

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Addition of Unsigned Numbers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

HW5 is due today

Administrative Stuff

No homework due next week

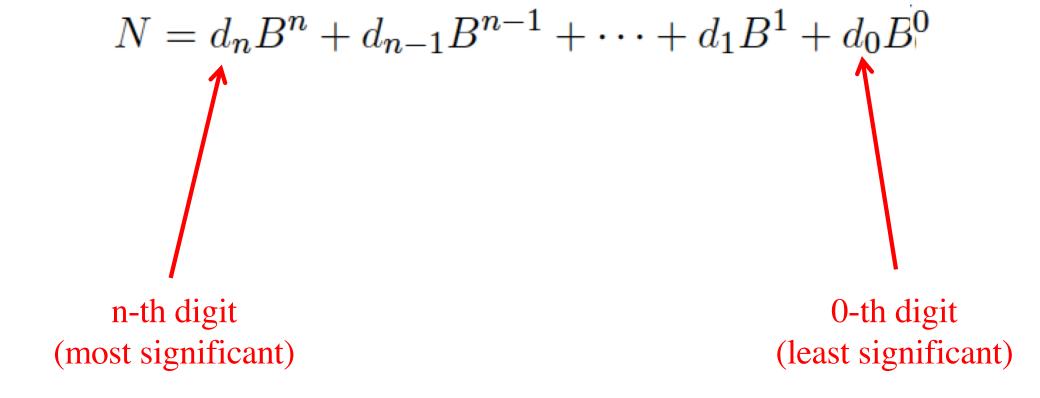
HW6 will be due on Monday, Oct 10

Quick Review

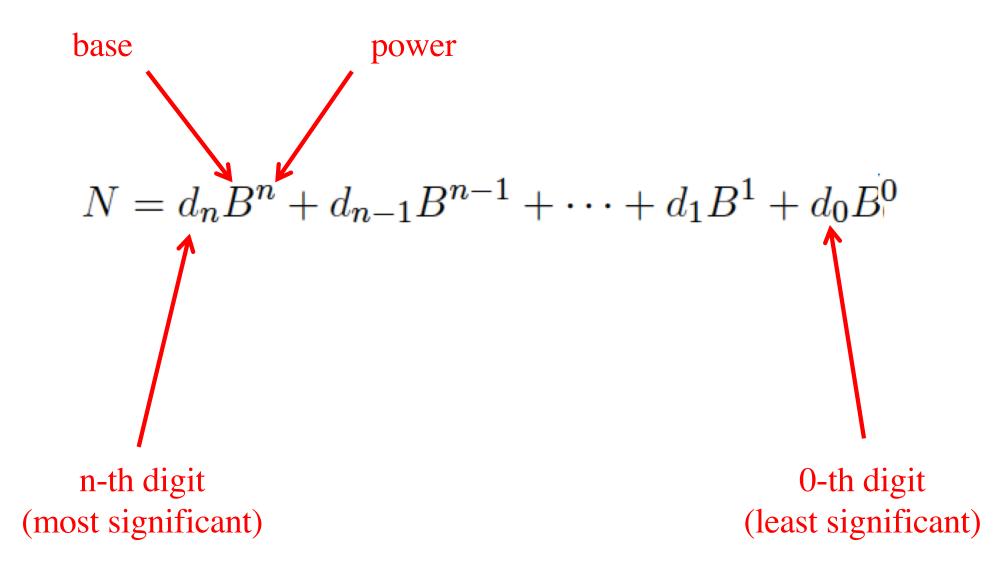
Number Systems

$$N = d_n B^n + d_{n-1} B^{n-1} + \dots + d_1 B^1 + d_0 B^0$$

Number Systems



Number Systems



The Decimal System

$$524_{10} = 5 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$$

The Decimal System

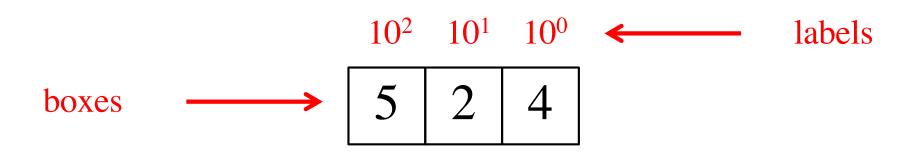
$$524_{10} = 5 \times 10^2 + 2 \times 10^1 + 4 \times 10^0$$

