

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Design Examples

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW3 is due on Monday Sep 12 @ 10pm
- Please write clearly on the first page the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Submit on Canvas as *one* PDF file.
- Please orient your pages such that the text can be read without the need to rotate the page.

Quick Review

Axioms of Boolean Algebra

1a.
$$0 \cdot 0 = 0$$
1b. $1 + 1 = 1$

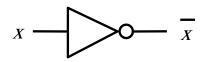
2a. $1 \cdot 1 = 1$
2b. $0 + 0 = 0$

3a. $0 \cdot 1 = 1 \cdot 0 = 0$
3b. $1 + 0 = 0 + 1 = 1$

4a. If $x=0$, then $\overline{x} = 1$

4b. If x=1, then $\overline{x} = 0$

The Three Basic Logic Gates



$$X_1$$
 X_2
 $X_1 \cdot X_2$

$$X_1$$
 X_2
 $X_1 + X_2$

NOT gate

AND gate

OR gate

Single-Variable Theorems

5a.
$$x \cdot 0 = 0$$

5b. $x + 1 = 1$

6a.
$$x \cdot 1 = x$$

$$6b. \quad x + 0 = x$$

7a.
$$x \cdot x = x$$

7b.
$$x + x = x$$

8a.
$$x \cdot \overline{x} = 0$$

$$8b. \quad x + \overline{x} = 1$$

$$9. \quad \overline{\overline{x}} = x$$

Two- and Three-Variable Properties

10a.
$$x \cdot y = y \cdot x$$
 Commutative
10b. $x + y = y + x$
11a. $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ Associative
11b. $x + (y + z) = (x + y) + z$
12a. $x \cdot (y + z) = x \cdot y + x \cdot z$ Distributive
12b. $x + y \cdot z = (x + y) \cdot (x + z)$
13a. $x + x \cdot y = x$ Absorption

13b. $x \cdot (x + y) = x$

Two- and Three-Variable Properties

14a.
$$x \cdot y + x \cdot \overline{y} = x$$

Combining

14b.
$$(x + y) \cdot (x + \overline{y}) = x$$

15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

15b.
$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

theorem

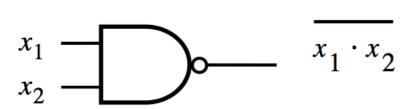
16a.
$$x + \overline{x} \cdot y = x + y$$

16b.
$$x \cdot (\overline{x} + y) = x \cdot y$$

17a.
$$x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$$
 Consensus

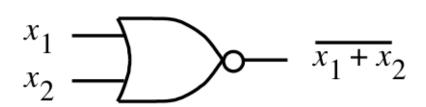
17b.
$$(x+y) \cdot (y+z) \cdot (\overline{x}+z) = (x+y) \cdot (\overline{x}+z)$$

NAND Gate



x_1	x_2	f
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate



x_2	f
0	1
1	0
0	0
1	0
	0 1 0

Why do we need two more gates?

They can be implemented with fewer transistors.

Each of the new gates can be used to implement the three basic logic gates: NOT, AND, OR.

Implications

Any Boolean function can be implemented with only NAND gates!

Implications

Any Boolean function can be implemented with only NAND gates!

The same is also true for NOR gates!

Minterms (for two variables)

X	у	m ₀	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

X	у	m ₁	
0	0	0	
0	1	1	
1	0	0	
1	1	0	

X	у	m ₂	
0	0	0	
0	1	0	
1	0	1	
1	1	0	

X	у	m_3
0	0	0
0	1	0
1	0	0
1	1	1

$$m_0(x, y)$$

$$m_1(x, y)$$

$$m_2(x, y)$$

$$m_3(x, y)$$

X	у	m ₀	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

x	у	m ₁	
0	0	0	
0	1	1	
1	0	0	
1	1	0	

X	у	m ₂	
0	0	0	
0	1	0	
1	0	1	
1	1	0	

X	у	m_3	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

$$m_0(x, y)$$

$$m_1(x, y)$$

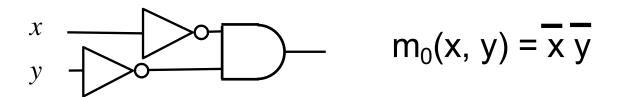
$$m_2(x, y)$$

$$m_3(x, y)$$

x	У	m ₀ (x, y)	m ₁ (x, y)	m ₂ (x, y)	m ₃ (x, y)
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

x	У	x y	x y	x y	ху
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Circuits for the four minterms



$$x$$
 y
 $m_1(x, y) = \overline{x} y$

$$m_2(x, y) = x \overline{y}$$

$$x$$
 y
 $m_3(x, y) = x y$

Maxterms (for two variables)

X	у	M ₀
0	0	0
0	1	1
1	0	1
1	1	1

x	y M ₁	
0	0	1
0	1	0
1	0	1
1	1	1

X	у	M ₂	
0	0	1	
0	1	1	
1	0	0	
1	1	1	

X	у	M ₃
0	0	1
0	1	1
1	0	1
1	1	0

$$M_0(x, y)$$

$$M_1(x, y)$$

$$M_2(x, y)$$

$$M_3(x, y)$$

X	у	M _o	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

X	у	M_1	
0	0	1	
0	1	0	
1	0	1	
1	1	1	

X	у	M ₂	
0	0	1	
0	1	1	
1	0	0	
1	1	1	

x	у	M_3
0	0	1
0	1	1
1	0	1
1	1	0

$$M_0(x, y)$$

$$M_1(x, y)$$

$$M_2(x, y)$$

$$M_3(x, y)$$

X	у	M ₀ (x, y)	M ₁ (x, y)	M ₂ (x, y)	M ₃ (x, y)
0	0	O	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

X	у	x + y	x + y	x + y	$\overline{x} + \overline{y}$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

Minterms and Maxterms (for two variables)

Minterms and Maxterms

x	у	m ₀	
0	0	1	
0	1	0	
1	0	0	
1	1	0	

x	у	\mathbf{m}_{1}
0	0	0
0	1	1
1	0	0
1	1	0

X	у	m ₂
0	0	0
0	1	0
1	0	1
1	1	0

x	у	m ₃
0	0	0
0	1	0
1	0	0
1	1	1

X	у	M ₀
0	0	0
0	1	1
1	0	1
1	1	1

X	у	\mathbf{M}_1
0	0	1
0	1	0
1	0	1
1	1	1

x	у	M ₂
0	0	1
0	1	1
1	0	0
1	1	1

X	у	M_3
0	0	1
0	1	1
1	0	1
1	1	0

Minterms and Maxterms

$$m_0(x, y) = x y$$

$$M_0(x, y) = x + y$$

$$m_1(x, y) = \overline{x} y$$

$$M_1(x, y) = x + \overline{y}$$

$$m_2(x, y) = x \overline{y}$$

$$M_2(x, y) = \overline{x} + y$$

$$m_3(x, y) = x y$$

$$M_3(x, y) = \overline{x} + \overline{y}$$

Minterms (for three variables)

