

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

NAND and NOR Logic Networks

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- There will be no lecture on Monday Sep 5
- Due to Labor Day (university holiday)

Administrative Stuff

- HW2 is due on Wednesday Sep 7 @ 10pm
- Please write clearly on the first page the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Submit on Canvas as *one* PDF file.
- Please orient your pages such that the text can be read without the need to rotate the page.

Administrative Stuff

- Next week we will start with Lab2
- Read the lab assignment and do the prelab at home.
- Complete the prelab on paper before you go to the lab.
 Otherwise you'll lose 20% of your grade for that lab.

Quick Review

Minterms (a set of basis functions)

X	у	f ₀₀
0	0	1
0	1	0
1	0	0
1	1	0

X	у	f ₀₁
0	0	0
0	1	1
1	0	0
1	1	0

X	у	f ₁₀
0	0	0
0	1	0
1	0	1
1	1	0

X	у	f ₁₁
0	0	0
0	1	0
1	0	0
1	1	1

$$f_{00}(x, y)$$

$$f_{01}(x, y)$$

$$f_{10}(x, y)$$

$$f_{11}(x, y)$$

X	у	f ₀₀
0	0	1
0	1	0
1	0	0
1	1	0

x	у	f ₀₁	
0	0	0	
0	1	1	
1	0	0	
1	1	0	

X	У	f ₁₀
0	0	0
0	1	0
1	0	1
1	1	0

X	у	f ₁₁
0	0	0
0	1	0
1	0	0
1	1	1

$$f_{00}(x, y)$$

$$f_{01}(x, y)$$

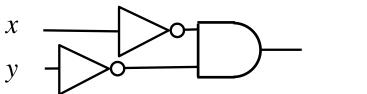
$$f_{10}(x, y)$$

$$f_{11}(x, y)$$

x	у	f ₀₀ (x, y)	f ₀₁ (x, y)	f ₁₀ (x, y)	f ₁₁ (x, y)
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

x	у	x y	x y	x y	ху
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Circuits for the four basis functions



$$f_{00}(x, y) = \overline{x} \overline{y}$$

$$x$$
 y

$$f_{01}(x, y) = \overline{x} y$$

$$f_{10}(x, y) = x \overline{y}$$

$$\begin{array}{cccc} x & & \\ y & & \\ \end{array}$$

$$f_{11}(x, y) = x y$$

X	у	f ₀₀
0	0	1
0	1	0
1	0	0
1	1	0

x	у	f ₀₁
0	0	0
0	1	1
1	0	0
1	1	0

$$f_{00}(x, y) = \overline{x} \overline{y}$$

$$f_{01}(x, y) = \overline{x} y$$

$$f_{00}(x, y) = \overline{x} \overline{y}$$
 $f_{01}(x, y) = \overline{x} y$ $f_{10}(x, y) = x \overline{y}$ $f_{11}(x, y) = x y$

$$f_{11}(x, y) = x y$$

The Four Basis Functions (alternative names)

X	у	f ₀₀
0	0	1
0	1	0
1	0	0
1	1	0

x	у	f ₀₁
0	0	0
0	1	1
1	0	0
1	1	0

x	У	f ₁₀
0	0	0
0	1	0
1	0	1
1	1	0

$$f_{00}(x, y) = \overline{x} \overline{y}$$
 $f_{01}(x, y) = \overline{x} y$ $f_{10}(x, y) = x \overline{y}$ $f_{11}(x, y) = x y$

$$f_{01}(x, y) = \overline{x} y$$

$$f_{10}(x, y) = x \overline{y}$$

$$f_{11}(x, y) = x y$$

$$m_0$$

$$m_1$$

$$m_2$$

$$m_3$$

The Four Basis Functions (minterms)

X	у	m_0
0	0	1
0	1	0
1	0	0
1	1	0

x	у	m ₁
0	0	0
0	1	1
1	0	0
1	1	0

X	у	m ₂
0	0	0
0	1	0
1	0	1
1	1	0

$$f_{00}(x, y) = \overline{x} \overline{y}$$

$$f_{00}(x, y) = \overline{x} \overline{y}$$
 $f_{01}(x, y) = \overline{x} y$ $f_{10}(x, y) = x \overline{y}$ $f_{11}(x, y) = x y$

$$f_{10}(x, y) = x \overline{y}$$

$$f_{11}(x, y) = x y$$

$$m_0$$

$$m_1$$

$$m_2$$

$$m_3$$

Maxterms (an alternative set of basis functions)

X	у	M ₀
0	0	0
0	1	1
1	0	1
1	1	1

x	у	M ₁
0	0	1
0	1	0
1	0	1
1	1	1

X	у	M ₂
0	0	1
0	1	1
1	0	0
1	1	1

X	у	M_3
0	0	1
0	1	1
1	0	1
1	1	0

$$M_0(x, y)$$

$$M_1(x, y)$$

$$M_2(x, y)$$

$$M_3(x, y)$$

X	у	M ₀
0	0	0
0	1	1
1	0	1
1	1	1

x	у	M_1
0	0	1
0	1	0
1	0	1
1	1	1

X	у	M_2
0	0	1
0	1	1
1	0	0
1	1	1

X	у	M_3
0	0	1
0	1	1
1	0	1
1	1	0

$$M_0(x, y)$$

$$M_1(x, y)$$

$$M_2(x, y)$$

$$M_3(x, y)$$

X	у	M ₀ (x, y)	M ₁ (x, y)	M ₂ (x, y)	M ₃ (x, y)
0	0	O	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

X	у	x + y	x + y	x + y	$\overline{x} + \overline{y}$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

Minterms and Maxterms

Row number	x_1	x_2	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2$ $m_1 = \overline{x}_1 x_2$ $m_2 = x_1 \overline{x}_2$ $m_3 = x_1 x_2$	$M_0 = x_1 + x_2$ $M_1 = x_1 + \overline{x_2}$ $M_2 = \overline{x_1} + x_2$ $M_3 = \overline{x_1} + \overline{x_2}$

Minterms and Maxterms

Row number	x_1	x_2	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$		$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$

Use these for

Sum-of-Products

Minimization (1's of the function)

Use these for

Product-of-Sums

Minimization (0's of the function)

(uses the ones of the function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
0 1 2 3	0 0 1 1	0 1 0 1		$\begin{matrix} 1\\1\\0\\1\end{matrix}$

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
0	0	0		1
1	0	1		1
2	1	0		0
3	1	1		1

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
0	0	0	$m_0 = \overline{x}_1 \overline{x}_2$	1
1	0	1	$m_0 = \overline{x}_1 \overline{x}_2$ $m_1 = \overline{x}_1 x_2$	1
2	1	0	$m_2 = x_1 \overline{x}_2$	0
3	1	1	$m_2 = x_1 \overline{x_2}$ $m_3 = x_1 x_2$	1

$$f = m_0 \cdot 1 + m_1 \cdot 1 + m_2 \cdot 0 + m_3 \cdot 1$$

= $m_0 + m_1 + m_3$
= $\bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + x_1 x_2$

Product-of-Sums Form

(uses the zeros of the function)

Product-of-Sums Form (for this logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
0	0	0		0
1	0	1		1
2	1	0		0
3	1	1		1

Product-of-Sums Form (for this logic function)

Row number	x_1	x_2	 Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	0 1 0 1

Product-of-Sums Form (for this logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	0 1 0 1	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \bar{x}_{2}$ $M_{2} = \bar{x}_{1} + x_{2}$ $M_{3} = \bar{x}_{1} + \bar{x}_{2}$	0 1 0 1

$$f(x_1, x_2) = M_0 \bullet M_2 = (x_1 + x_2) \bullet (\overline{x_1} + x_2)$$

Shorthand Notation

Sum-of-Products (SOP)

$$f(x_1, x_2, x_3) = \sum (m_1, m_4, m_5, m_6)$$

or

$$f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$$

Product-of-Sums (POS)

$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$

or

$$f(x_1, x_2, x_3) = \Pi M(0, 2, 3, 7)$$

Shorthand Notation for SOP

Row number	x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f(x_1, x_2, x_3) = \sum (m_1, m_4, m_5, m_6)$$

or

$$f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$$

Shorthand Notation

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

$$f(x_1, x_2, x_3) = \sum (m_1, m_4, m_5, m_6)$$

$$f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$$

Shorthand Notation for POS

Row number	<i>x</i> ₁	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$

or

$$f(x_1, x_2, x_3) = \Pi M(0, 2, 3, 7)$$

Shorthand Notation

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \ m_1 = \overline{x}_1 \overline{x}_2 x_3 \ m_2 = \overline{x}_1 x_2 \overline{x}_3 \ m_3 = \overline{x}_1 x_2 x_3 \ m_4 = x_1 \overline{x}_2 \overline{x}_3 \ m_5 = x_1 \overline{x}_2 x_3 \ m_6 = x_1 x_2 \overline{x}_3 \ m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + x_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$

$$f(x_1, x_2, x_3) = \Pi M(0, 2, 3, 7)$$

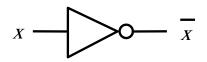
Shorthand Notation

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + x_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

Notice that the red and the green are nicely separated and that they cover all possible rows (no gaps).

