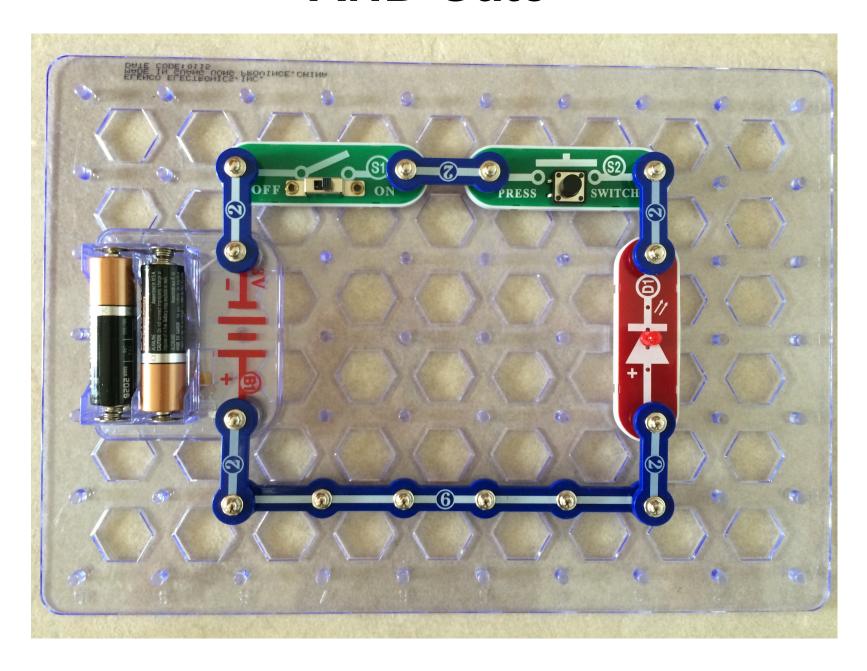
It is due on Wednesday Sep 7 @ 10pm.

Submit it on Canvas before the deadline.

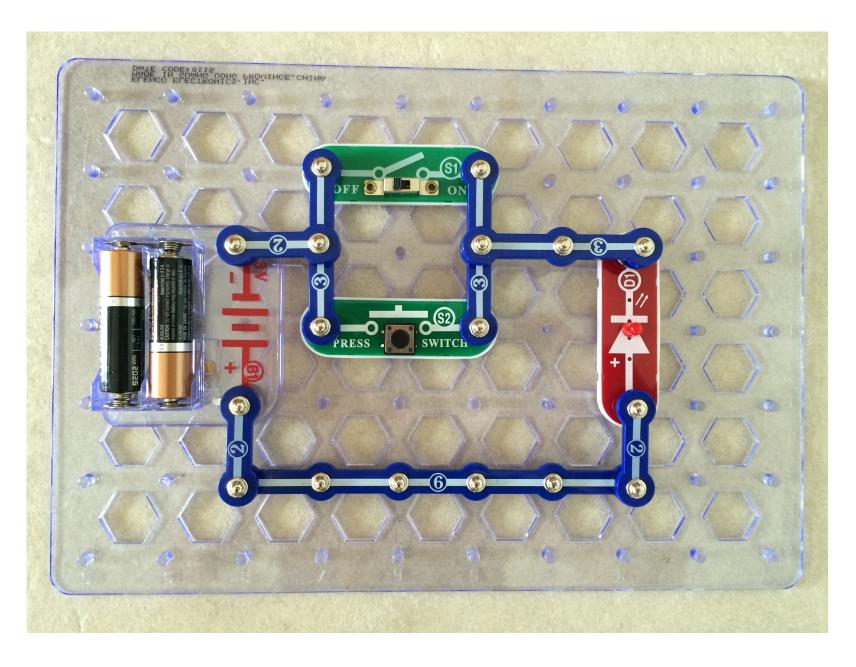
Did you play with this toy?