The Eight Minterms

X	у	Z	m ₀	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

The Eight Minterms

X	у	Z	m ₀	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Expressions for the Minterms

$$m_0 = \overline{x} \overline{y} \overline{z}$$
 $m_1 = \overline{x} \overline{y} \overline{z}$
 $m_2 = \overline{x} y \overline{z}$
 $m_3 = \overline{x} y \overline{z}$
 $m_4 = \overline{x} \overline{y} \overline{z}$
 $m_5 = \overline{x} \overline{y} \overline{z}$
 $m_6 = \overline{x} y \overline{z}$
 $m_7 = \overline{x} y \overline{z}$

Expressions for the Minterms

0 0 0
$$m_0 = \overline{x} \overline{y} \overline{z}$$

0 0 1 $m_1 = \overline{x} \overline{y} z$
0 1 0 $m_2 = \overline{x} y \overline{z}$
0 1 1 $m_3 = \overline{x} y z$
1 0 0 $m_4 = \overline{x} \overline{y} \overline{z}$
1 0 1 $m_5 = \overline{x} \overline{y} z$
1 1 0 $m_6 = \overline{x} y \overline{z}$
1 1 1 $m_7 = \overline{x} y z$

The bars coincide with the 0's in the binary expansion of the minterm sub-index

Maxterms (for three variables)

The Eight Maxterms

X	у	Z	M ₀	M ₁	M ₂	M ₃	M ₄	M ₅	M ₆	M ₇
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

The Eight Maxterms

X	у	Z	M ₀	M ₁	M ₂	M ₃	M ₄	M ₅	M ₆	M ₇
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

Expressions for the Maxterms

$$M_0 = x + y + z$$
 $M_1 = x + y + \overline{z}$
 $M_2 = x + \overline{y} + \overline{z}$
 $M_3 = x + \overline{y} + \overline{z}$
 $M_4 = \overline{x} + y + \overline{z}$
 $M_5 = \overline{x} + y + \overline{z}$
 $M_6 = \overline{x} + \overline{y} + \overline{z}$
 $M_7 = \overline{x} + \overline{y} + \overline{z}$

Expressions for the Maxterms

$$M_0 = x + y + z$$

$$M_1 = x + y + \overline{z}$$

$$M_2 = x + \overline{y} + z$$

$$M_3 = x + \overline{y} + \overline{z}$$

$$M_4 = \overline{x} + y + z$$

$$M_5 = \overline{x} + y + \overline{z}$$

$$M_6 = \overline{x} + \overline{y} + z$$

$$M_7 = \overline{x} + \overline{y} + \overline{z}$$

The bars coincide
with the 1's
in the binary expansion
of the maxterm sub-index

Minterms and Maxterms (for three variables)

Minterms and Maxterms

$$m_0 = \overline{x} \overline{y} \overline{z}$$

$$m_1 = \overline{x} \overline{y} z$$

$$m_2 = \overline{x} y \overline{z}$$

$$m_3 = \overline{x} y z$$

$$m_4 = x \overline{y} \overline{z}$$

$$m_5 = x \overline{y} z$$

$$m_6 = x y \overline{z}$$

$$m_7 = x y z$$

$$M_0 = x + y + z$$

$$M_1 = x + y + \overline{z}$$

$$M_2 = x + \overline{y} + z$$

$$M_3 = x + \overline{y} + \overline{z}$$

$$M_4 = \overline{x} + y + z$$

$$M_5 = \overline{x} + y + \overline{z}$$

$$M_6 = \overline{x} + \overline{y} + z$$

$$M_7 = \overline{x} + \overline{y} + \overline{z}$$

Synthesis Example

Truth table for a three-way light control

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Minterms and Maxterms (with three variables)

Row number	$ x_1 $	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

	f	<i>x</i> ₃	x_2	x_1
	0	0	0	0
$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	1	1	0	0
$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	1	0	1	0
	0	1	1	0
$\mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3$	1	0	0	1
	0	1	0	1
	0	0	1	1
$\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$	1	1	1	1

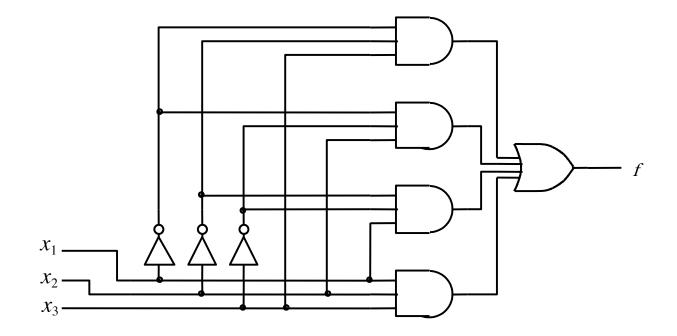
	f	<i>x</i> ₃	x_2	x_1
	0	0	0	0
$\overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2 \mathbf{x}_3$	1	1	0	0
$\overline{\mathbf{x}}_1 \ \mathbf{x}_2 \overline{\mathbf{x}}_3$	1	0	1	0
	0	1	1	0
$x_1 \overline{x_2} \overline{x_3}$	1	0	0	1
	0	1	0	1
	0	0	1	1
$x_1 x_2 x_3$	1	1	1	1
_				

	f	<i>x</i> ₃	x_2	x_{\downarrow}
	0	0	0	0
$\overline{\mathbf{x}}_1 \overline{\mathbf{x}}_2 \mathbf{x}_3$	1	1	0	0
$\overline{\mathbf{x}}_1 \mathbf{x}_2 \overline{\mathbf{x}}_3$	1	0	1	0
	0	1	1	0
$x_1 \overline{x_2} \overline{x_3}$	1	0	0	1
	0	1	0	1
	0	0	1	1
$\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$	1	1	1	1

$$f = m_1 + m_2 + m_4 + m_7$$

= $\bar{x}_1 \bar{x}_2 x_3 + \bar{x}_1 x_2 \bar{x}_3 + x_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 x_3$

Sum-of-products realization



x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x}_3$ $M_2 = x_1 + \overline{x}_2 + x_3$ $M_3 = x_1 + \overline{x}_2 + \overline{x}_3$ $M_4 = \overline{x}_1 + x_2 + x_3$ $M_5 = \overline{x}_1 + x_2 + \overline{x}_3$ $M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

x_1	x_2	x_3	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

	_			
	f	x_3	x_2	x_1
$(x_1 + x_2 + x_3)$	0	0	0	0
	1	1	0	0
	1	0	1	0
$(x_1 + x_2 + x_3)$	0	1	1	0
	1	0	0	1
$(x_1 + x_2 + x_3)$	0	1	0	1
$(x_1 + x_2 + x_3)$	0	0	1	1
(1 2 3)	1	1	1	1