Two New Logic Gates

The Three Basic Logic Gates



$$X_1$$
 X_2
 $X_1 \cdot X_2$

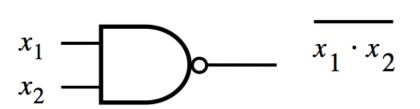
$$X_1$$
 X_2
 $X_1 + X_2$

NOT gate

AND gate

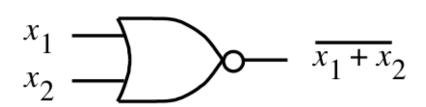
OR gate

NAND Gate



x_1	x_2	f
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate



x_2	f
0	1
1	0
0	0
1	0
	0 1 0

AND vs NAND

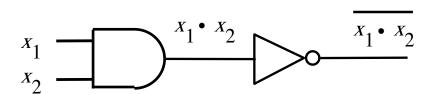
$$X_1$$
 X_2 $X_1 \cdot X_2$

$$X_1$$
 X_2
 $X_1 \cdot X_2$

x_1	x_2	f
0	0	0
0	1	0
1	0	0
1	1	1

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

AND followed by NOT = NAND

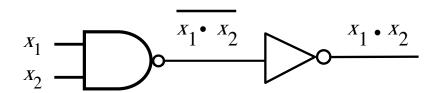


$$X_1$$
 X_2
 $X_1 \cdot X_2$

x_1	x_2	†	İ
0	0	0	1
0	1 0	0	1
1	0	0	1
1	1	1	0

x_1	x_2	f
0	0	1
0	1	1
1	0	1
1	1	0

NAND followed by NOT = AND



$$X_1$$
 X_2
 $X_1 \cdot X_2$

x_1	x_2	f	<u>f</u>
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

$$egin{array}{c|cccc} x_1 & x_2 & \mathbf{f} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$$

OR vs NOR

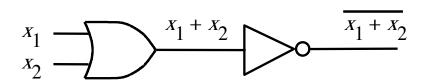
$$\begin{array}{c} x_1 \\ x_2 \end{array} \longrightarrow \begin{array}{c} x_1 + x_2 \end{array}$$

$$x_1$$
 x_2
 $\overline{x_1 + x_2}$

x_1	x_2	f
0	0	0
0	1	1
1	0	1
1	1	1

$$egin{array}{c|cccc} x_1 & x_2 & \mathbf{f} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \hline \end{array}$$

OR followed by NOT = NOR

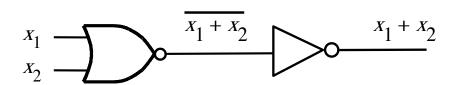


$$x_1$$
 x_2
 $\overline{x_1 + x_2}$

x_1	_	1	İ
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

$$\begin{array}{c|ccc} x_1 & x_2 & f \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$$

NOR followed by NOT = OR



$$X_1$$
 X_2
 $X_1 + X_2$

x_1	x_2	f	f
0	0	1	0
0	1 0	0	1
1	0	0	1
1	1	$\mid 0$	1

$$egin{array}{c|cccc} x_1 & x_2 & \mathbf{f} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$$

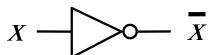
Why do we need two more gates?

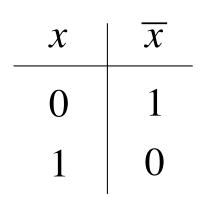
Why do we need two more gates?

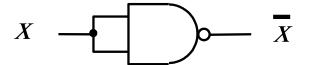
They can be implemented with fewer transistors.

They are simpler to implement, but are they also useful?

Building a NOT Gate with NAND

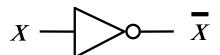


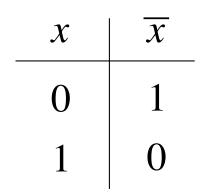


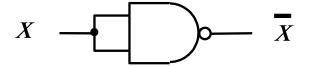


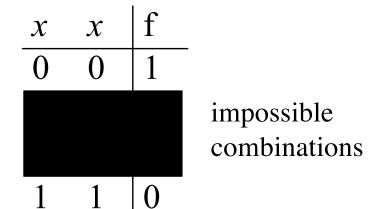
\mathcal{X}	$\boldsymbol{\mathcal{X}}$	f
0	0	1
0	1	1
1	0	1
1	1	0

Building a NOT Gate with NAND

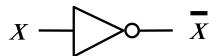


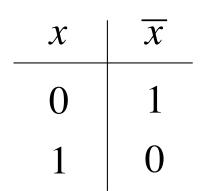


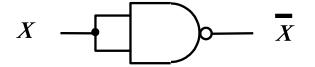


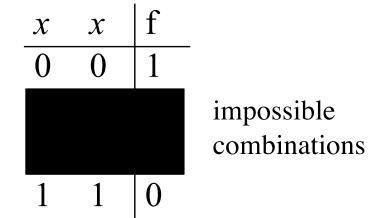


Building a NOT Gate with NAND



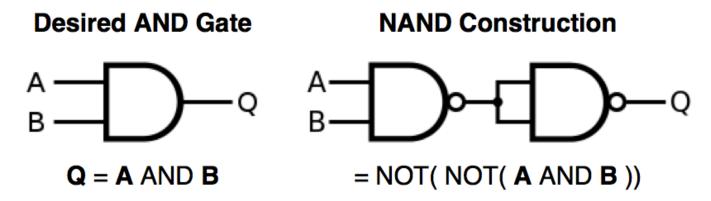






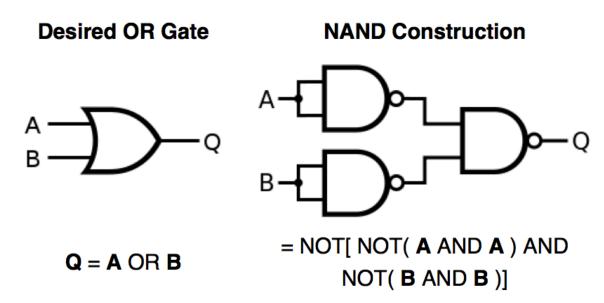
Thus, the two truth tables are equal!

Building an AND gate with NAND gates



Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Building an OR gate with NAND gates



Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

Implications

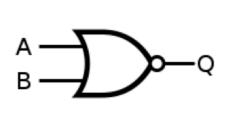
Implications

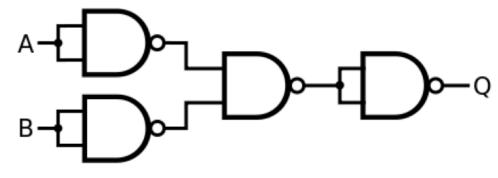
Any Boolean function can be implemented with only NAND gates!