$$= 5 \times 100 + 2 \times 10 + 4 \times 1$$

$$=500+20+4$$

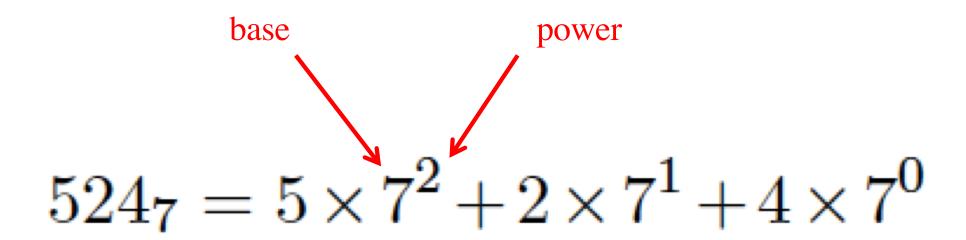
$$=524_{10}$$

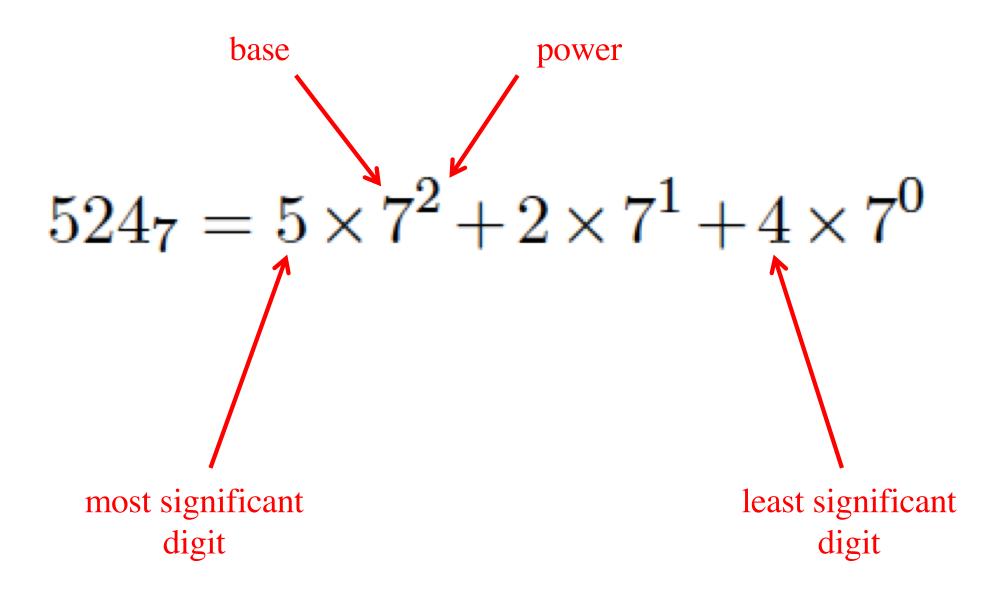
5 2 4



Each box can contain only one digit and has only one label. From right to left, the labels are increasing powers of the base, starting from 0.