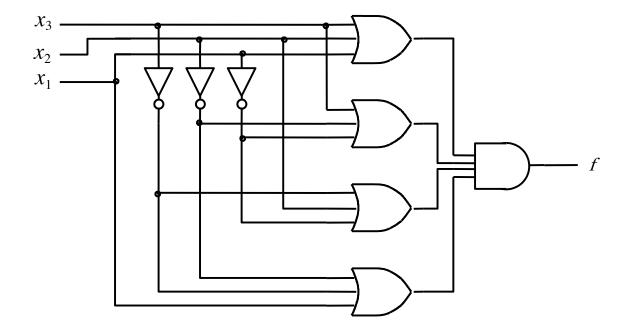
	f	<i>x</i> ₃	x_2	x_1
$(x_1 + x_2 + x_3)$	0	0	0	0
	1	1	0	0
	1	0	1	0
$(x_1 + \overline{x}_2 + \overline{x}_3)$	0	1	1	0
	1	0	0	1
$(\overline{x}_1 + x_2 + \overline{x}_3)$	0	1	0	1
$(\overline{\mathbf{x}}_1 + \overline{\mathbf{x}}_2 + \mathbf{x}_3)$	0	0	1	1
	1	1	1	1

			_	
x_1	x_2	<i>x</i> ₃	f	
0	0	0	0	$(x_1 + x_2 + x_3)$
0	0	1	1	
0	1	0	1	
0	1	1	0	$(x_1 + \overline{x}_2 + \overline{x}_3)$
1	0	0	1	
1	0	1	0	$(\overline{\mathbf{x}}_1 + \mathbf{x}_2 + \overline{\mathbf{x}}_3)$
1	1	0	0	$(\overline{x}_1 + \overline{x}_2 + x_3)$
1	1	1	1	\ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			<u> </u>	

$$f = M_0 \cdot M_3 \cdot M_5 \cdot M_6$$

= $(x_1 + x_2 + x_3)(x_1 + \overline{x}_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + x_3)$

Product-of-sums realization



Function Synthesis

Example 2.10

Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \end{array}$	$egin{array}{c} 0 \\ 0 \\ 0 \\ \hline 0 \\ 1 \\ 1 \\ \end{array}$	0 0 1 1 0	$egin{array}{c} 0 \\ 1 \\ \hline 0 \\ 1 \\ \hline 0 \\ 1 \\ \end{array}$	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$
6 7	1	1 1	0 1	$m_{6} = x_{1}x_{2}\overline{x}_{3}$ $m_{7} = x_{1}x_{2}x_{3}$	$M_6 = \overline{x}_1 + \overline{x}_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

$$f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$$

The SOP expression is:

$$f = m_2 + m_3 + m_4 + m_6 + m_7$$

= $\bar{x}_1 x_2 \bar{x}_3 + \bar{x}_1 x_2 x_3 + x_1 \bar{x}_2 \bar{x}_3 + x_1 x_2 \bar{x}_3 + x_1 x_2 x_3$

This could be simplified as follows:

$$f = \overline{x}_1 x_2 (\overline{x}_3 + x_3) + x_1 (\overline{x}_2 + x_2) \overline{x}_3 + x_1 x_2 (\overline{x}_3 + x_3)$$

$$= \overline{x}_1 x_2 + x_1 \overline{x}_3 + x_1 x_2$$

$$= (\overline{x}_1 + x_1) x_2 + x_1 \overline{x}_3$$

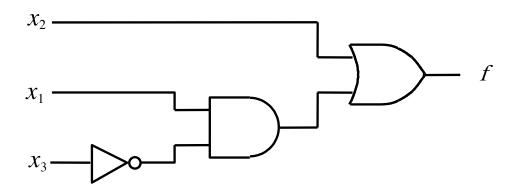
$$= x_2 + x_1 \overline{x}_3$$

Recall Property 14a

14a.
$$x \cdot y + x \cdot \overline{y} = x$$
 Combining
14b. $(x + y) \cdot (x + \overline{y}) = x$

SOP realization of the function

The SOP expression is: $f = x_2 + x_1 \overline{x}_3$



Example 2.12

Implement the function $f(x_1, x_2, x_3) = \Pi M(0, 1, 5)$,

which is equivalent to $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

$$f(x_1, x_2, x_3) = \Pi M(0, 1, 5)$$

The POS expression is:

$$f = M_0 \cdot M_1 \cdot M_5$$

= $(x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)$

This could be simplified as follows:

$$f = (x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x}_3)(x_1 + x_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)$$

$$= ((x_1 + x_2) + x_3)((x_1 + x_2) + \overline{x}_3)(x_1 + (x_2 + \overline{x}_3))(\overline{x}_1 + (x_2 + \overline{x}_3))$$

$$= ((x_1 + x_2) + x_3\overline{x}_3)(x_1\overline{x}_1 + (x_2 + \overline{x}_3))$$

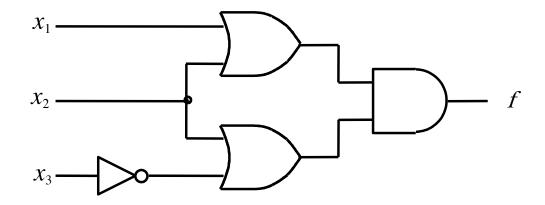
$$= (x_1 + x_2)(x_2 + \overline{x}_3)$$

Recall Property 14b

14a.
$$x \cdot y + x \cdot \overline{y} = x$$
 Combining
14b. $(x + y) \cdot (x + \overline{y}) = x$

POS realization of the function

The POS expression is: $f = (x_1 + x_2) (x_2 + \overline{x_3})$



More Examples

Example 2.14

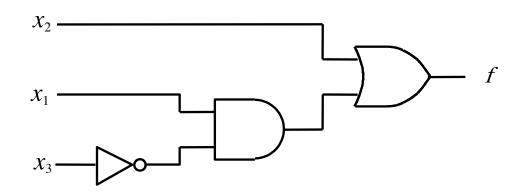
Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NAND gates.

Example 2.14

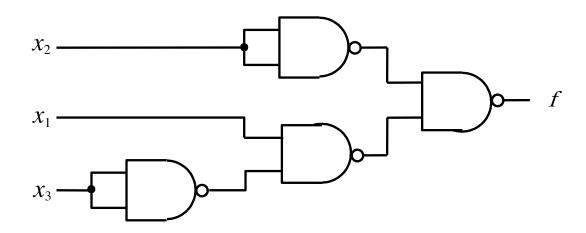
Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NAND gates.

The SOP expression is: $f = x_2 + x_1 \overline{x}_3$

NAND-gate realization of the function



(a) SOP implementation



(b) NAND implementation

Example 2.13

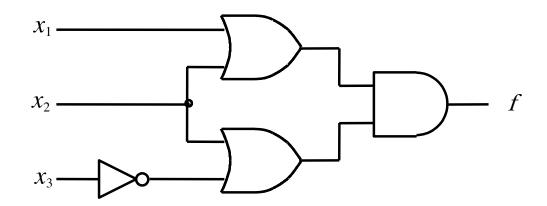
Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NOR gates.