NOR gate with NAND gates

Desired NOR Gate

NAND Construction





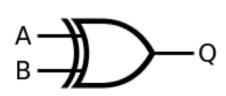
 $\mathbf{Q} = \mathsf{NOT}(\mathbf{A} \ \mathsf{OR} \ \mathbf{B})$

= NOT(NOT[NOT(A AND A) AND NOT(B AND B)]}

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	0

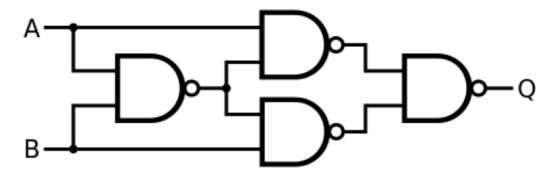
XOR gate with NAND gates

Desired XOR Gate



Q = A XOR B

NAND Construction



= NOT[NOT(**A** AND NOT(**A** AND **B**)) AND NOT(**B** AND NOT(**A** AND **B**))]

Truth Table

Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

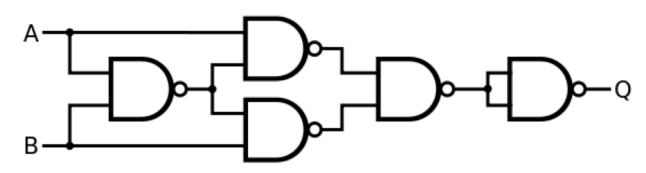
XNOR gate with NAND gates

Desired XNOR Gate

A _____Q

 $\mathbf{Q} = \mathsf{NOT}(\mathbf{A} \mathsf{XOR} \mathbf{B})$

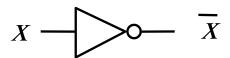
NAND Construction

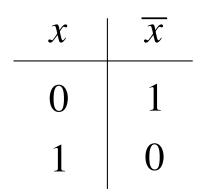


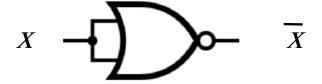
= NOT[NOT[NOT(**A** AND NOT(**A** AND **B**)} AND NOT(**B** AND NOT(**A** AND **B**)}]]

Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	1

Building a NOT Gate with NOR

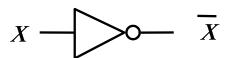


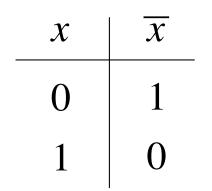


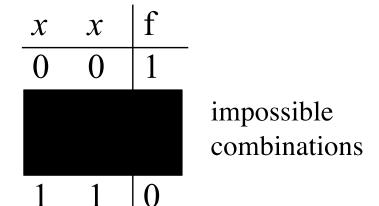


\mathcal{X}	$\boldsymbol{\mathcal{X}}$	f
0	0	1
0	1	0
1	0	0
1	1	0

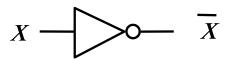
Building a NOT Gate with NOR

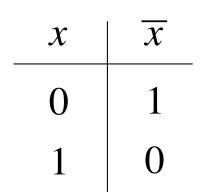


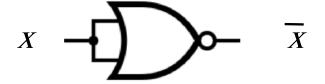


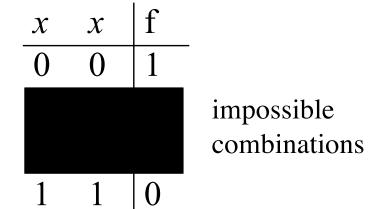


Building a NOT Gate with NOR







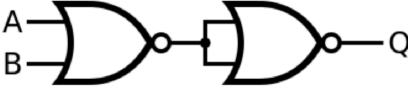


Thus, the two truth tables are equal!

Building an OR gate with NOR gates

Desired Gate

NOR Construction



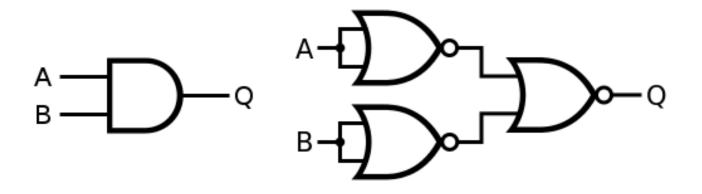
Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	1

Let's build an AND gate with NOR gates

Let's build an AND gate with NOR gates

Desired Gate

NOR Construction



Input A	Input B	Output Q
0	0	0
0	1	0
1	0	0
1	1	1

Implications

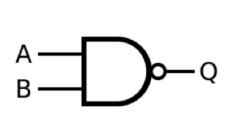
Implications

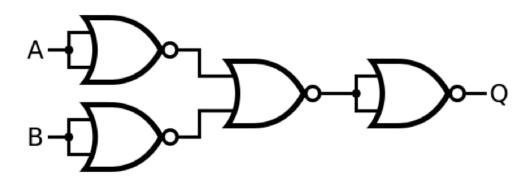
Any Boolean function can be implemented with only NOR gates!

NAND gate with NOR gates

Desired Gate

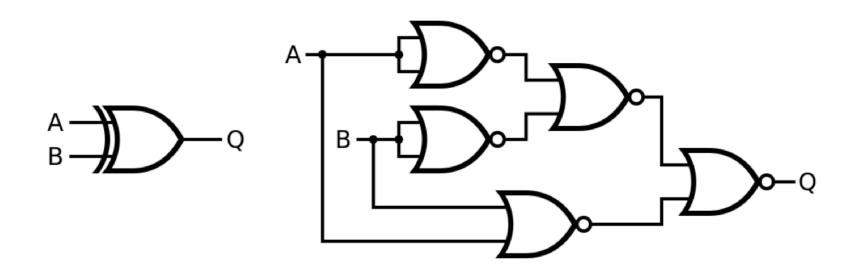
NOR Construction





Input A	Input B	Output Q
0	0	1
0	1	1
1	0	1
1	1	0

XOR gate with NOR gates

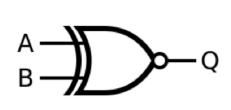


Truth Table

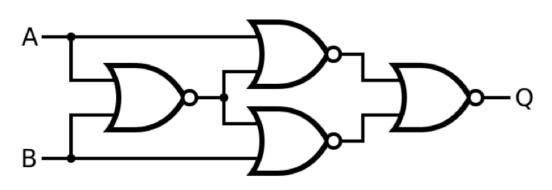
Input A	Input B	Output Q
0	0	0
0	1	1
1	0	1
1	1	0