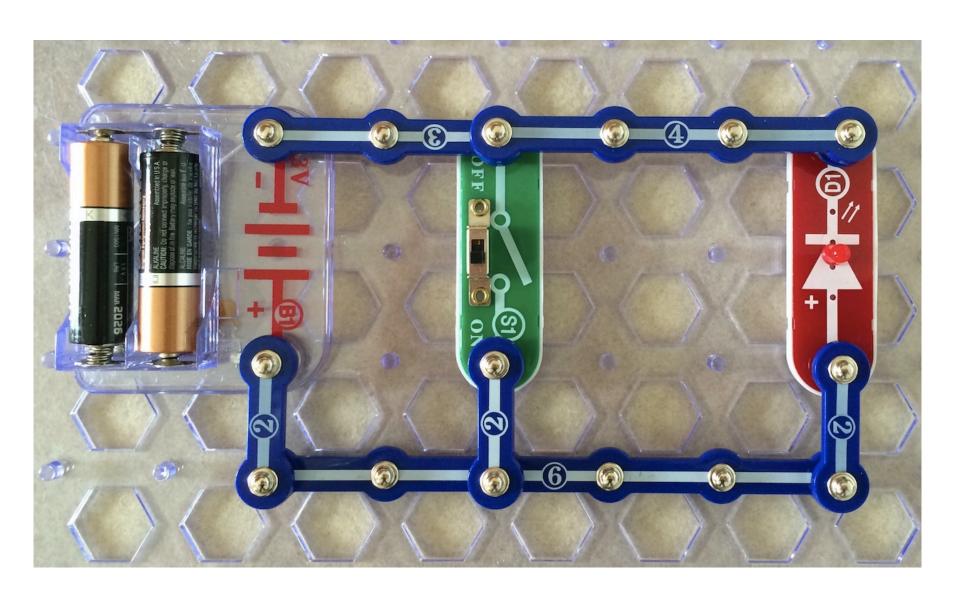
AND Gate



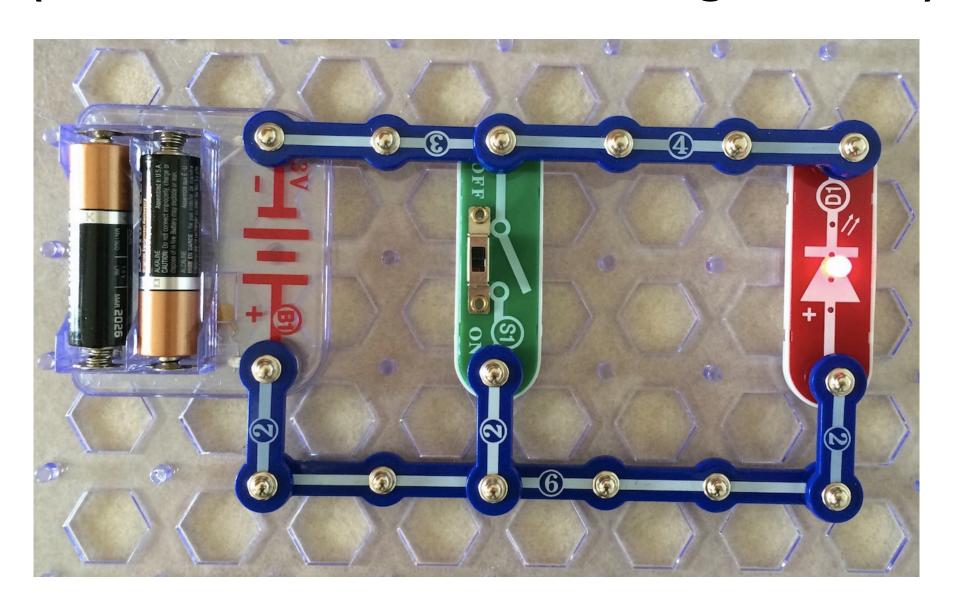
OR Gate



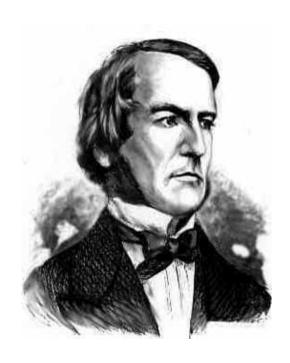
NOT Gate (the switch is ON but the light is OFF)



NOT Gate (the switch is OFF but the light is ON)



Boolean Algebra



George Boole 1815-1864

- An algebraic structure consists of
 - a set of elements {0, 1}
 - binary operators {+, •}
 - and a unary operator { ' } or { } or { ~ }
- Introduced by George Boole in 1854
- An effective means of describing circuits built with switches
- A powerful tool that can be used for designing and analyzing logic circuits