Example 2.13

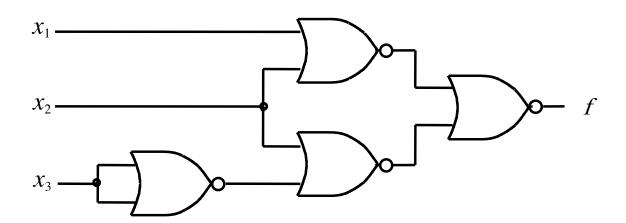
Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$ using only NOR gates.

The POS expression is: $f = (x_1 + x_2)(x_2 + \overline{x_3})$

NOR-gate realization of the function

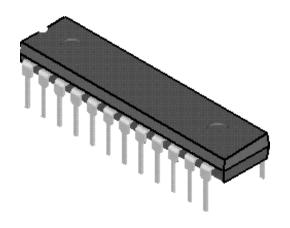


(a) POS implementation

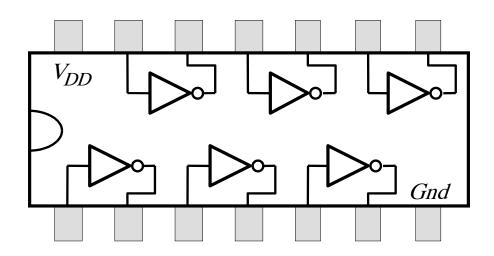


(b) NOR implementation

Implementation with Chips



(a) Dual-inline package



(b) Structure of 7404 chip

Figure B.21. A 7400-series chip.

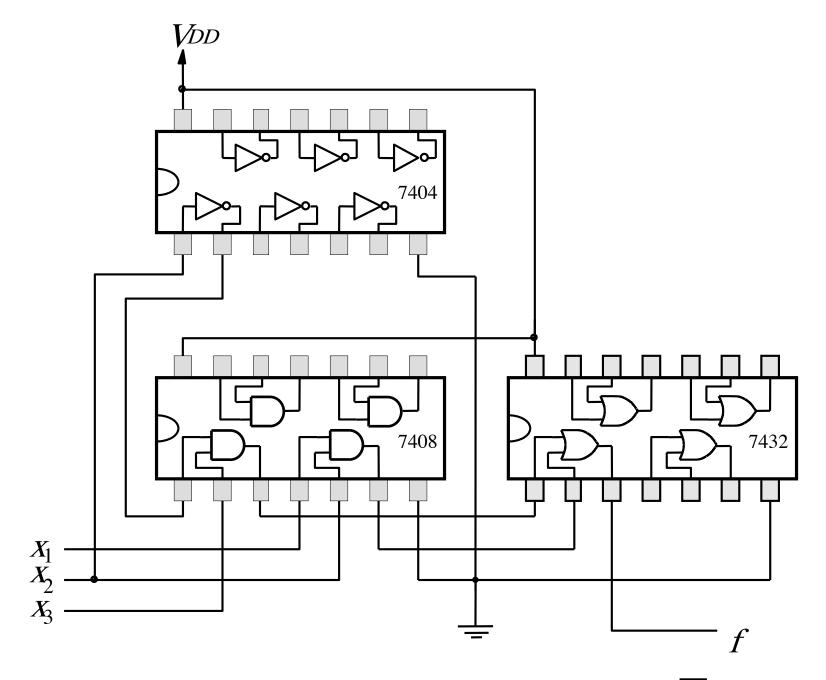


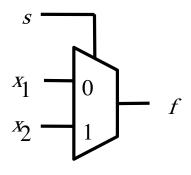
Figure B.22. An implementation of $f = x_1x_2 + \overline{x_2}x_3$.

Multiplexers

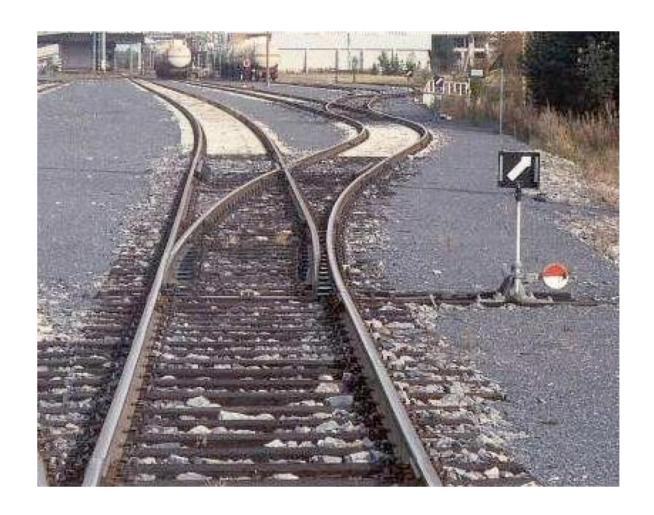
2-to-1 Multiplexer (Definition)

- Has two inputs: x_1 and x_2
- Also has another input line s
- If s=0, then the output is equal to x_1
- If s=1, then the output is equal to x_2

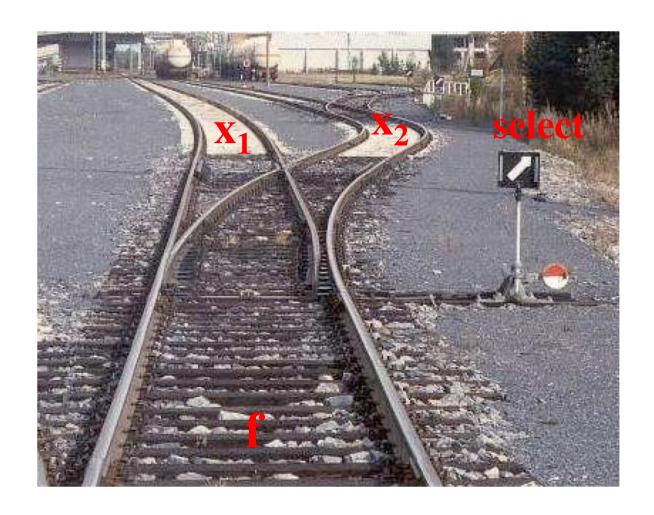
Graphical Symbol for a 2-to-1 Multiplexer



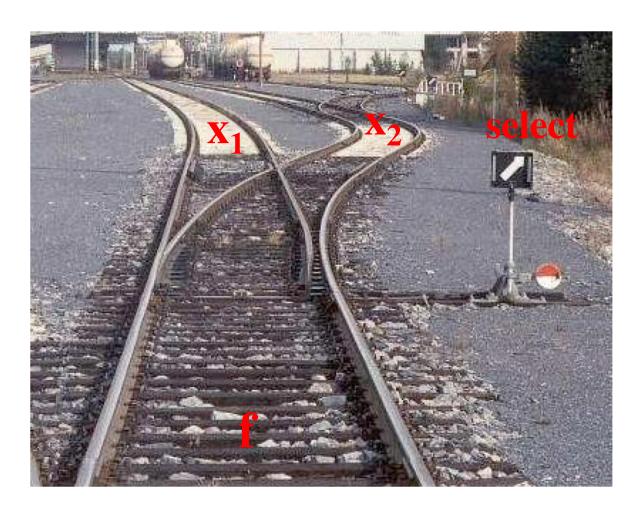
Analogy: Railroad Switch



Analogy: Railroad Switch



Analogy: Railroad Switch



This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.