$$524_7 = 5 \times 7^2 + 2 \times 7^1 + 4 \times 7^0$$



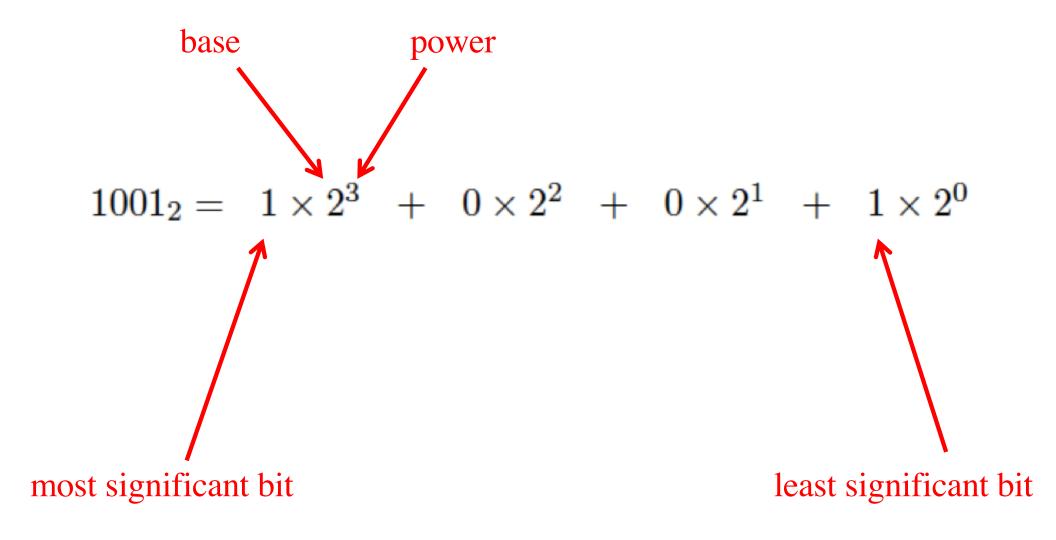


$$524_7 = 5 \times 7^2 + 2 \times 7^1 + 4 \times 7^0$$
$$= 5 \times 49 + 2 \times 7 + 4 \times 1$$
$$= 245 + 14 + 4$$
$$= 263_{10}$$

Binary Numbers (Base 2)

$$1001_2 = 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

Binary Numbers (Base 2)



Binary Numbers (Base 2)

$$1001_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 1 \times 8 + 0 \times 4 + 0 \times 2 + 1 \times 1 = 8 + 0 + 0 + 1 = 9_{10}$$

Another Example

$$11101_{2} = 1 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 1 \times 16 + 1 \times 8 + 1 \times 4 + 0 \times 2 + 1 \times 1 = 16 + 8 + 4 + 0 + 0 + 1 = 29_{10}$$

Powers of 2

$$2^{10} = 1024$$
 $2^9 = 512$
 $2^8 = 256$
 $2^7 = 128$
 $2^6 = 64$
 $2^5 = 32$
 $2^4 = 16$
 $2^3 = 8$
 $2^2 = 4$
 $2^1 = 2$
 $2^0 = 1$

What is the value of this binary number?

00101100

0
 1
 0
 1
 1
 0

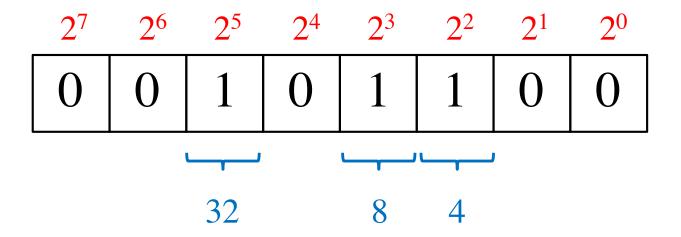
• $0*2^7 + 0*2^6 + 1*2^5 + 0*2^4 + 1*2^3 + 1*2^2 + 0*2^1 + 0*2^0$

• 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1

• 0*128 + 0*64 + 1*32 + 0*16 + 1*8 + 1*4 + 0*2 + 0*1

32+8+4=44 (in decimal)

_	_	_	_	_	_		2^0
0	0	1	0	1	1	0	0



Signed v.s. Unsigned Numbers

Two Different Types of Binary Numbers

Unsigned numbers

- All bits jointly represent a positive integer.
- Negative numbers cannot be represented this way.

Signed numbers

- The left-most bit represents the sign of the number.
- If that bit is 0, then the number is positive.
- If that bit is 1, then the number is negative.
- The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.

Unsigned Representation

_	_	_	_		_	_	2^0
0	0	1	0	1	1	0	0

This represents +44.

Unsigned Representation

_	_	_	_	_	_	_	2^0
1	0	1	0	1	1	0	0

This represents + 172.

Signed Representation (using the left-most bit as the sign)

sign	2^6	2^5	2^4	2^3	2^2	2^1	2^0
0	0	1	0	1	1	0	0

This represents + 44.