Axioms of Boolean Algebra

1a.
$$0 \cdot 0 = 0$$
1b. $1 + 1 = 1$

2a. $1 \cdot 1 = 1$
2b. $0 + 0 = 0$

3a. $0 \cdot 1 = 1 \cdot 0 = 0$
3b. $1 + 0 = 0 + 1 = 1$

4a. If $x=0$, then $\overline{x} = 1$

4b. If x=1, then $\overline{x} = 0$

Single-Variable Theorems

5a.
$$x \cdot 0 = 0$$

5b. $x + 1 = 1$

6a.
$$x \cdot 1 = x$$

$$6b. \quad x + 0 = x$$

7a.
$$x \cdot x = x$$

7b.
$$x + x = x$$

8a.
$$x \cdot \overline{x} = 0$$

$$8b. \quad x + \overline{x} = 1$$

$$9. \quad \overline{\overline{x}} = x$$

Two- and Three-Variable Properties

10a.
$$x \cdot y = y \cdot x$$
 Commutative
10b. $x + y = y + x$
11a. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ Associative
11b. $x + (y + z) = (x + y) + z$
12a. $x \cdot (y + z) = x \cdot y + x \cdot z$ Distributive
12b. $x + y \cdot z = (x + y) \cdot (x + z)$
13a. $x + x \cdot y = x$ Absorption

13b. $x \cdot (x + y) = x$

Two- and Three-Variable Properties

14a.
$$x \cdot y + x \cdot \overline{y} = x$$

Combining

14b.
$$(x + y) \cdot (x + \overline{y}) = x$$

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

theorem

16a.
$$x + \overline{x} \cdot y = x + y$$

16b.
$$x \cdot (\overline{x} + y) = x \cdot y$$

17a.
$$x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$$
 Consensus

17b.
$$(x+y) \cdot (y+z) \cdot (\overline{x}+z) = (x+y) \cdot (\overline{x}+z)$$

Now, let's prove all of these

The First Four are Axioms (i.e., they don't require a proof)

1a.
$$0 \cdot 0 = 0$$
1b. $1 + 1 = 1$

2a.
$$1 \cdot 1 = 1$$

2b. $0 + 0 = 0$

3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$

3b. $1 + 0 = 0 + 1 = 1$

4a. If
$$x=0$$
, then $\overline{x} = 1$
4b. If $x=1$, then $\overline{x} = 0$

But here are some other ways to think about them

1a.
$$0 \cdot 0 = 0$$

1b.
$$1 + 1 = 1$$

1a.
$$0 \cdot 0 = 0$$

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

1b.
$$1 + 1 = 1$$

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

1a.
$$0 \cdot 0 = 0$$

$$\begin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

1b. 1 + 1 = 1

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \end{array}$$

2a.
$$1 \cdot 1 = 1$$

$$2b. 0 + 0 = 0$$

$$0 \longrightarrow 0$$
OR gate

2a.
$$1 \cdot 1 = 1$$

AND gate

$$\begin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \end{array}$$

$$2b. 0 + 0 = 0$$

$$\begin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$$

3a. $0 \cdot 1 = 1 \cdot 0 = 0$ 3b. 1 + 0 = 0 + 1 = 1



$$\begin{array}{c} 1 \\ 0 \end{array} \longrightarrow \begin{array}{c} 1 \end{array}$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$

3b.
$$1 + 0 = 0 + 1 = 1$$

$$\begin{bmatrix} 1 & & \\ 0 & & \end{bmatrix} - \begin{bmatrix} 0 & \\ \end{bmatrix}$$

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 $\begin{bmatrix} 1 \\ \end{bmatrix}$

$$\begin{array}{c} 0 \\ 1 \end{array}$$

OR gate

\mathbf{x}_1	\mathbf{X}_2	$\int f$
0	0	0
0	1	1
1	0	1
1	1	1

3a.
$$0 \cdot 1 = 1 \cdot 0 = 0$$

AND gate

$$\begin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

3b. 1 + 0 = 0 + 1 = 1

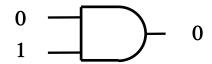
$$\begin{array}{c} 0 \\ 1 \end{array} \longrightarrow \begin{array}{c} 1 \end{array}$$

OR gate

\mathbf{x}_1	\mathbf{X}_2	f
0	0	0
0	1	1
1	0	1
1	1	1

3a. $0 \cdot 1 = 1 \cdot 0 = 0$

3b. 1 + 0 = 0 + 1 = 1



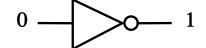
AND gate

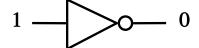
$$\begin{array}{c|cccc} x_1 & x_2 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