Truth Table for a 2-to-1 Multiplexer

$s x_1 x_2$	$f(s,x_1,x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

$$s x_1 x_2$$

$$S X_1 X_2$$

$$S X_1 X_2$$

$$s x_1 x_2$$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x}_2 + x_2) + s (\overline{x}_1 + x_1) x_2$$

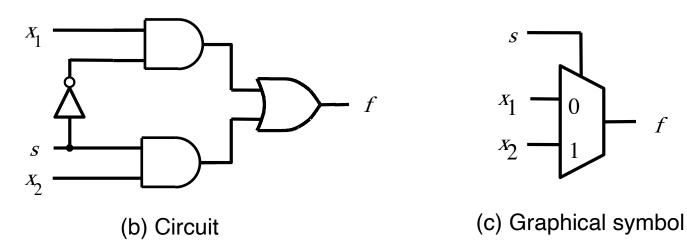
Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x}_2 + x_2) + s (\overline{x}_1 + x_1) x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

Circuit for 2-to-1 Multiplexer



$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

More Compact Truth-Table Representation

$s x_1 x_2$	$f(s,x_1,x_2)$
0 0 0	0
0 0 1	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

(a)Truth table

S	$f(s,x_1,x_2)$
0	x_1
1	x_2

4-to-1 Multiplexer (Definition)

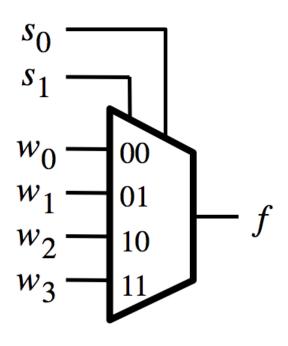
- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If s₁=0 and s₀=1, then the output f is equal to w₁
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

4-to-1 Multiplexer (Definition)

- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If $s_1=0$ and $s_0=1$, then the output f is equal to w_1
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If s₁=1 and s₀=1, then the output f is equal to w₃

We'll talk more about this when we get to chapter 4, but here is a quick preview.

Graphical Symbol and Truth Table



<i>s</i> ₁	s_0	f
0	0	w_0
0	1	w_1
1	0	w_2
1	1	w_3

(a) Graphic symbol

(b) Truth table

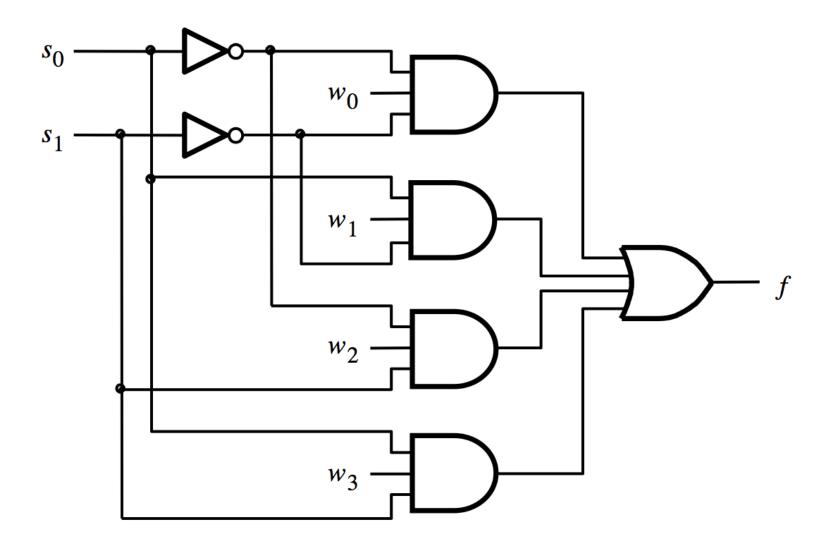
S_1S_0	I ₃ I ₂ I ₁ I ₀ F	S ₁ S ₀ I ₃ I ₂ I ₁ I ₀	F S ₁ S ₀ I ₃	3 I ₂ I ₁ I ₀ F	$S_1 S_0 I_3 I_2 I_1 I_0 F$
0 0	0 0 0 0 0	0 1 0 0 0 0	0 1 0 0	0 0 0 0	1 1 0 0 0 0 0
	0 0 0 1 1	0 0 0 1	0 0	0 0 1 0	0 0 0 1 0
	0 0 1 0 0	0 0 1 0	1 0	0 1 0 0	0 0 1 0 0
	0 0 1 1 1	0 0 1 1	1 0	0 1 1 0	0 0 1 1 0
	0 1 0 0 0	0 1 0 0	0 0	1 0 0 1	0 1 0 0 0
	0 1 0 1 1	0 1 0 1	0 0	1 0 1 1	0 1 0 1 0
	0 1 1 0 0	0 1 1 0	1 0	1 1 0 1	0 1 1 0 0
	0 1 1 1 1	0 1 1 1	1 0	1 1 1 1	0 1 1 1 0
	1 0 0 0 0	1 0 0 0	0 1	0 0 0 0	1 0 0 0 1
	1 0 0 1 1	1 0 0 1	0 1	0 0 1 0	1 0 0 1 1
	1 0 1 0 0	1 0 1 0	1 1	0 1 0 0	1 0 1 0 1
	1 0 1 1 1	1 0 1 1	1 1	0 1 1 0	1 0 1 1 1
	1 1 0 0 0	1 1 0 0	0 1	1 0 0 1	1 1 0 0 1
	1 1 0 1 1	1 1 0 1	0 1	1 0 1 1	1 1 0 1 1
	1 1 1 0 0	1 1 1 0	1 1	1 1 0 1	1 1 1 0 1
	1 1 1 1 1	1 1 1 1	1 1	1 1 1 1	1 1 1 1 1