Signed Representation (using the left-most bit as the sign)

sign	2^6	2^5	2^4	2^3	2^2	2^1	2^0
1	0	1	0	1	1	0	0

This represents -44.

Today's Lecture is About Addition of Unsigned Numbers

Addition of two 1-bit numbers

$$\begin{array}{c}
x \\
+ y \\
c s
\end{array}$$
Carry \longrightarrow Sum

Addition of two 1-bit numbers (there are four possible cases)

Addition of two 1-bit numbers (the truth table)

x	y	Carry c	Sum s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\frac{x}{+y}$$

x	у	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

x	0	0	1	1
<u>+ y</u>	+0	+ 1	+0	+ 1
c s	0 0	0 1	0 1	1 0

x y	\boldsymbol{c}	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

x	0	0	1	1
<u>+ y</u>	+0	+ 1	+0	+ 1
c s	0 0	0 1	0 1	1 0

x	у	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\frac{x}{+y}$$

x	у	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$\boldsymbol{\mathcal{X}}$	0	0	1	1
+ y	+ 0	+ 1	+0	+ 1
cs			0 1	

x y	\boldsymbol{c}	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

$\boldsymbol{\mathcal{X}}$	0	0	1	1
+ y	+ 0	+ 1	+0	+ 1
$\frac{}{c}$	${0} {0}$	$\frac{-}{0}$	0 1	$\frac{-}{1 \ 0}$

x	y	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\frac{x}{+y}$$

x	у	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\frac{x}{+y}$$

x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

$$x + y$$
 $c s$

1		1 -
<i>x y</i>	C	S
0 0	O	0
0 1	O	1
1 0	О	1
1 1	1	0
		1

$$\frac{x}{+y}$$

x	у	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\frac{x}{+y}$$

x	у	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$\frac{x}{+y}$$

x	y	c	S	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

$$\frac{x}{+y}$$

x	у	c	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

	?	
x y	c	S
0 0	0	0
0 1	O	1
1 0	О	1
1 1	1	0

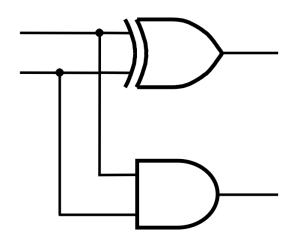
AND						
x y	c	S				
0 0	0	0				
0 1	O	1				
1 0	0	1				
1 1	1	0				
		1				

x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

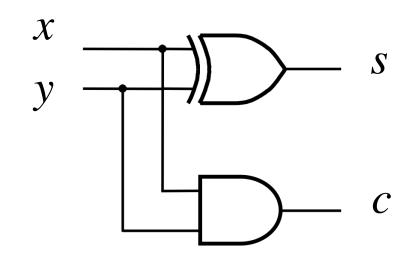
			?	
x y	\boldsymbol{c}		S	
0 0	0		0	
0 1	0		1	
1 0	0		1	
1 1	1		0	
		l		

		>	KOF	2
x y	c		S	
0 0	0		0	
0 1	0		1	
1 0	0		1	
1 1	1		0	

x y	c	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

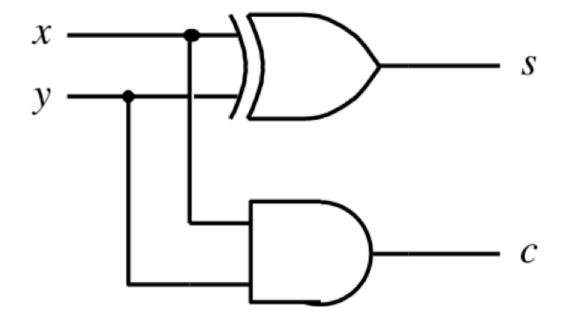


x y	\boldsymbol{c}	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

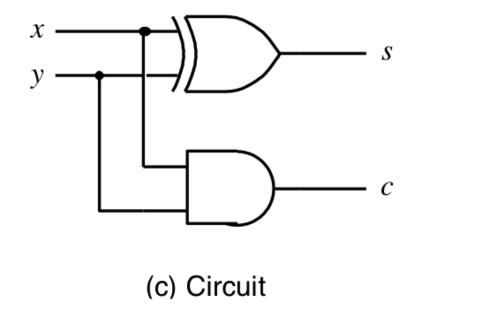


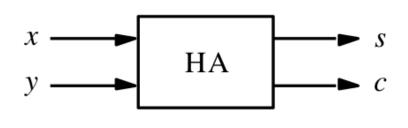
x y	\boldsymbol{c}	S
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