OR gate

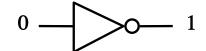
\mathbf{x}_1	\mathbf{X}_2	f
0	0	0
0	1	1
1	0	1
1	1	1

4a. If x=0, then $\overline{x} = 1$ 4b. If x=1, then $\overline{x} = 0$





4a. If x=0, then $\overline{x} = 1$ 4b. If x=1, then $\overline{x} = 0$



NOT gate

\mathcal{X}	$\overline{\mathcal{X}}$
0	1
1	0

NOT gate

\mathcal{X}	$\overline{\mathcal{X}}$
0	1
1	0

Single-Variable Theorems

5a.
$$x \cdot 0 = 0$$

5b. $x + 1 = 1$

6a.
$$x \cdot 1 = x$$

$$6b. \quad x + 0 = x$$

7a.
$$x \cdot x = x$$

7b.
$$x + x = x$$

8a.
$$x \cdot \overline{x} = 0$$

$$8b. \quad x + \overline{x} = 1$$

$$9. \quad \overline{\overline{x}} = x$$

5a. $x \cdot 0 = 0$

5a. $x \cdot 0 = 0$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

5a.
$$x \cdot 0 = 0$$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

i) If x = 0, then we have

 $0 \cdot 0 = 0$

// axiom 1a

5a.
$$x \cdot 0 = 0$$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

i) If
$$x = 0$$
, then we have

$$0 \cdot 0 = 0$$

// axiom 1a

ii) If
$$x = 1$$
, then we have

$$1 \cdot 0 = 0$$

// axiom 3a

5b. x + 1 = 1

$$5b. x + 1 = 1$$

i) If x = 0, then we have

$$0 + 1 = 1$$
 // axiom 3b

$$5b. x + 1 = 1$$

i) If x = 0, then we have

$$0 + 1 = 1$$

// axiom 3b

ii) If x = 1, then we have

$$1 + 1 = 1$$

// axiom 1b

$$6a. \quad x \cdot 1 = x$$

i) If
$$x = 0$$
, then we have

$$0 \cdot 1 = 0$$

// axiom 3a

ii) If
$$x = 1$$
, then we have

$$1 \cdot 1 = 1$$

// axiom 2a

$$6a. \quad x \cdot 1 = x$$

i) If x = 0, then we have

// axiom 3a

ii) If x = 1, then we have

// axiom 2a

6b.
$$x + 0 = x$$

i) If
$$x = 0$$
, then we have

$$0+0=0$$

// axiom 2b

ii) If x = 1, then we have

$$1 + 0 = 1$$

// axiom 3b

$$6b. x + 0 = x$$

i) If x = 0, then we have

$$0+0=0$$

// axiom 2b

ii) If x = 1, then we have

// axiom 3b

7a.
$$x \cdot x = x$$

$$0 \cdot 0 = 0$$

// axiom 1a

ii) If x = 1, then we have

$$1 \cdot 1 = 1$$

// axiom 2a

7a.
$$x \cdot x = x$$

// axiom 1a

ii) If x = 1, then we have

// axiom 2a

$$7b. \quad x + x = x$$

$$0 + 0 = 0$$

// axiom 2b

ii) If x = 1, then we have

$$1 + 1 = 1$$

// axiom 1b

$$7b. x + x = x$$

// axiom 2b

ii) If x = 1, then we have

// axiom 1b

8a.
$$x \cdot \overline{x} = 0$$

$$0 \cdot 1 = 0$$

// axiom 3a

ii) If x = 1, then we have

$$1 \cdot 0 = 0$$

// axiom 3a

8a.
$$x \cdot \overline{x} = 0$$

// axiom 3a

ii) If x = 1, then we have

// axiom 3a

$$8b. \quad x + \overline{x} = 1$$

$$0 + 1 = 1$$
 // axiom 3b

ii) If x = 1, then we have

$$1 + 0 = 1$$
 // axiom 3b

$$8b. \quad x + \overline{x} = 1$$

$$0 + 1 = 1$$

// axiom 3b

ii) If x = 1, then we have

$$1+0=1$$

// axiom 3b

$$\overline{x} = 1$$
 // axiom 4a

let $y = \overline{x} = 1$, then we have

$$\overline{y} = 0$$
 // axiom 4b

Therefore, $= x = x \quad \text{(when x = 0)}$

$$9. \quad \mathbf{x} = \mathbf{x}$$

$$\overline{x} = 0$$
 // axiom 4b

let $y = \overline{x} = 0$, then we have

$$\overline{y} = 1$$
 // axiom 4a

Therefore, =

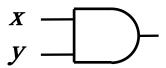
$$= x = x$$
 (when x =1)