XNOR gate with NOR gates

Desired XNOR Gate



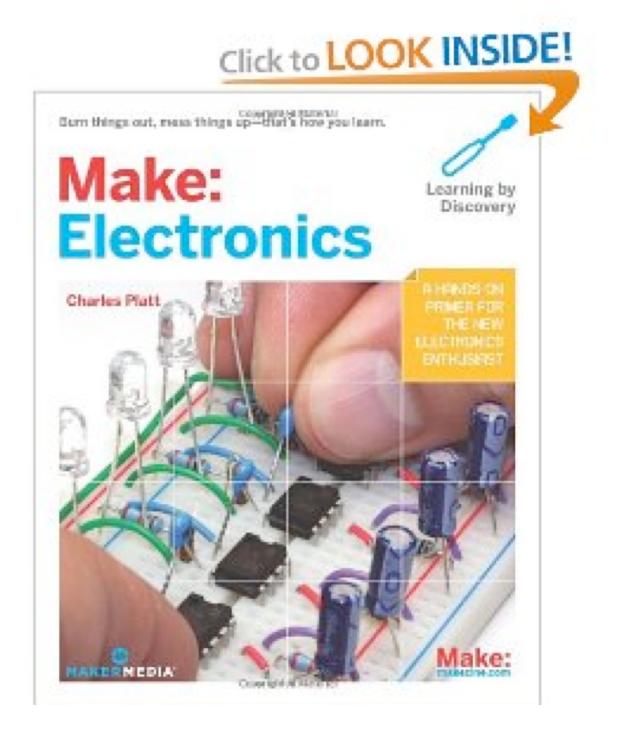
NOR Construction

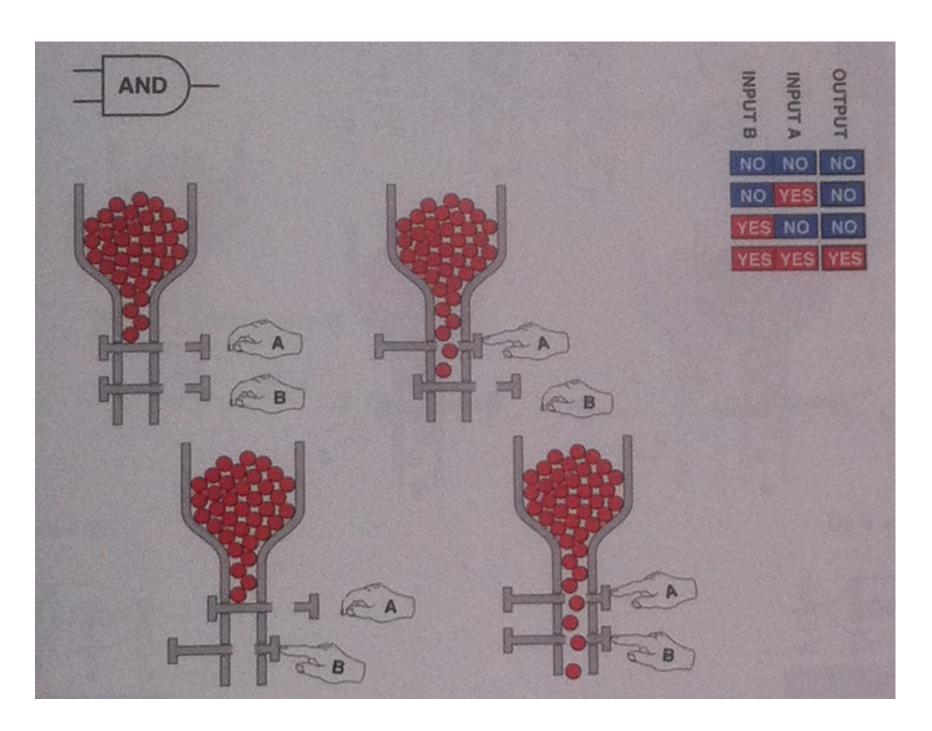


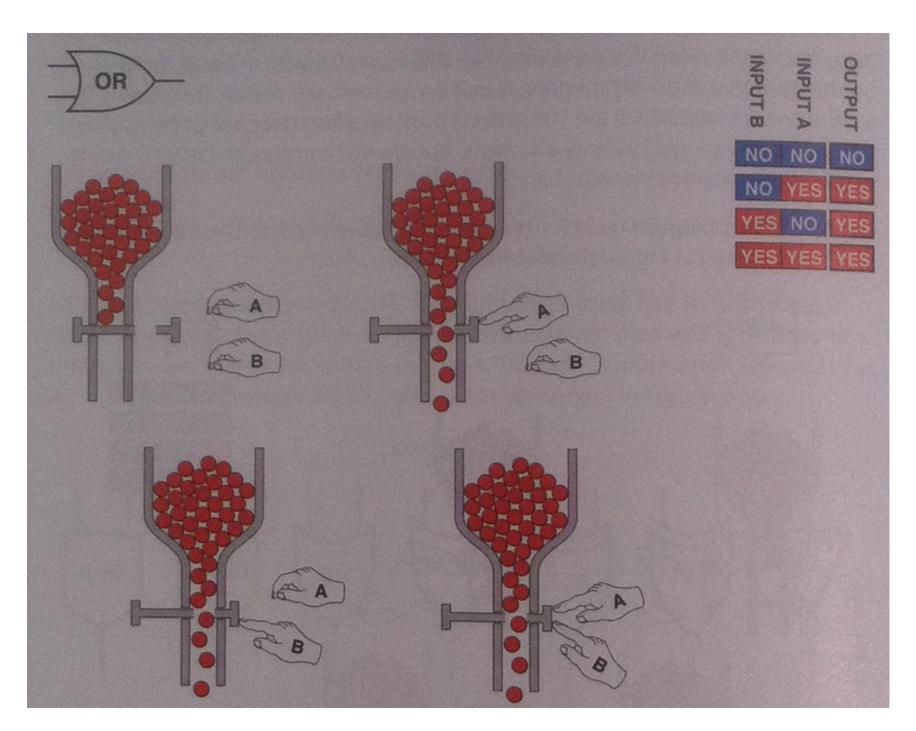
Truth Table

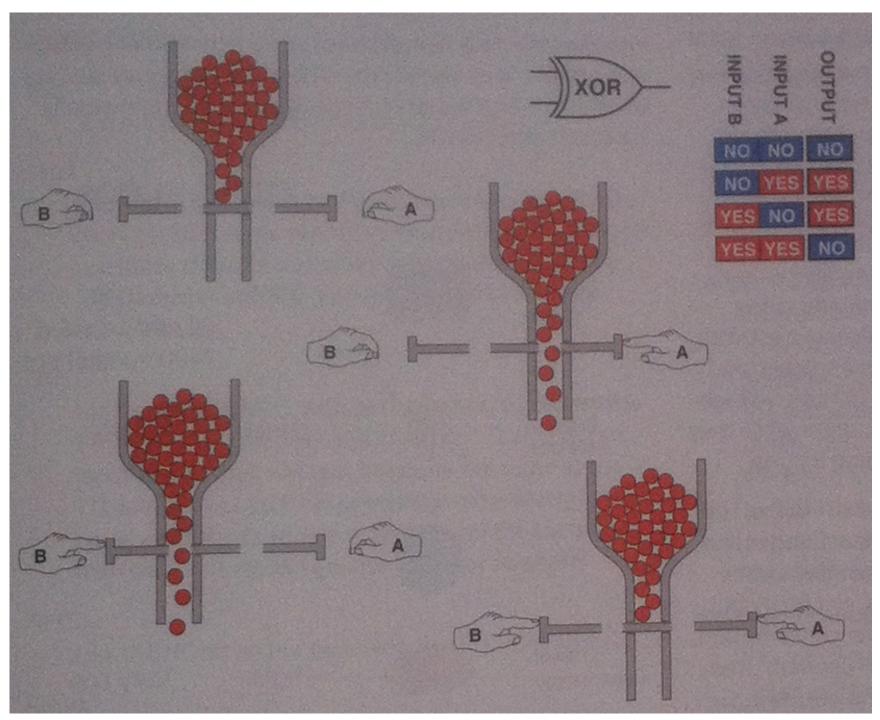
Input A	Input B	Output Q
0	0	1
0	1	0
1	0	0
1	1	1