Addition of two 1-bit numbers (the logic circuit)



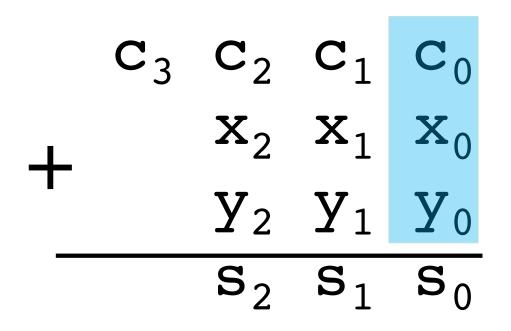
The Half-Adder



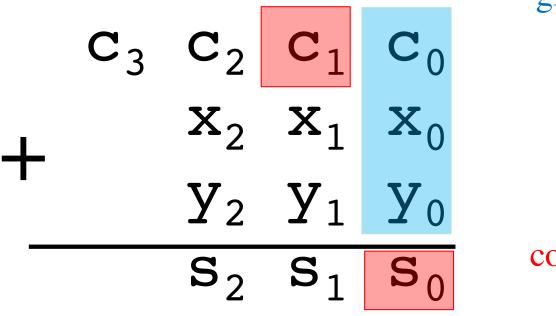


(d) Graphical symbol

carry		0	1	1	0
			3	8	9
	T		1	5	7
			5	4	6

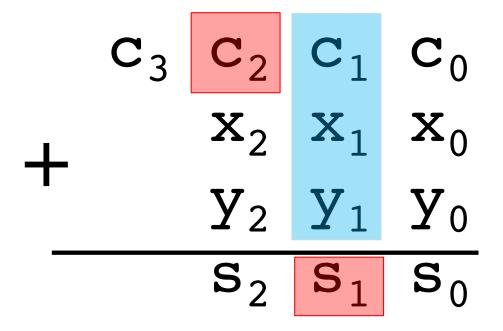


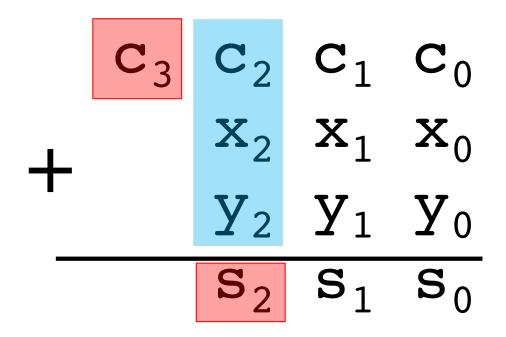
given these 3 inputs



given these 3 inputs

compute these 2 outputs





Addition of multibit numbers

Generated carries
$$\longrightarrow$$
 1 1 1 0 ... c_{i+1} c_i ... $X = x_4 x_3 x_2 x_1 x_0$ 0 1 1 1 1 (15)₁₀ ... x_i ...

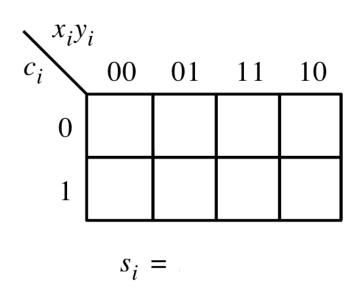
Bit position *i*

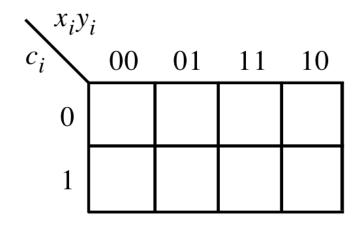
Problem Statement and Truth Table

 c_{i+1}	c_{i}	
 	y_i	
 	s_i	

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0 1	0 0	0 1
0 0		0	0 0 1	1 1 0
1	0	0	0	1
1 1	0	1 0	1	0
1	1	1	1	1