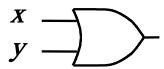
$$x \cdot y = y \cdot x$$

10a.
$$x \cdot y = y \cdot x$$
 10b. $x + y = y + x$

10a.
$$x \cdot y = y \cdot x$$

10b.
$$x + y = y + x$$





$$X \longrightarrow X$$

AND gate

X	У	f
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

X	У	f
0	0	0
0	1	1
1	0	1
1	1	1

The order of the inputs does not matter.

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

X	у	Z	Х	y • z	x•(y•z)
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

X	у	Z	Х	y • z	x•(y•z)
0	0	0	0	0	
0	0	1	0	0	
0	1	0	0	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

X	у	Z	Х	y • z	x•(y•z)
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	1	1

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

X	у	Z	x • y	z	(x•y)•z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	1	1

Truth table for the right-hand side

11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

x•(y•z)
0
0
0
0
0
0
0
1

(x•y)•z
0
0
0
0
0
0
0
1

These two are identical, which concludes the proof.

11b.
$$x + (y + z) = (x + y) + z$$

X	у	Z	Х	y + z	x+(y+z)
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

11b.
$$x + (y + z) = (x + y) + z$$

X	у	Z	Х	y + z	x+(y+z)
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	1	
1	1	0	1	1	
1	1	1	1	1	

11b.
$$x + (y + z) = (x + y) + z$$

X	у	Z	Х	y + z	x+(y+z)
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Truth table for the left-hand side

11b.
$$x + (y + z) = (x + y) + z$$

X	у	Z	x + y	z	(x+y)+z
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Truth table for the right-hand side

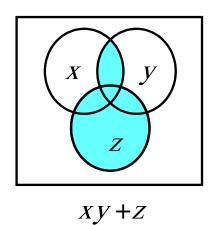
11b.
$$x + (y + z) = (x + y) + z$$

x+(y+z)
0
1
1
1
1
1
1
1

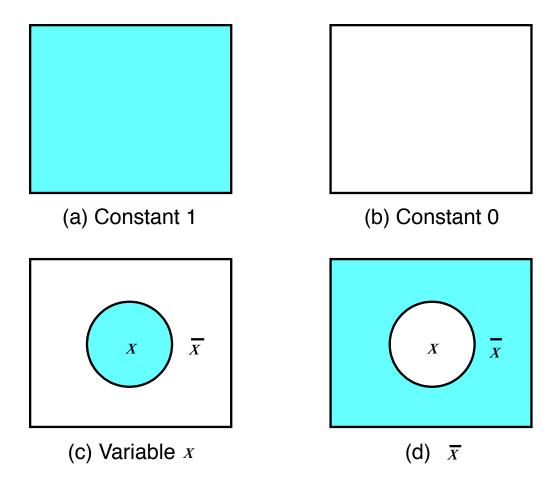
(x+y)+z
0
1
1
1
1
1
1
1

These two are identical, which concludes the proof.

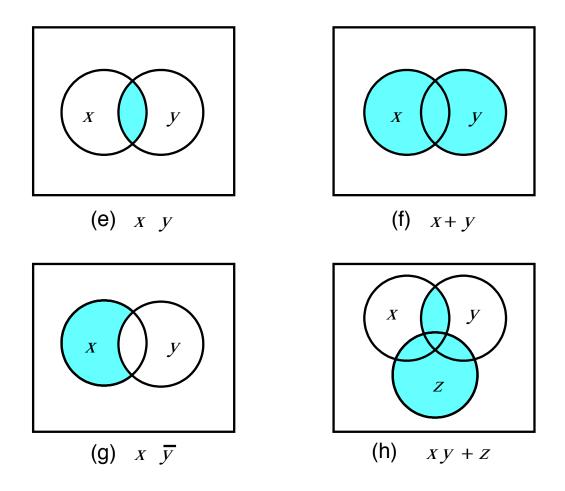
The Venn Diagram Representation



Venn Diagram Basics



Venn Diagram Basics

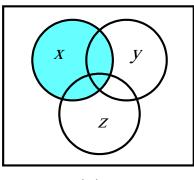


Let's Prove the Distributive Properties

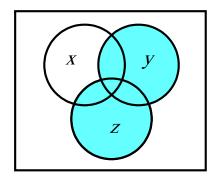
12a.
$$x \cdot (y + z) = x \cdot y + x \cdot z$$