The following examples came from this book

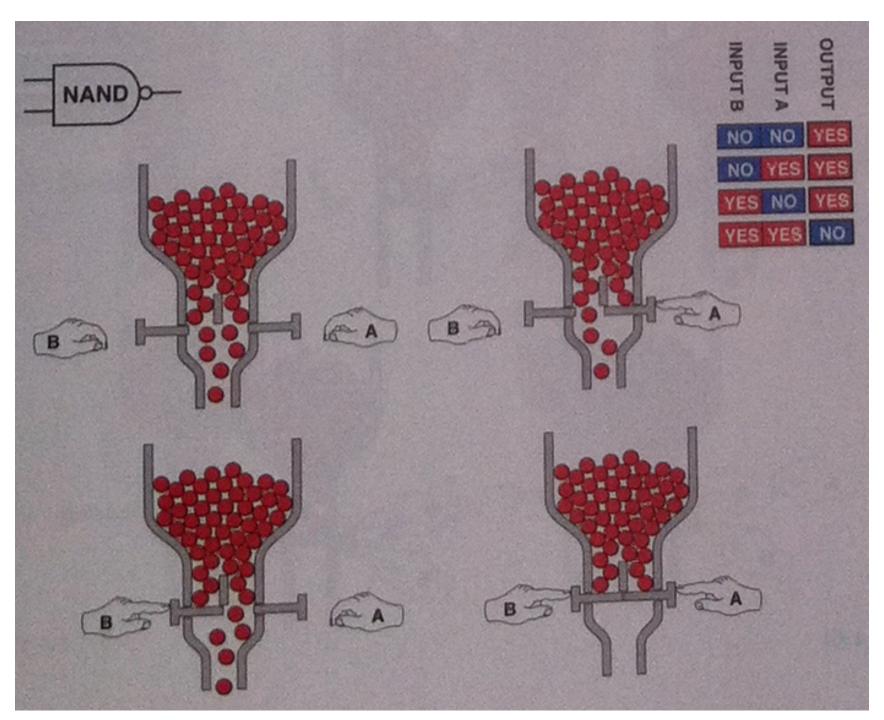


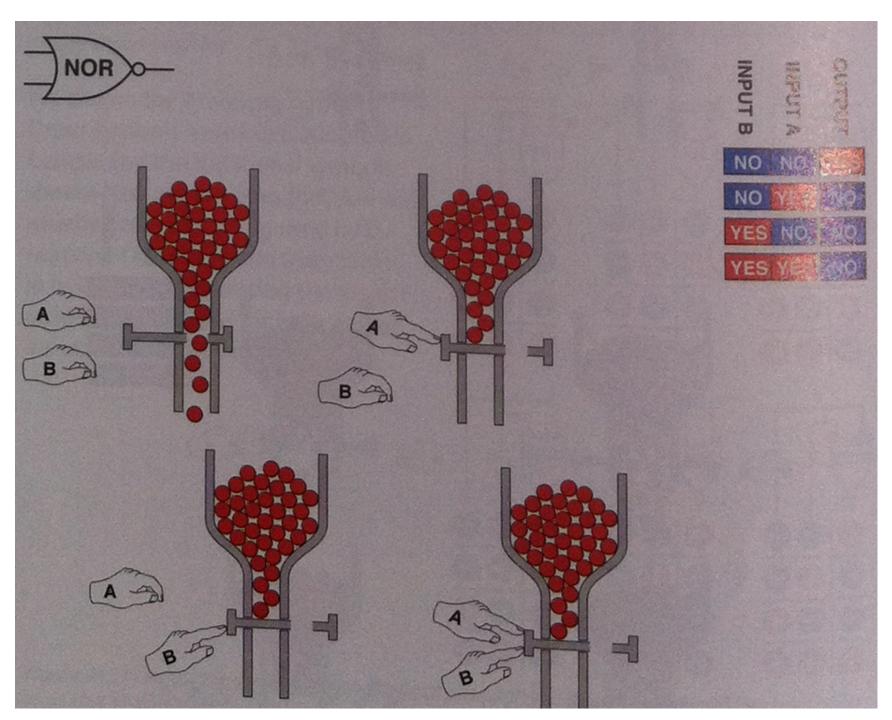


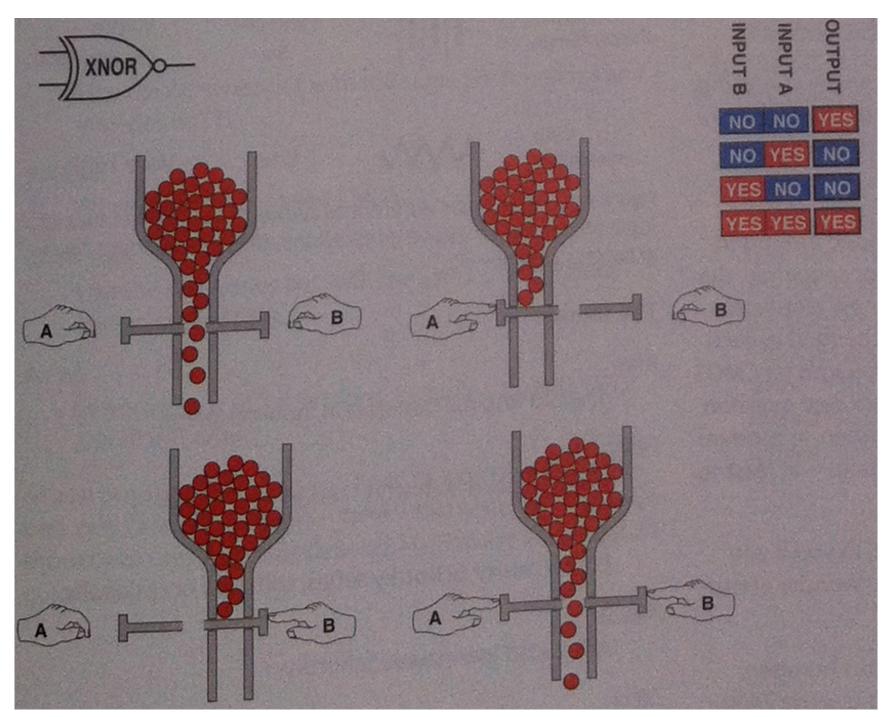




[Platt 2009]







[Platt 2009]

DeMorgan's Theorem Revisited

DeMorgan's theorem (in terms of logic gates)

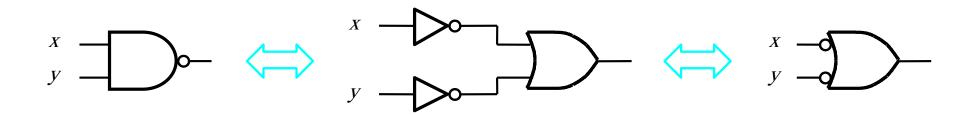
$$x \cdot y = x + y$$

The other DeMorgan's theorem (in terms of logic gates)

$$x + y = x \cdot y$$

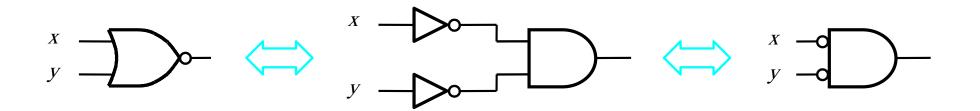
Shortcut Notation

DeMorgan's theorem in terms of logic gates



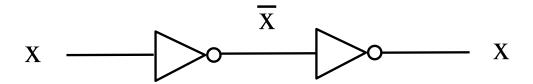
(Theorem 15.a)
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

DeMorgan's theorem in terms of logic gates

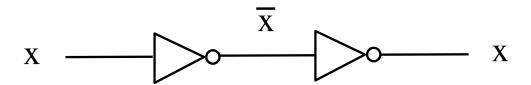


(Theorem 15.b)
$$\overline{X + y} = \overline{X} \overline{y}$$

Two NOTs in a row

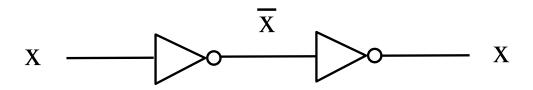


Two NOTs in a row



X _____ X

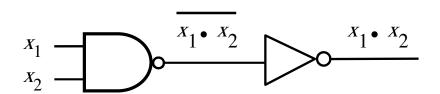
Two NOTs in a row



$$X \longrightarrow \bigcirc X$$

NAND-NAND Implementation of Sum-of-Products Expressions

NAND followed by NOT = AND



$$X_1$$
 X_2
 $X_1 \bullet X_2$

x_1	x_2	<u>f</u>	<u>f</u>
0	0	1	0
0		1	0
1	0	1	0
1	1	0	1

$$egin{array}{c|cccc} x_1 & x_2 & \mathbf{f} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$$

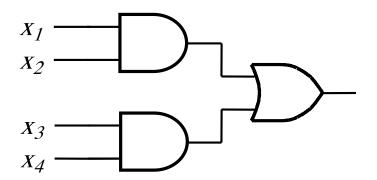
DeMorgan's Theorem

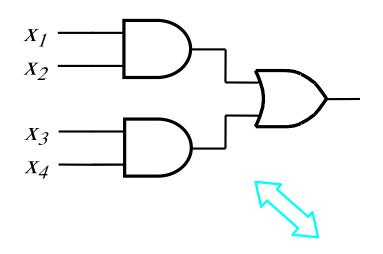
15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

