
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281: 
Digital Logic



NAND and NOR
Logic Networks

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev



Administrative Stuff

• There will be no lecture on Monday Sep 5

• Due to Labor Day (university holiday)



Administrative Stuff
• HW2 is due on Wednesday Sep 7 @ 10pm

• Please write clearly on the first page the following 
three things:

§ Your First and Last Name
§ Your Student ID Number
§ Your Lab Section Letter

§ Submit on Canvas as *one* PDF file.

• Please orient your pages such that the text can be 
read without the need to rotate the page.



Administrative Stuff

• Next week we will start with Lab2

• Read the lab assignment and do the prelab at home. 

• Complete the prelab on paper before you go to the lab. 
Otherwise you’ll lose 20% of your grade for that lab.



Quick Review



Minterms
(a set of basis functions)



The Four Basis Functions

x y f00

0 0 1
0 1 0
1 0 0
1 1 0

x y f01

0 0 0
0 1 1
1 0 0
1 1 0

x y f10

0 0 0
0 1 0
1 0 1
1 1 0

x y f11

0 0 0
0 1 0
1 0 0
1 1 1

f11(x, y)f00(x, y) f01(x, y) f10(x, y)



The Four Basis Functions

x y f00

0 0 1
0 1 0
1 0 0
1 1 0

x y f01

0 0 0
0 1 1
1 0 0
1 1 0

x y f10

0 0 0
0 1 0
1 0 1
1 1 0

x y f11

0 0 0
0 1 0
1 0 0
1 1 1

f11(x, y)f00(x, y) f01(x, y) f10(x, y)



The Four Basis Functions

x y f00(x, y) f01(x, y) f10(x, y) f11(x, y)

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1



The Four Basis Functions

x y x y x y x y x y

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1



Circuits for the four basis functions

y
x

x
y

x
y

x

y

f11(x, y) = x y

f00(x, y) = x y

f01(x, y) = x y

f10(x, y) = x y



The Four Basis Functions

x y f00

0 0 1
0 1 0
1 0 0
1 1 0

x y f01

0 0 0
0 1 1
1 0 0
1 1 0

x y f10

0 0 0
0 1 0
1 0 1
1 1 0

x y f11

0 0 0
0 1 0
1 0 0
1 1 1

f11(x, y) = x yf00(x, y) = x y f01(x, y) = x y f10(x, y) = x y



The Four Basis Functions

x y f00

0 0 1
0 1 0
1 0 0
1 1 0

x y f01

0 0 0
0 1 1
1 0 0
1 1 0

x y f10

0 0 0
0 1 0
1 0 1
1 1 0

x y f11

0 0 0
0 1 0
1 0 0
1 1 1

f11(x, y) = x yf00(x, y) = x y f01(x, y) = x y f10(x, y) = x y

m0 m1 m2 m3

(alternative names)



The Four Basis Functions

x y m0

0 0 1
0 1 0
1 0 0
1 1 0

x y m1

0 0 0
0 1 1
1 0 0
1 1 0

x y m2

0 0 0
0 1 0
1 0 1
1 1 0

x y m3

0 0 0
0 1 0
1 0 0
1 1 1

f11(x, y) = x yf00(x, y) = x y f01(x, y) = x y f10(x, y) = x y

m0 m1 m2 m3

( minterms )



Maxterms
(an alternative set of basis functions)



The Four Maxterms

x y M0

0 0 0
0 1 1
1 0 1
1 1 1

x y M1

0 0 1
0 1 0
1 0 1
1 1 1

x y M2

0 0 1
0 1 1
1 0 0
1 1 1

x y M3

0 0 1
0 1 1
1 0 1
1 1 0

M3(x, y)M0(x, y) M1(x, y) M2(x, y)



The Four Maxterms

x y M0

0 0 0
0 1 1
1 0 1
1 1 1

x y M1

0 0 1
0 1 0
1 0 1
1 1 1

x y M2

0 0 1
0 1 1
1 0 0
1 1 1

x y M3

0 0 1
0 1 1
1 0 1
1 1 0

M3(x, y)M0(x, y) M1(x, y) M2(x, y)