12b. $x + y \cdot z = (x + y) \cdot (x + z)$

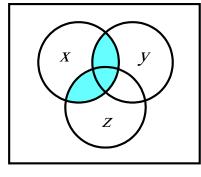
12a. $x \cdot (y + z) = x \cdot y + x \cdot z$



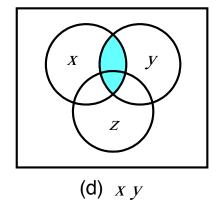
(a) *x*

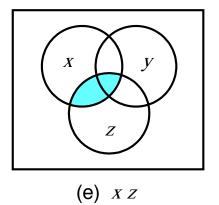


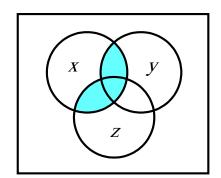
(b) y + z



(C)
$$X (y+z)$$

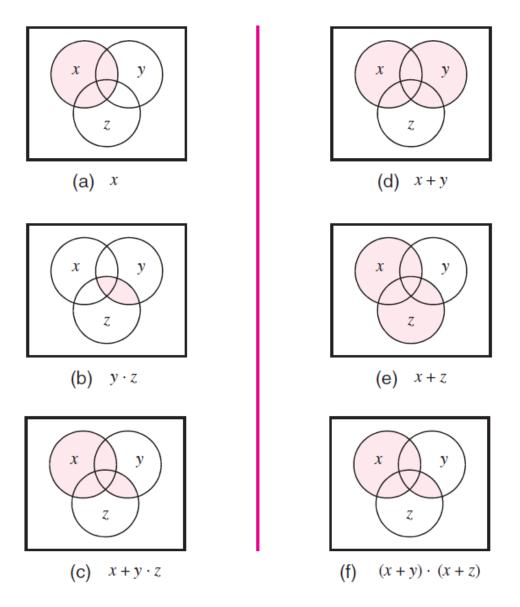






(f)
$$xy + xz$$

12b. $x + y \cdot z = (x + y) \cdot (x + z)$



[Figure 2.17 from the textbook]

Try to prove these ones at home

13a.
$$x + x \cdot y = x$$

13b. $x \cdot (x + y) = x$

14a.
$$x \cdot y + x \cdot \overline{y} = x$$

14b. $(x + y) \cdot (x + \overline{y}) = x$

DeMorgan's Theorem

15a.
$$\frac{\overline{x} \cdot y}{\overline{x} + y} = \frac{\overline{x} + \overline{y}}{\overline{x}}$$

15b. $\frac{\overline{x} \cdot y}{\overline{x} + y} = \frac{\overline{x} \cdot \overline{y}}{\overline{y}}$

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

x y	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\overline{y}	$\bar{x} + \bar{y}$
0 0 0 1 1 0 1 1					

LHS

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

x y	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x} + \bar{y}$
0 0 0 1 1 0 1 1	0 0 0 1				

LHS

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

x y	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x} + \bar{y}$
0 0 0 1 1 0 1 1	0 0 0 1	1 1 1 0			

LHS

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

x y	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x} + \bar{y}$
0 0 0 1 1 0 1 1	0 0 0 1	1 1 1 0	1 1 0 0		

LHS

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

x y	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x} + \bar{y}$
0 0	0	1	1	1	
0 1	0	1	1	0	
1 0	0	1	0	1	
1 1	1	0	0	0	

LHS

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

х	у	$x \cdot y$	$\overline{x \cdot y}$	\bar{x}	\bar{y}	$\bar{x} + \bar{y}$
0 0 1	0 1 0	0 0 0	1 1 1	1 1 0	1 0 1	1 1 1
1	1	1	0	0	0	0