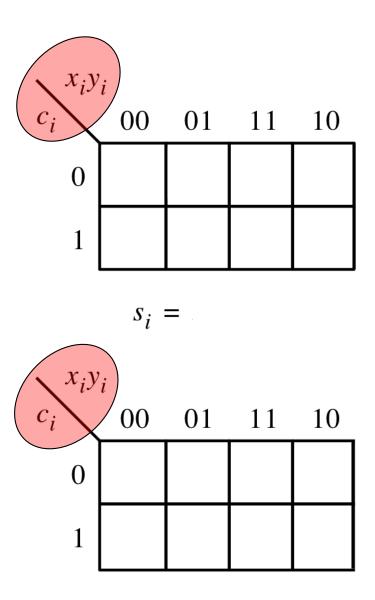


 $c_{i+1} =$

[Figure 3.3a-b from the textbook]

Note that the textbook switched to the other way to draw a K-Map

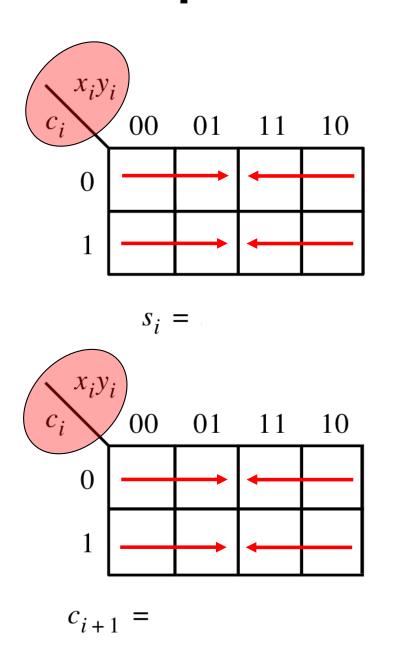
c_i	x_i	y_i	c_{i+1}	s_i
0 0	0 0	0 1	0 0	0 1
0	1	0 1	0	1 0
1 1	0 0	0 1	0 1	1 0
1	1 1	0 1	1 1	0 1



$$c_{i+1} =$$

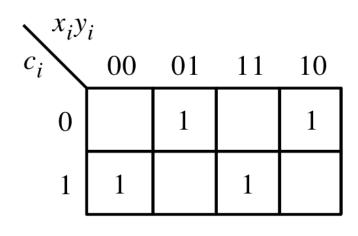
Note that the textbook switched to the other way to draw a K-Map

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0 1	1 0	$0 \\ 0$	1 1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

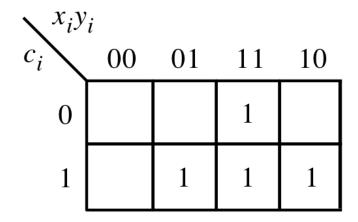


[Figure 3.3a-b from the textbook]

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1		0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1



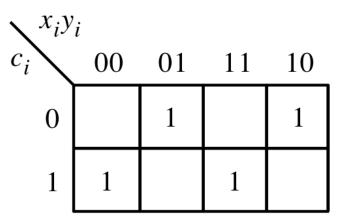
$$s_i = x_i \oplus y_i \oplus c_i$$



$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

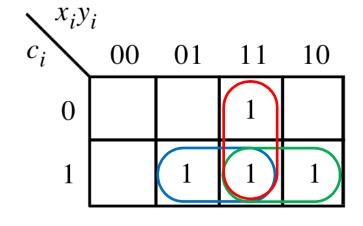
[Figure 3.3a-b from the textbook]

0	14	33	<i>C</i>	g
c_i	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0		1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1		0	1	0
1	1	1	1	1