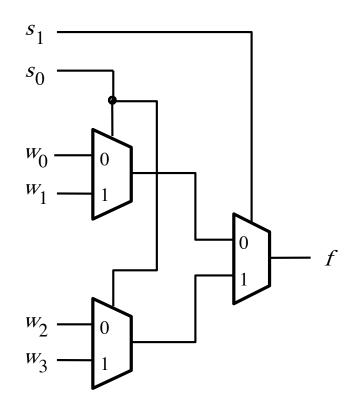
S_1S_0	I ₃ I ₂ I ₁ I ₀	F S ₁ S ₀	I ₃ I ₂ I ₁ I ₀ F	S ₁ S ₀ I ₃ I ₂ I ₁ I ₀	F S ₁ S ₀ I ₃ I ₂ I ₁ I ₀ F
0 0	0 0 0 0	0 0 1	0 0 0 0 0	1 0 0 0 0 0	0 1 1 0 0 0 0 0
	0 0 0 1	1	0 0 0 1 0	0 0 0 1	0 0 0 1 0
	0 0 1 0	0	0 0 1 0 1	0 0 1 0	0 0 1 0 0
	0 0 1 1	1	0 0 1 1 1	0 0 1 1	0 0 1 1 0
	0 1 0 0	0	0 1 0 0 0	0 1 0 0	1 0 1 0 0 0
	0 1 0 1	1	0 1 0 1 0	0 1 0 1	1 0 1 0 1 0
	0 1 1 0	0	0 1 1 0 1	0 1 1 0	1 0 1 1 0 0
	0 1 1 1	1	0 1 1 1 1	0 1 1 1	1 0 1 1 1 0
	1 0 0 0	0	1 0 0 0 0	1 0 0 0	0 1 0 0 0 1
	1 0 0 1	1	1 0 0 1 0	1 0 0 1	0 1 0 0 1 1
	1 0 1 0	0	1 0 1 0 1	1 0 1 0	0 1 0 1 0 1
	1 0 1 1	1	1 0 1 1 1	1 0 1 1	0 1 0 1 1 1
	1 1 0 0	0	1 1 0 0 0	1 1 0 0	1 1 0 0 1
	1 1 0 1	1	1 1 0 1 0	1 1 0 1	1 1 0 1 1
	1 1 1 0	0	1 1 1 0 1	1 1 1 0	1 1 1 0 1
	1 1 1 1	1	1 1 1 1 1	1 1 1 1	1 1 1 1 1

S_1S_0	I ₃ I ₂ I ₁ I ₀ I	S ₁ S ₀ I ₃ I	I ₂ I ₁ I ₆	F S ₁	S ₀ I ₃ I ₂ I ₁ I ₀ I	S ₁ S ₀	I ₃ I ₂ I ₁ I ₀ F
0 0	0 0 0 0	0 1 0	0 0 0	0 1	0 0 0 0 0	1 1	0 0 0 0 0
	0 0 0 1 1	0	0 0 1	0	0 0 0 1)	0 0 0 1 0
	0 0 1 0 0	0	0 1 0	1	0 0 1 0)	0 0 1 0 0
	0 0 1 1 1	0	0 1 1	1	0 0 1 1)	0 0 1 1 0
	0 1 0 0 0	0	1 0 0	0	0 1 0 0	l	0 1 0 0 0
	0 1 0 1 1	0	1 0 1	0	0 1 0 1	ı	0 1 0 1 0
	0 1 1 0 0	0	1 1 0	1	0 1 1 0	ı	0 1 1 0 0
	0 1 1 1	0	1 1 1	1	0 1 1 1	ı	0 1 1 1 0
	1 0 0 0 0	1	0 0 0	0	1 0 0 0)	1 0 0 0 1
	1 0 0 1 1	1	0 0 1	0	1 0 0 1)	1 0 0 1 1
	1 0 1 0	1	0 1 0	1	1 0 1 0)	1 0 1 0 1
	1 0 1 1 1	1	0 1 1	1	1 0 1 1)	1 0 1 1 1
	1 1 0 0 0	1	1 0 0	0	1 1 0 0	ı	1 1 0 0 1
	1 1 0 1 1	1	1 0 1	0	1 1 0 1	l	1 1 0 1 1
	1 1 1 0 0	1	1 1 0	1	1 1 1 0	l	1 1 1 0 1
	1 1 1 1 1	1	1 1 1	1	1 1 1 1	I	1 1 1 1 1

S_1S_0	I ₃ I ₂ I ₁ I ₀ F	S ₁ S ₀ I ₃ I ₂ I ₁	I ₀ F S ₁ S ₀	I ₃ I ₂ I ₁ I ₀ F	S ₁ S ₀ I ₃ I ₂ I ₁ I ₀ F
0 0	0 0 0 0 0	0 1 0 0 0	0 0 1 0	0 0 0 0 0	1 1 0 0 0 0 0
	0 0 0 1 1	0 0 0	1 0	0 0 0 1 0	0 0 0 1 0
	0 0 1 0 0	0 0 1	0 1	0 0 1 0 0	0 0 1 0 0
	0 0 1 1 1	0 0 1	1 1	0 0 1 1 0	0 0 1 1 0
	0 1 0 0 0	0 1 0	0 0	0 1 0 0 1	0 1 0 0 0
	0 1 0 1 1	0 1 0	1 0	0 1 0 1 1	0 1 0 1 0
	0 1 1 0 0	0 1 1	0 1	0 1 1 0 1	0 1 1 0 0
	0 1 1 1 1	0 1 1	1 1	0 1 1 1 1	0 1 1 1 0
	1 0 0 0 0	1 0 0	0 0	1 0 0 0 0	1 0 0 0 1
	1 0 0 1 1	1 0 0	1 0	1 0 0 1 0	1 0 0 1 1
	1 0 1 0 0	1 0 1	0 1	1 0 1 0 0	1 0 1 0 1
	1 0 1 1 1	1 0 1	1 1	1 0 1 1 0	1 0 1 1 1
	1 1 0 0 0	1 1 0	0 0	1 1 0 0 1	1 1 0 0 1
	1 1 0 1 1	1 1 0	1 0	1 1 0 1 1	1 1 0 1 1
	1 1 1 0 0	1 1 1	0 1	1 1 1 0 1	1 1 1 0 1
	1 1 1 1 1	1 1 1	1 1	1 1 1 1 1	1 1 1 1 1

4-to-1 Multiplexer (SOP circuit)

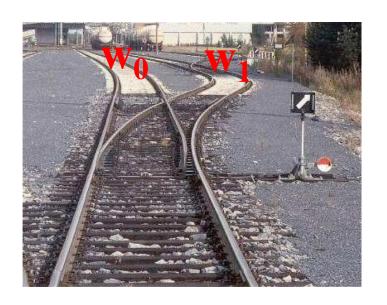


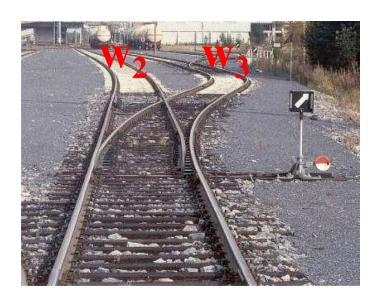


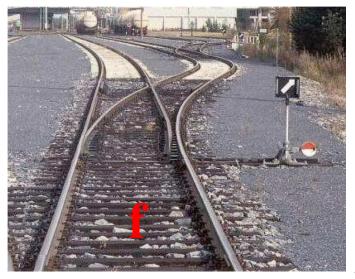
Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