LHS

x
 y
 x
 y

$$\bar{x}$$
 \bar{y}
 \bar{x}
 \bar{y}
 \bar{x}
 \bar{y}

 0
 0
 0
 1
 1
 1
 1

 0
 1
 0
 1
 1
 0
 1

 1
 0
 0
 1
 0
 1
 1

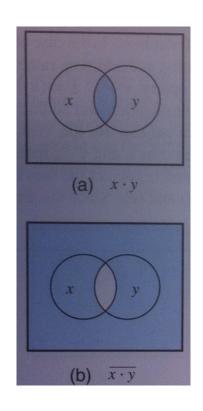
 1
 0
 0
 0
 0
 0

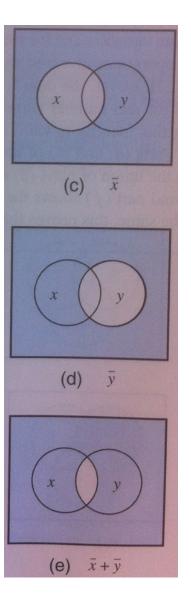
 1
 1
 0
 0
 0
 0

These two columns are equal. Therefore, the theorem is true.

Alternative proof using Venn Diagrams

15a.
$$x \cdot y = x + y$$





15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

х	у	<i>x</i> + <i>y</i>	$\overline{x} + \overline{y}$	\bar{x}	\bar{y}	$\bar{x} \cdot \bar{y}$
0 0 1 1	0 1 0 1					
		LI		RH	S	

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

х	у	<i>x</i> + <i>y</i>	$\overline{x} + \overline{y}$	\bar{x}	ÿ	$\bar{x} \cdot \bar{y}$
0 0 1 1	0 1 0 1	0 1 1 1				
		LI	HS		RH	S

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

х	у	<i>x</i> + <i>y</i>	$\overline{x} + \overline{y}$	\bar{x}	ÿ	$\bar{x} \cdot \bar{y}$
0 0 1 1	0 1 0 1	0 1 1 1	1 0 0 0			
		LI	HS		RH	

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

х	у	<i>x</i> + <i>y</i>	$\overline{x} + \overline{y}$	\bar{x}	ÿ	$\bar{x} \cdot \bar{y}$
0 0 1 1	0 1 0 1	0 1 1 1	1 0 0 0	$\begin{array}{ c c } 1 \\ 1 \\ 0 \\ 0 \end{array}$		
		LI	HS		RH	S

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

х	у	<i>x</i> + <i>y</i>	$\overline{x} + \overline{y}$	\bar{x}	\bar{y}	$\bar{x} \cdot \bar{y}$
0 0 1 1	0 1 0 1	0 1 1 1	1 0 0 0	1 1 0 0	1 0 1 0	
		LI		RH	<u> </u>	

LHS

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

х	у	<i>x</i> + <i>y</i>	$\overline{x} + \overline{y}$	\bar{x}	ÿ	$\bar{x} \cdot \bar{y}$
0 0 1 1	0 1 0 1	0 1 1 1	1 0 0 0	1 1 0 0	1 0 1 0	1 0 0 0
		LI	AS.		RH	

 $\mathbf{L}_{\mathbf{I}}$

 \mathbf{n}

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

These two columns are equal, so the theorem is true.

х	у	<i>x</i> + <i>y</i>	$\overline{x} + \overline{y}$	\bar{x}	\bar{y}	$\bar{x} \cdot \bar{y}$
0 0 1 1	0 1 0 1	0 1 1 1	1 0 0 0	1 1 0 0	1 0 1 0	1 0 0 0
		LI	HS		RH	S

DeMorgan's Theorem Generalizes to more than 2 variables

$$\overline{\mathbf{x} \cdot \mathbf{y} \cdot \mathbf{z}} = \overline{\mathbf{x} + \mathbf{y} + \mathbf{z}}$$

$$\overline{x + y + z} = \overline{x \cdot y \cdot z}$$

DeMorgan's Theorem Generalizes to more than 2 variables

$$\overline{\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \mathbf{d}} = \overline{\mathbf{a} + \overline{\mathbf{b}} + \overline{\mathbf{c}} + \overline{\mathbf{d}}}$$

$$\frac{a + b + c + d}{a + b + c + d} = \frac{a \cdot b}{a \cdot b} \cdot \frac{c}{c} \cdot \frac{d}{d}$$