3-input XOR

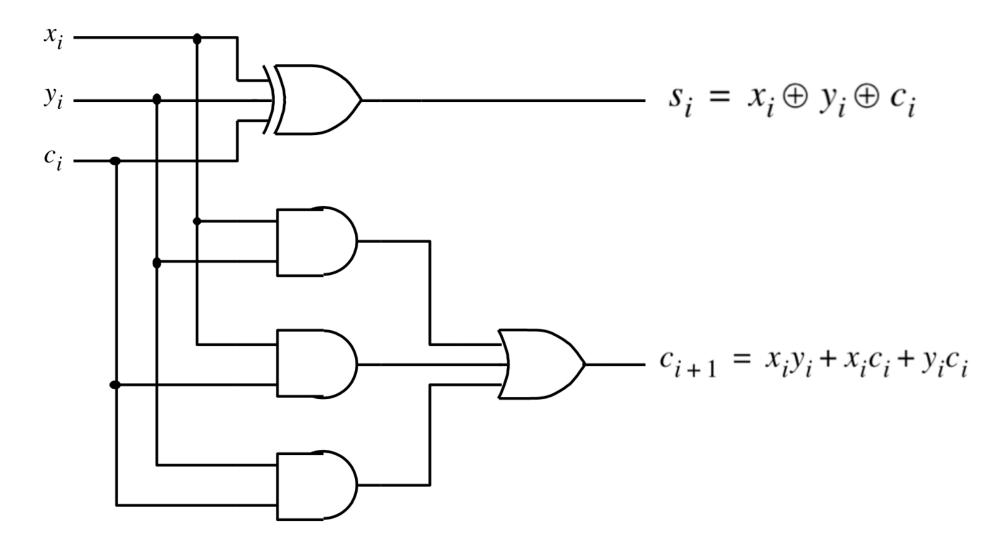
$$s_i = x_i \oplus y_i \oplus c_i$$



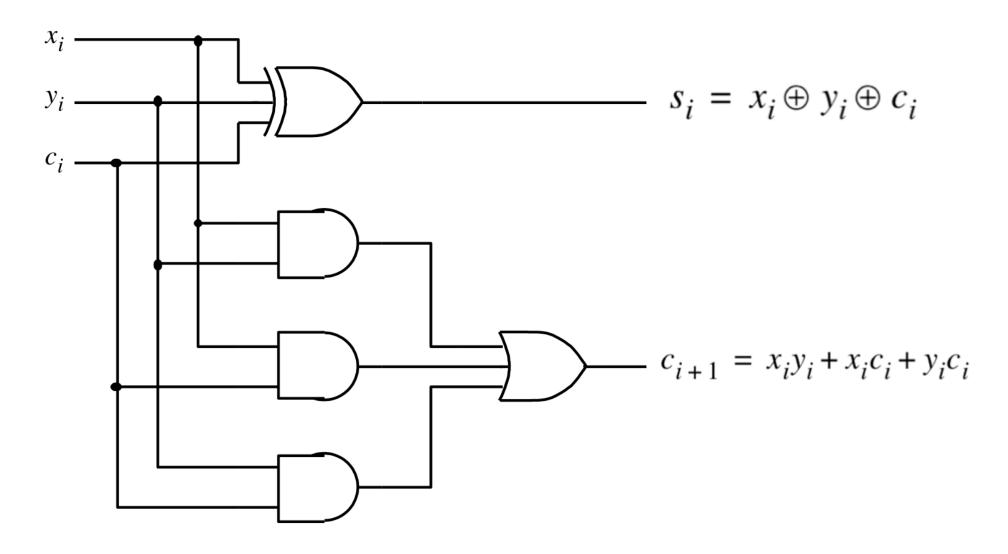
$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

[Figure 3.3a-b from the textbook]