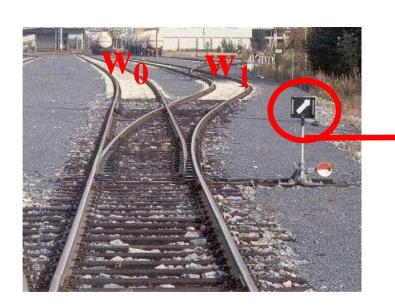


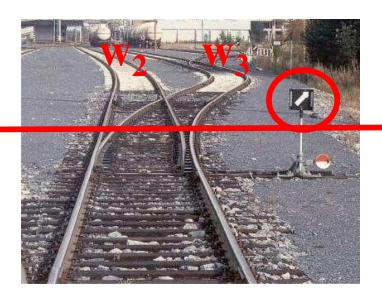




 \mathbf{S}_1

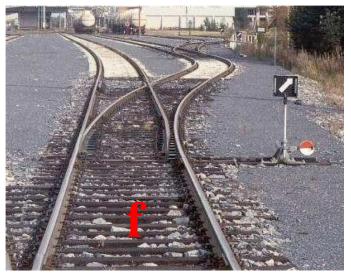
Analogy: Railroad Switches



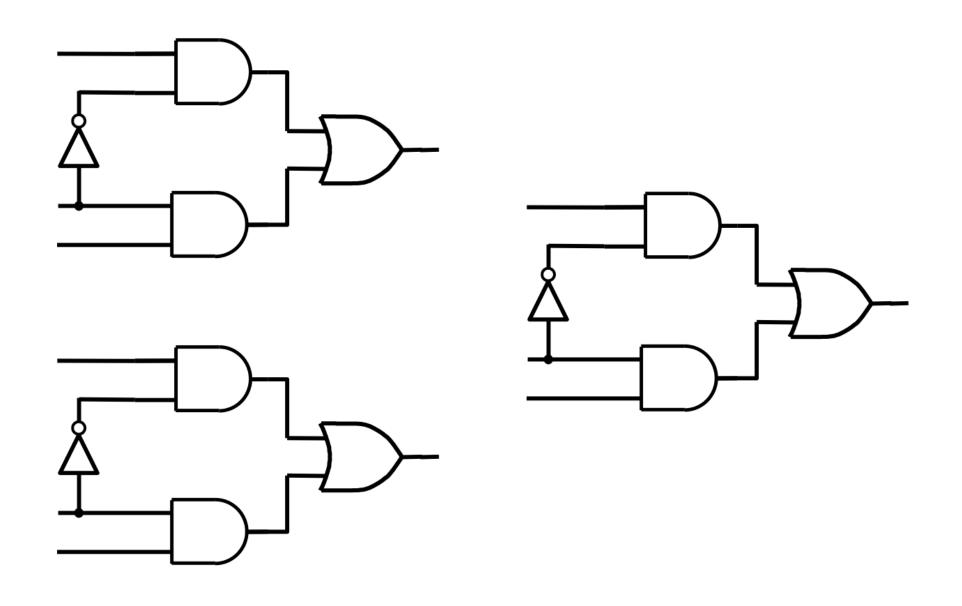


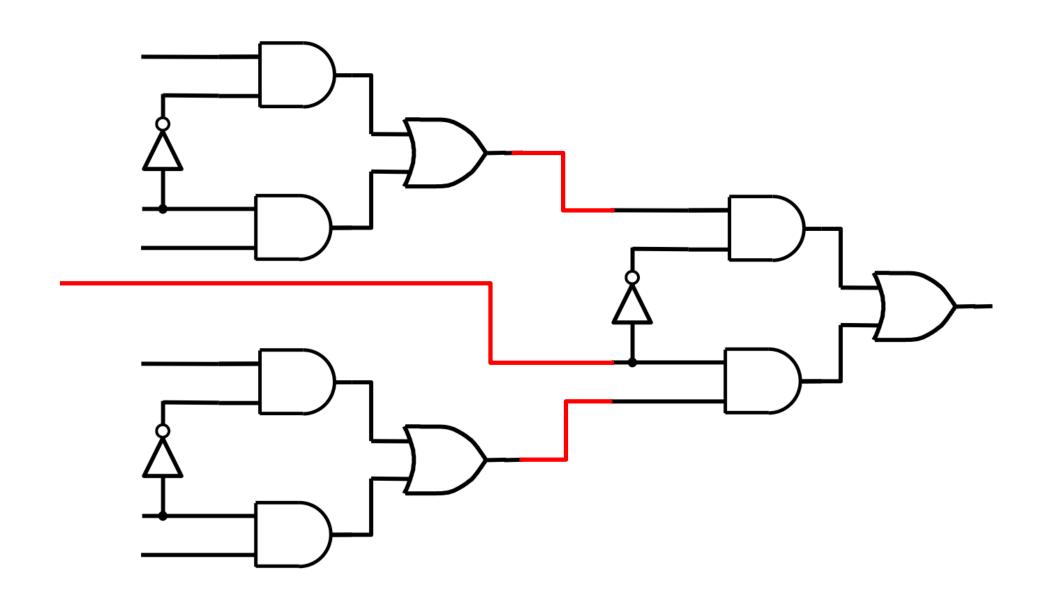
se tv

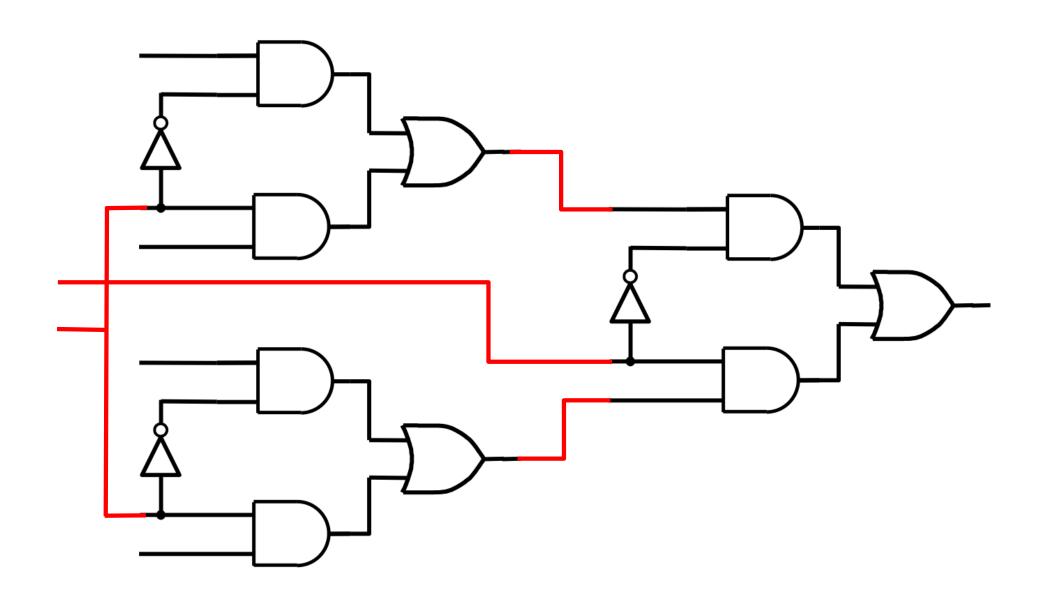
these two switches are controlled together