Try to prove these ones at home

16a.
$$x + \overline{x} \cdot y = x + y$$

16b. $x \cdot (\overline{x} + y) = x \cdot y$

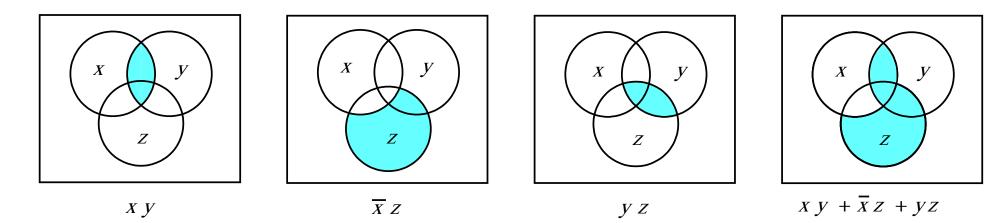
17a.
$$x^{\bullet}y + y^{\bullet}z + \overline{x}^{\bullet}z = x^{\bullet}y + \overline{x}^{\bullet}z$$

17b. $(x+y)^{\bullet}(y+z)^{\bullet}(\overline{x}+z) = (x+y)^{\bullet}(\overline{x}+z)$

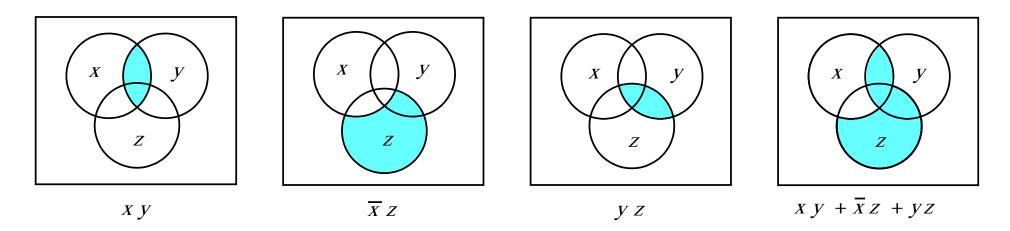
Venn Diagram Example Proof of Property 17a

17a.
$$x \cdot y + y \cdot z + x \cdot z = x \cdot y + x \cdot z$$

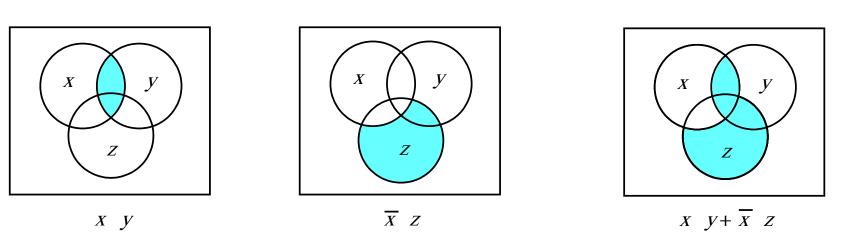
Left-Hand Side



Left-Hand Side

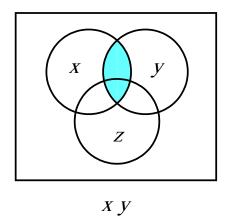


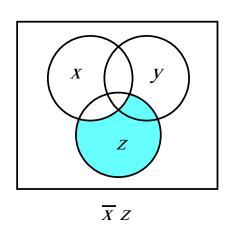
Right-Hand Side

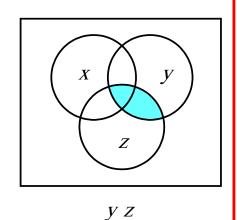


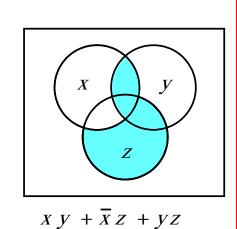
Left-Hand Side

These two are equal

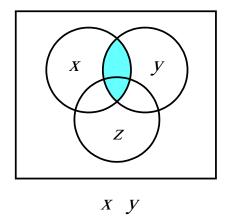


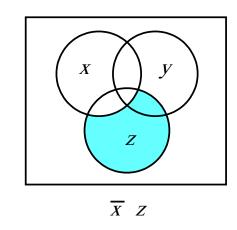


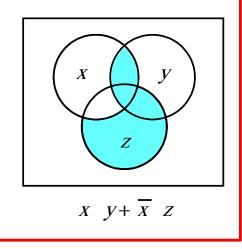




Right-Hand Side







Questions?

THE END