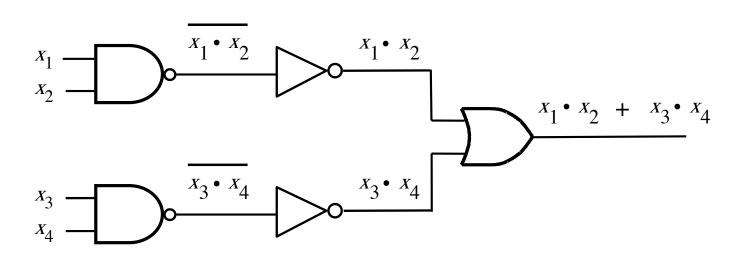
DeMorgan's Theorem

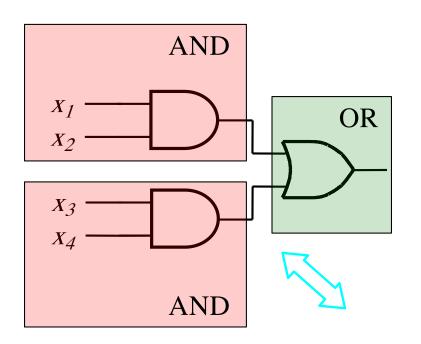
15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

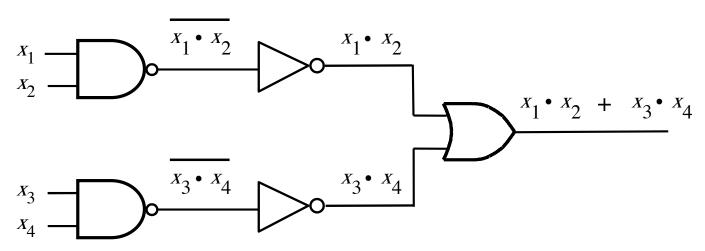
$$= \bigcup_{X \to \overline{Y}} \overline{X + \overline{Y}}$$