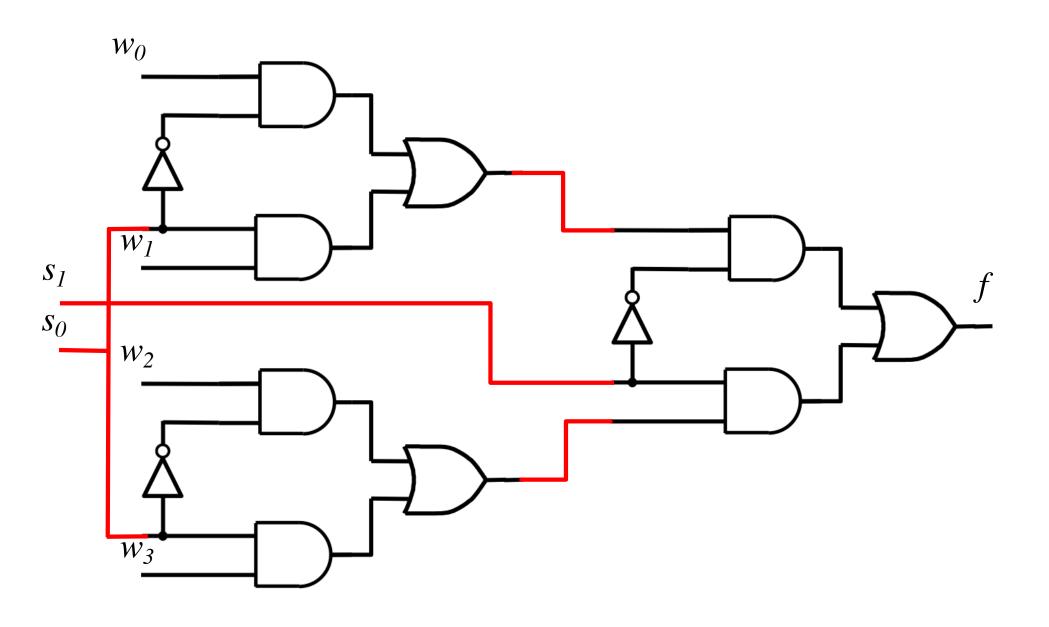


 \mathbf{S}_1

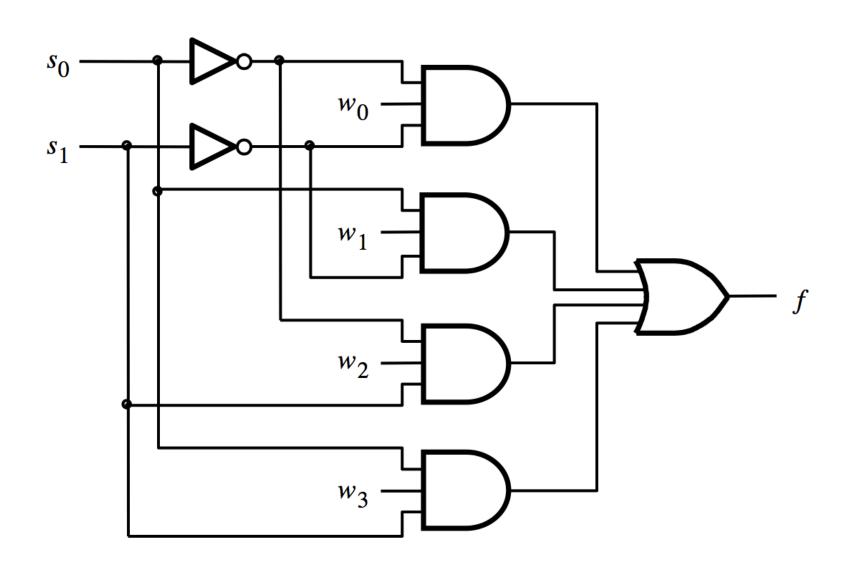




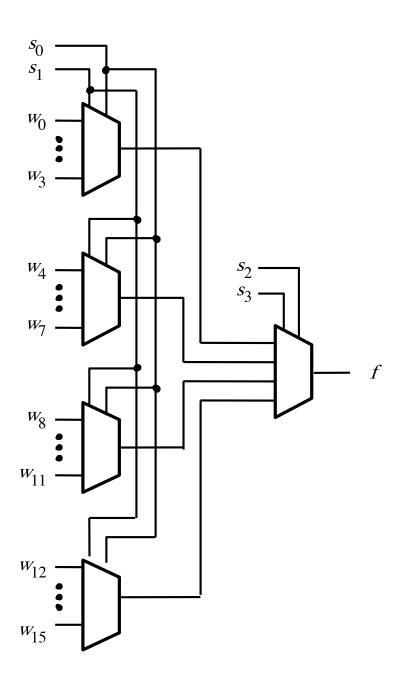




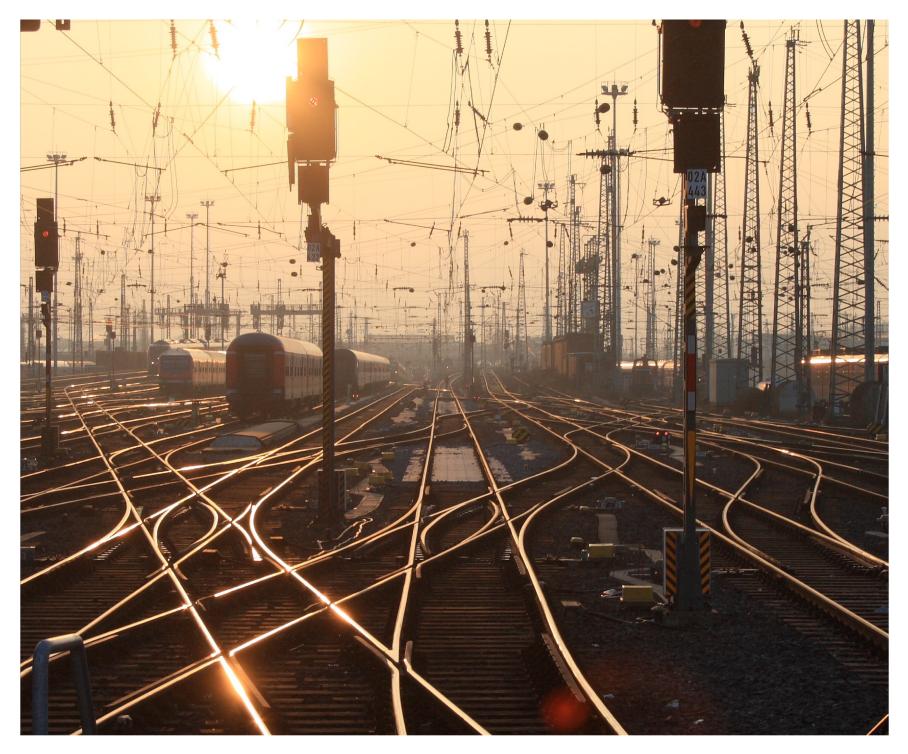
That is different from the SOP form of the 4-to-1 multiplexer shown below, which uses fewer gates



16-to-1 Multiplexer



[Figure 4.4 from the textbook]



[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

Questions?

THE END