The Four Maxterms

x y M0(x, y) M1(x, y) M2(x, y) M3(x, y)

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0



The Four Maxterms

x y x + y x + y x + y x + y

0 0 0 1 1 1

0 1 1 0 1 1

1 0 1 1 0 1

1 1 1 1 1 0



Minterms and Maxterms



Minterms and Maxterms

Use these for
Sum-of-Products
Minimization
(1’s of the function)

Use these for
Product-of-Sums
Minimization
(0’s of the function)



Sum-of-Products Form
(uses the ones of the function)



Sum-of-Products Form

f (x1, x2)



Sum-of-Products Form

f (x1, x2)



Sum-of-Products Form

f (x1, x2)



Product-of-Sums Form
(uses the zeros of the function)



Product-of-Sums Form
(for this logic function)

f (x1, x2)



Product-of-Sums Form
(for this logic function)

f (x1, x2)



Product-of-Sums Form
(for this logic function)

f (x1, x2)

f (x1, x2) = M0 • M2 = ( x1 + x2 ) • ( x1 + x2 )



Shorthand Notation
• Sum-of-Products (SOP)

or

• Product-of-Sums (POS)

or



Shorthand Notation for SOP

or



Shorthand Notation



Shorthand Notation for POS

or



Shorthand Notation



Shorthand Notation

Notice that the red and the green are nicely separated 
and that they cover all possible rows (no gaps). 



Two New Logic Gates



x 1 
x 2 

x 1 x 2 + 

AND gate

x x 
x 1 
x 2 

x 1 x 2 •

The Three Basic Logic Gates

[ Figure 2.8 from the textbook ]

OR gateNOT gate



NAND Gate

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0



NOR Gate

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 0



AND vs NAND

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0

x 1 
x 2 

x 1 x 2 •

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x 1 
x 2 

x 1 x 2 •



AND followed by NOT = NAND

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x 1 
x 2 

x 1 x 2 • x 1 x 2 •

f
1
1
1
0

x 1 
x 2 

x 1 x 2 •



NAND followed by NOT = AND

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x 1 
x 2 

x 1 x 2 •

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0

x 1 x 2 •

f
0
0
0
1

x 1 
x 2 

x 1 x 2 •



OR  vs  NOR

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 0

x 1 
x 2 

x 1 x 2 + 



OR followed by NOT = NOR

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 0

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

f
1
0
0
0

x 1 
x 2 

x 1 x 2 + x 1 x 2 + 



NOR followed by NOT = OR

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 0

f
0
1
1
1

x 1 
x 2 

x 1 x 2 + x 1 x 2 + x 1 
x 2 

x 1 x 2 + 



Why do we need two more gates?



Why do we need two more gates?

They can be implemented with fewer transistors.



They are simpler to implement, 
but are they also useful?



Building a NOT Gate with NAND

x x

0
1

1
0

x x f
0 0 1
0 1 1
1 0 1
1 1 0

x x xx



Building a NOT Gate with NAND

x x

0
1

1
0

x x f
0 0 1
0 1 1
1 0 1
1 1 0

impossible
combinations

x x xx



Building a NOT Gate with NAND

x x

0
1

1
0

x x f
0 0 1
0 1 1
1 0 1
1 1 0

impossible
combinations

Thus, the two truth tables are equal!

x x xx



Building an AND gate with NAND gates

[http://en.wikipedia.org/wiki/NAND_logic]



Building an OR gate with NAND gates

[http://en.wikipedia.org/wiki/NAND_logic]



Implications



Implications

Any Boolean function can be implemented 
with only NAND gates!



NOR gate with NAND gates

[http://en.wikipedia.org/wiki/NAND_logic]



XOR gate with NAND gates

[http://en.wikipedia.org/wiki/NAND_logic]



XNOR gate with NAND gates

[http://en.wikipedia.org/wiki/NAND_logic]





Building a NOT Gate with NOR

x x

0
1

1
0

x x xx

x x f
0 0 1
0 1 0
1 0 0
1 1 0



Building a NOT Gate with NOR

x x

0
1

1
0

x x xx

x x f
0 0 1
0 1 0
1 0 0
1 1 0

impossible
combinations



Building a NOT Gate with NOR

x x

0
1

1
0

x x xx

x x f
0 0 1
0 1 0
1 0 0
1 1 0

impossible
combinations

Thus, the two truth tables are equal!