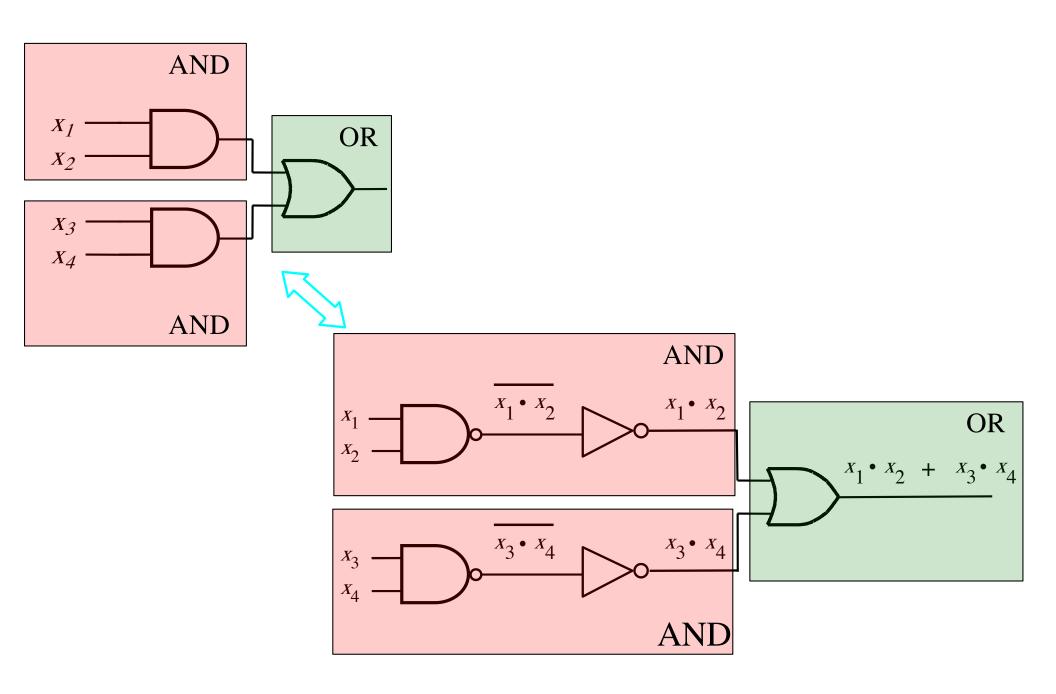


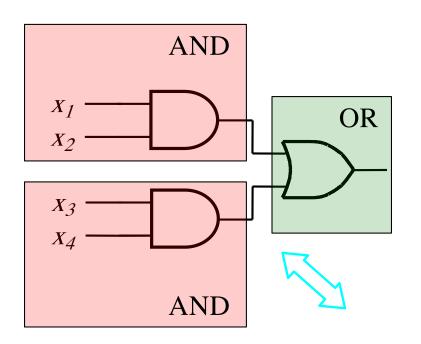


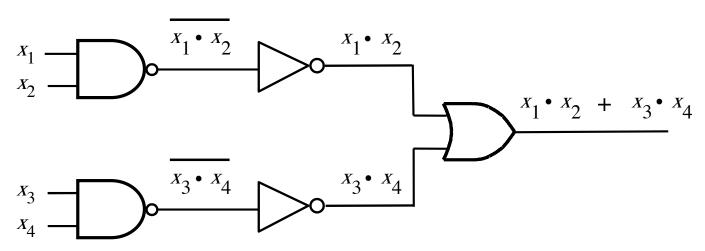


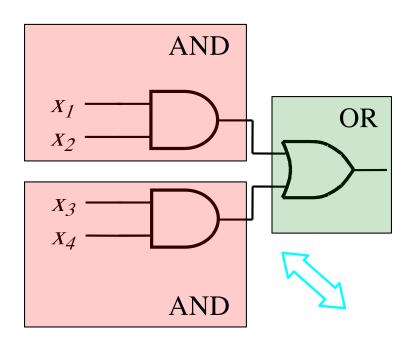


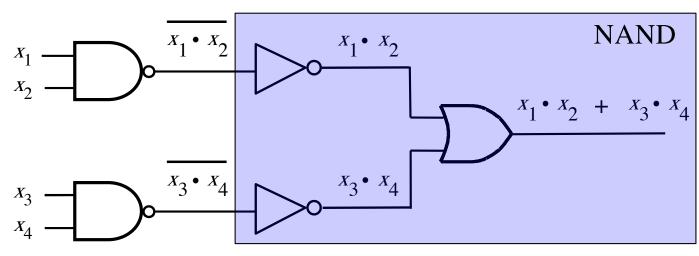


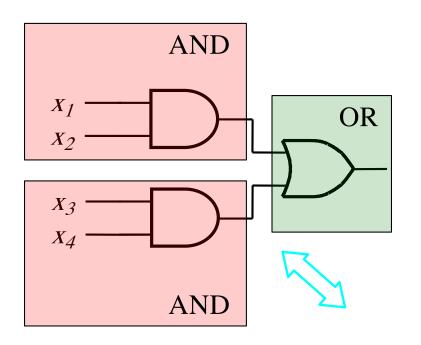


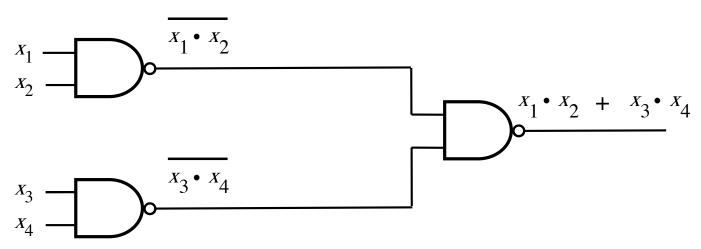


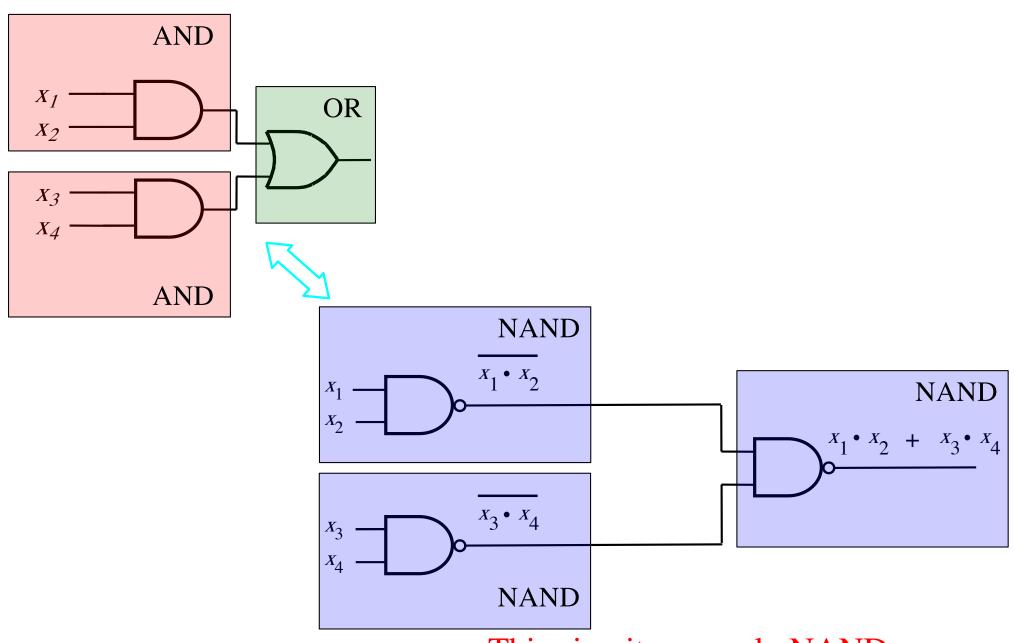




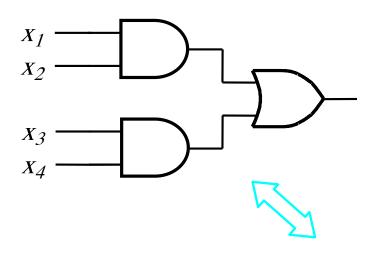


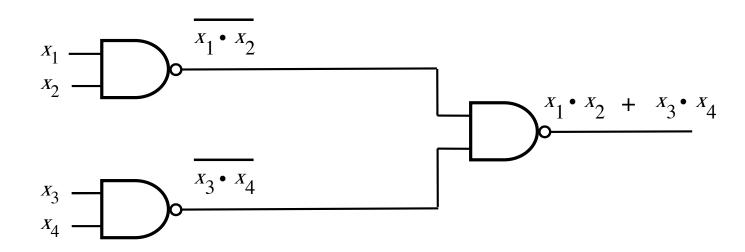






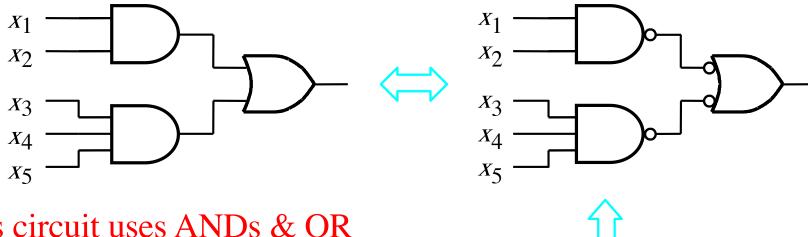
This circuit uses only NANDs



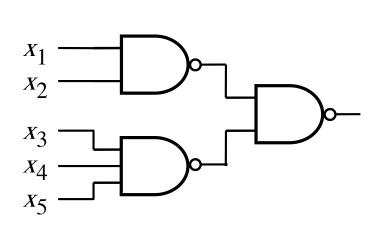


This circuit uses only NANDs

Another SOP Example



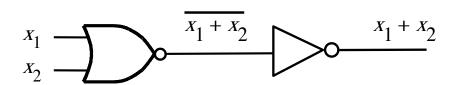
This circuit uses ANDs & OR



This circuit uses only NANDs

NOR-NOR Implementation of Product-of-Sums Expressions

NOR followed by NOT = OR



$$X_1$$
 X_2
 $X_1 + X_2$

x_1	x_2	f	f
0	0	1	0
0	1 0	0	1
1	0	0	1
1	1	$\mid 0$	1

$$egin{array}{c|cccc} x_1 & x_2 & \mathbf{f} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$$

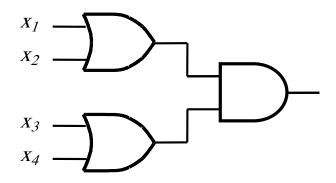
DeMorgan's Theorem

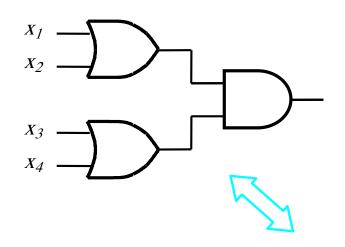
15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

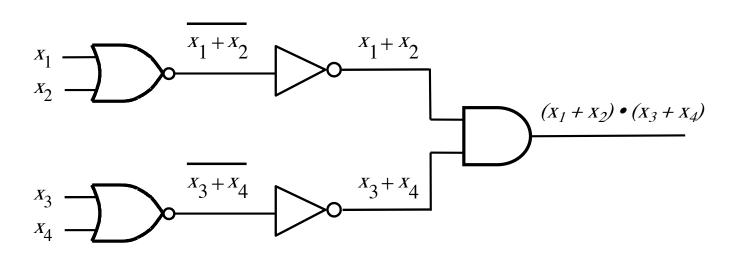
DeMorgan's Theorem

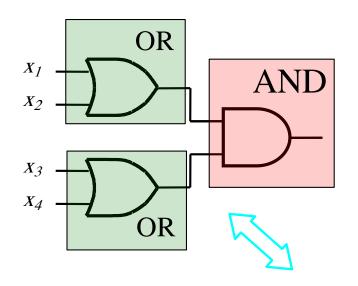
15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

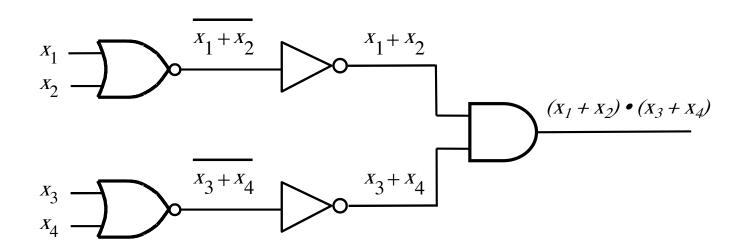
$$= \bigvee_{X \to \overline{Y}} X + \overline{Y}$$