Building an OR gate with NOR gates

[http://en.wikipedia.org/wiki/NOR_logic]



Let’s build an AND gate with NOR gates



Let’s build an AND gate with NOR gates

[http://en.wikipedia.org/wiki/NOR_logic]



Implications



Implications

Any Boolean function can be implemented 
with only NOR gates!



NAND gate with NOR gates

[http://en.wikipedia.org/wiki/NOR_logic]



XOR gate with NOR gates

[http://en.wikipedia.org/wiki/NOR_logic]



XNOR gate with NOR gates

[http://en.wikipedia.org/wiki/NOR_logic]



The following examples came from this book



[ Platt 2009 ]



[ Platt 2009 ]



[ Platt 2009 ]



[ Platt 2009 ]



[ Platt 2009 ]



[ Platt 2009 ]



DeMorgan’s Theorem Revisited



DeMorgan’s theorem 
(in terms of logic gates)

x

y

x
y

x  •  y    =   x  +  y 



x

y

x
y

x  +  y    =  x  •  y 

The other DeMorgan’s theorem 
(in terms of logic gates)



Shortcut Notation



DeMorgan’s theorem in terms of logic gates

x 

y 

x 
y 

x 
y 

(Theorem 15.a) x y • x + y = 



DeMorgan’s theorem in terms of logic gates

x 
y 

x 

y 

x 
y 

(Theorem 15.b) x y + x y = 



Two NOTs in a row

x
x x



Two NOTs in a row

x
x x

x x



Two NOTs in a row

x
x x

x x

x
x x



NAND-NAND Implementation of
Sum-of-Products Expressions



NAND followed by NOT = AND

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x 1 
x 2 

x 1 x 2 

x1 x2 f
0 0 1
0 1 1
1 0 1
1 1 0

x 1 x 2 

f
0
0
0
1

x 1 
x 2 

x 1 x 2 • • •



DeMorgan’s Theorem



DeMorgan’s Theorem

x 
x 

y 
y 

x + y=x 
y 

x y •



Sum-Of-Products

x1
x2

x3
x4



x1
x2

x3
x4

Sum-Of-Products

x 1 x 2 •x 1 
x 2 

x 1 x 2 •

x 3 x 4 •x 3 
x 4 

x 3 x 4 •

x 1 x 2 • x 3 x 4 •+



x1
x2

x3
x4

Sum-Of-Products
AND

AND

OR

x 1 x 2 •x 1 
x 2 

x 1 x 2 •

x 3 x 4 •x 3 
x 4 

x 3 x 4 •

x 1 x 2 • x 3 x 4 •+



x1
x2

x3
x4

Sum-Of-Products
AND

AND

OR

x 1 x 2 •x 1 
x 2 

x 1 x 2 •

x 3 x 4 •x 3 
x 4 

x 3 x 4 •

x 1 x 2 • x 3 x 4 •+

AND

OR

AND



x1
x2

x3
x4

Sum-Of-Products
AND

AND

OR

x 1 x 2 •x 1 
x 2 

x 1 x 2 •

x 3 x 4 •x 3 
x 4 

x 3 x 4 •

x 1 x 2 • x 3 x 4 •+



x1
x2

x3
x4

Sum-Of-Products
AND

AND

OR

x 1 x 2 •x 1 
x 2 

x 1 x 2 •

x 3 x 4 •x 3 
x 4 

x 3 x 4 •

x 1 x 2 • x 3 x 4 •+

NAND



x1
x2

x3
x4

Sum-Of-Products
AND

AND

OR

x 1 
x 2 

x 1 x 2 

x 3 
x 4 

x 3 x 4 

x 1 x 2 x 3 x 4 +

•

•

• •



x1
x2

x3
x4

Sum-Of-Products
AND

AND

OR

x 1 
x 2 

x 1 x 2 

x 3 
x 4 

x 3 x 4 

x 1 x 2 x 3 x 4 +

•

•

• •

This circuit uses only NANDs

NAND                                                 

NAND                                                 