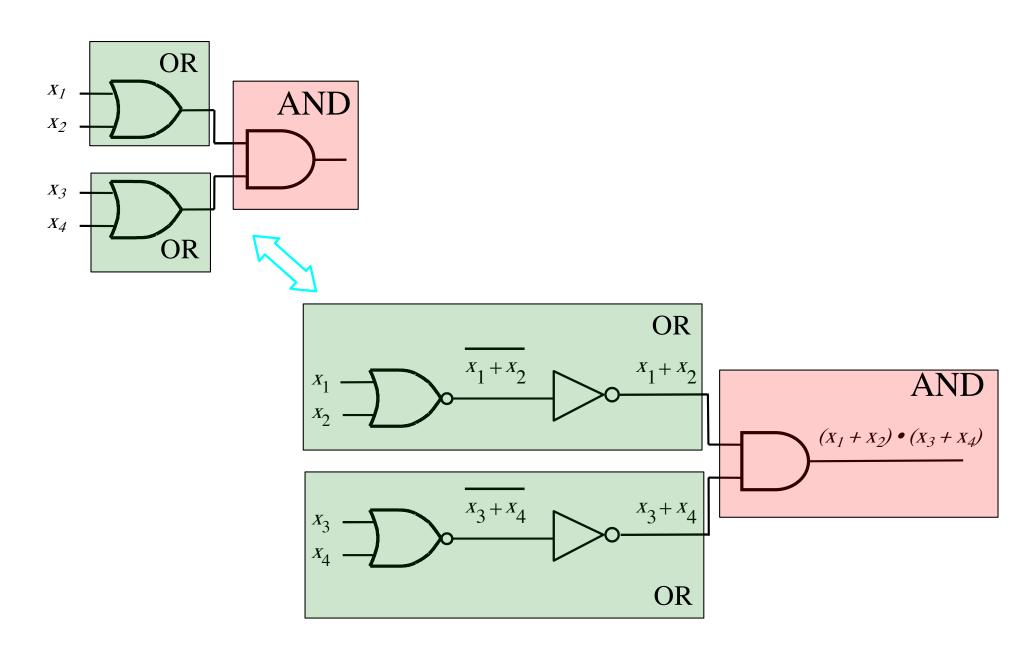


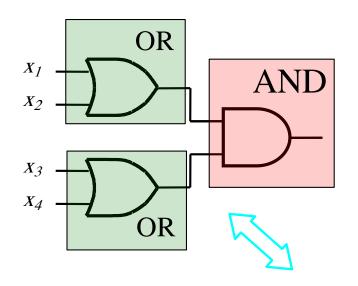


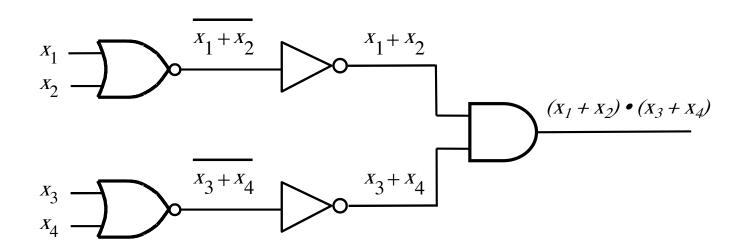


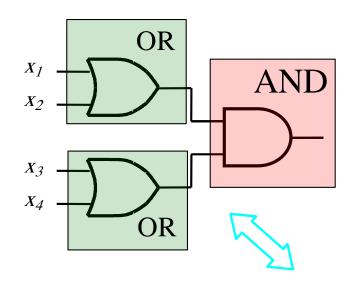


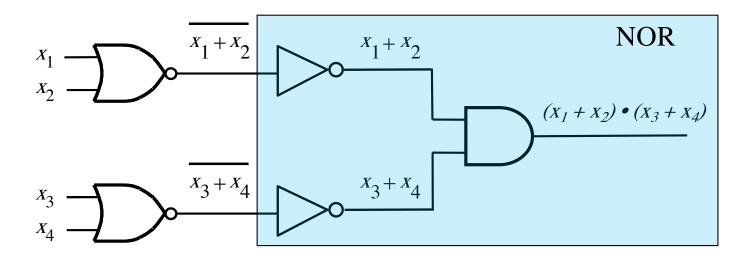


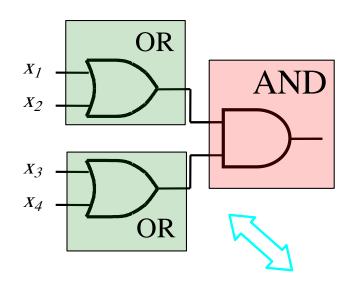


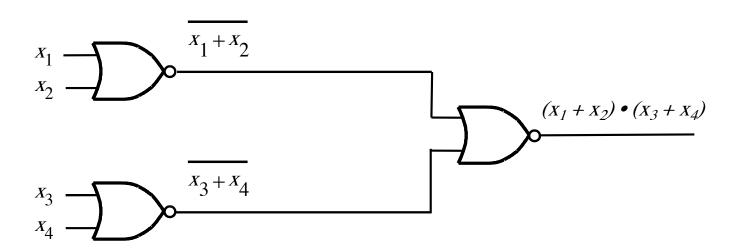


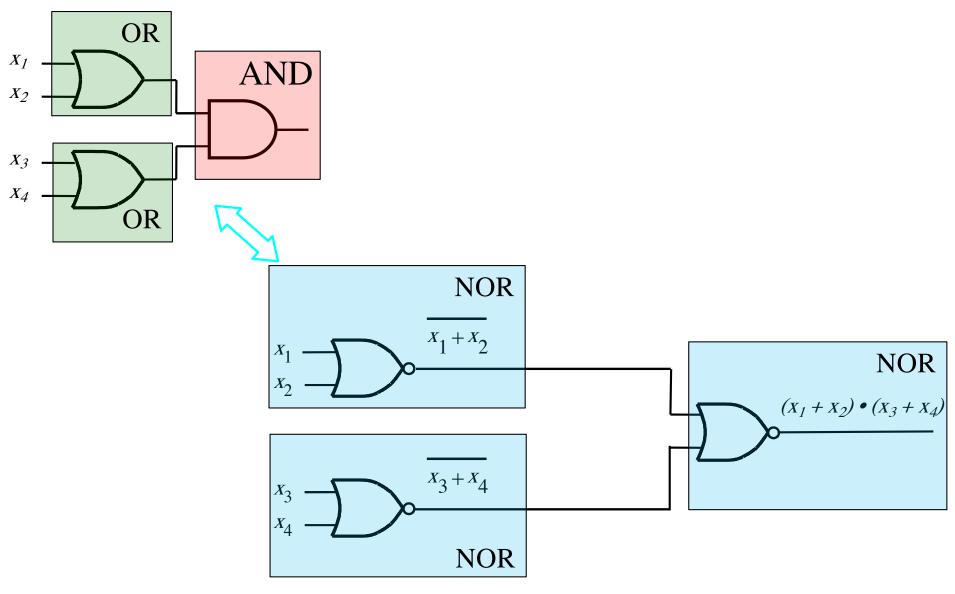




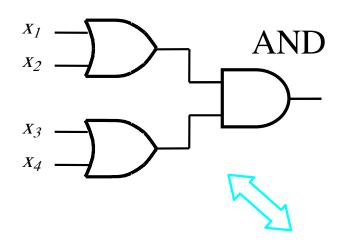


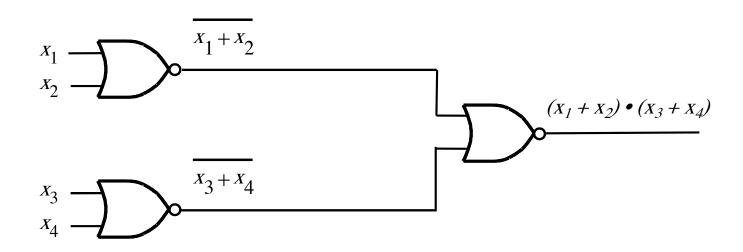






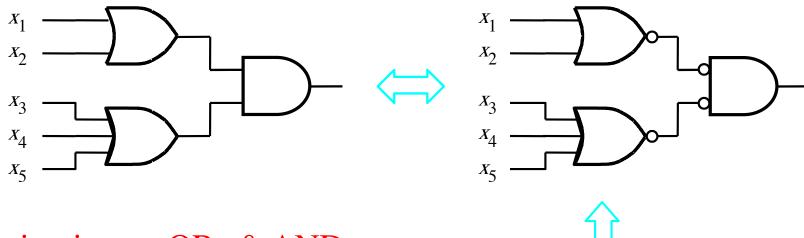
This circuit uses only NORs



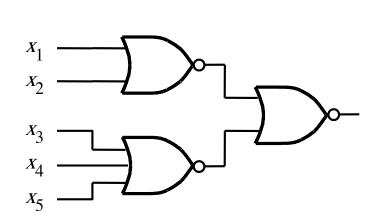


This circuit uses only NORs

Another POS Example



This circuit uses ORs & AND



This circuit uses only NORs

Summary

- Sum-of-Products (SOP) expressions are directly mappable to NAND-NAND implementation.
- Product-of-Sums (POS) expressions are directly mappable to NOR-NOR implementation.

- Going from SOP to NOR-NOR is not that easy.
- Similarly, converting from POS to NAND-NAND implementation requires extra work.

Questions?

THE END