NAND                                                 



x1
x2

x3
x4

Sum-Of-Products

x 1 
x 2 

x 1 x 2 

x 3 
x 4 

x 3 x 4 

x 1 x 2 x 3 x 4 +

•

•

• •

This circuit uses only NANDs



Another SOP Example

x 1 
x 2 

x 3 
x 4 
x 5 

x 1 
x 2 

x 3 
x 4 
x 5 

x 1 
x 2 

x 3 
x 4 
x 5 

This circuit uses only NANDs
[ Figure 2.27 from the textbook ]

This circuit uses ANDs & OR



NOR-NOR Implementation of
Product-of-Sums Expressions



NOR followed by NOT = OR

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

x1 x2 f
0 0 1
0 1 0
1 0 0
1 1 0

f
0
1
1
1

x 1 
x 2 

x 1 x 2 + x 1 x 2 + x 1 
x 2 

x 1 x 2 + 



DeMorgan’s Theorem



DeMorgan’s Theorem

=
x y + x 

y 

x 
x 

y 
y 

x  •  y



Product-Of-Sums

x1
x2

x3
x4



Product-Of-Sums

x1

x2

x3

x4

x 1 x 2 + x 1 
x 2 

x 1 x 2 + 

x 3 x 4 + x 3 
x 4 

x 3 x 4 + 

(x1 + x2) • (x3 + x4)



Product-Of-Sums

x1

x2

x3

x4

OR

OR
AND

x 1 x 2 + x 1 
x 2 

x 1 x 2 + 

x 3 x 4 + x 3 
x 4 

x 3 x 4 + 

(x1 + x2) • (x3 + x4)



Product-Of-Sums

x1

x2

x3

x4

OR

OR
AND

x 1 x 2 + x 1 
x 2 

x 1 x 2 + 

x 3 x 4 + x 3 
x 4 

x 3 x 4 + 

(x1 + x2) • (x3 + x4)

OR

OR

AND



Product-Of-Sums

x1

x2

x3

x4

OR

OR
AND

x 1 x 2 + x 1 
x 2 

x 1 x 2 + 

x 3 x 4 + x 3 
x 4 

x 3 x 4 + 

(x1 + x2) • (x3 + x4)



Product-Of-Sums

x1

x2

x3

x4

OR

OR
AND

x 1 x 2 + x 1 
x 2 

x 1 x 2 + 

x 3 x 4 + x 3 
x 4 

x 3 x 4 + 

(x1 + x2) • (x3 + x4)

NOR



Product-Of-Sums

x1

x2

x3

x4

x 1 
x 2 

x 1 x 2 + 

x 3 
x 4 

x 3 x 4 + 

(x1 + x2) • (x3 + x4)

OR

OR
AND



Product-Of-Sums

x1

x2

x3

x4

x 1 
x 2 

x 1 x 2 + 

x 3 
x 4 

x 3 x 4 + 

(x1 + x2) • (x3 + x4)

This circuit uses only NORs

NOR                                                 

NOR                                                 

NOR                                                 

OR

OR
AND



Product-Of-Sums

x1

x2

x3

x4

x 1 
x 2 

x 1 x 2 + 

x 3 
x 4 

x 3 x 4 + 

(x1 + x2) • (x3 + x4)

This circuit uses only NORs

AND



Another POS Example

x 1 
x 2 

x 3 
x 4 
x 5 

x 1 
x 2 

x 3 
x 4 
x 5 

x 1 
x 2 

x 3 
x 4 
x 5 

This circuit uses only NORs
[ Figure 2.28 from the textbook ]

This circuit uses ORs & AND



Summary
• Sum-of-Products (SOP) expressions are directly 

mappable to NAND-NAND implementation.

• Product-of-Sums (POS) expressions are directly 
mappable to NOR-NOR implementation.

• Going from SOP to NOR-NOR is not that easy.

• Similarly, converting from POS to NAND-NAND 
implementation requires extra work.  



Questions?



THE END