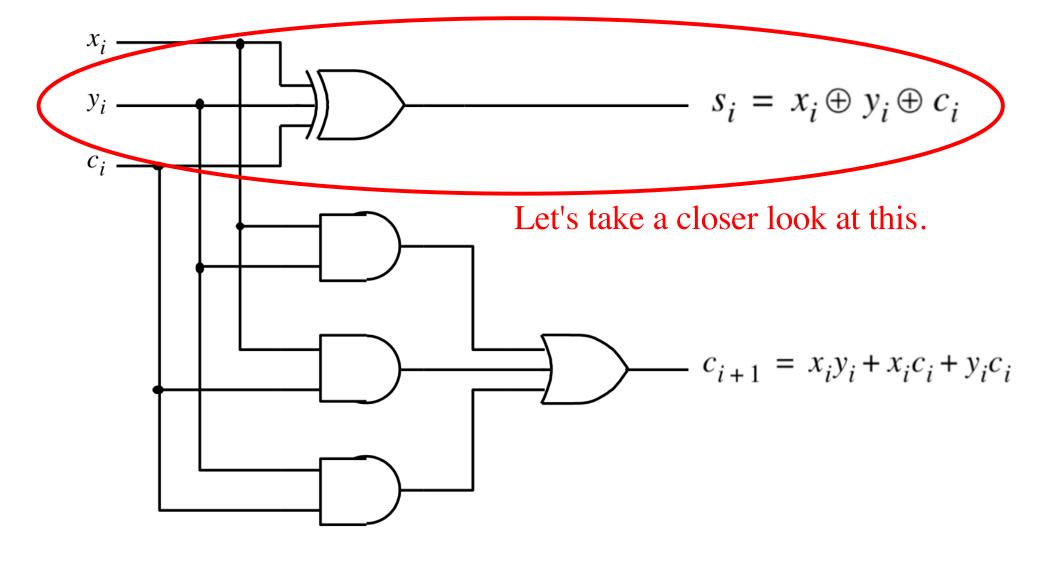
The circuit for the two expressions



This is called the Full-Adder



This is called the Full-Adder

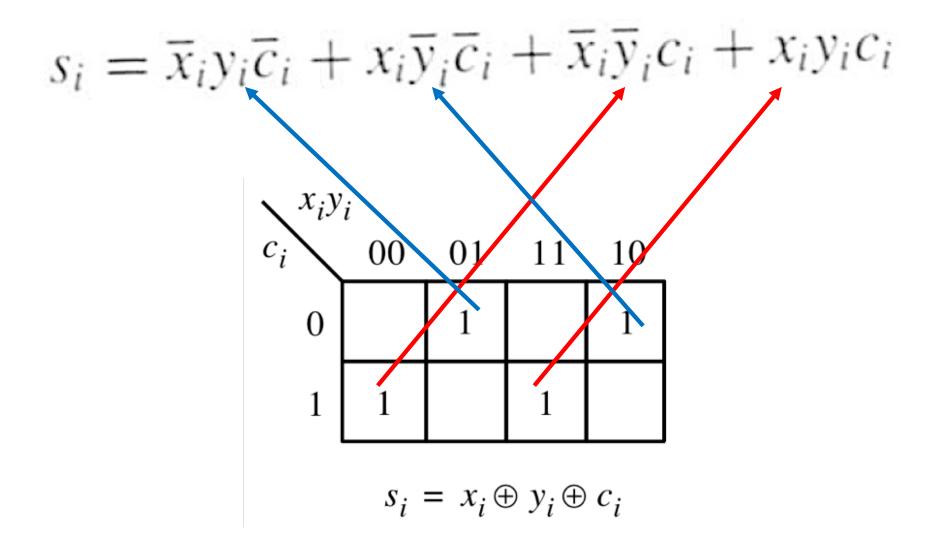


[Figure 3.3c from the textbook]

$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$

$\sum x_i y_i$					
c_i	00	01	11	10	
0		1		1	
1	1		1		

$$s_i = x_i \oplus y_i \oplus c_i$$



$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$

$$s_{i} = (\overline{x}_{i}y_{i} + x_{i}\overline{y}_{i})\overline{c}_{i} + (\overline{x}_{i}\overline{y}_{i} + x_{i}y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})\overline{c}_{i} + (\overline{x}_{i} \oplus y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$

Can you prove this?

$$s_{i} = (\overline{x}_{i}y_{i} + x_{i}\overline{y}_{i})\overline{c}_{i} + (\overline{x}_{i}\overline{y}_{i} + x_{i}y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})\overline{c}_{i} + (x_{i} \oplus y_{i})e_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

$$\overline{x_i} \, \overline{y_i} + x_i \, y_i = \overline{x_i \oplus y_i}$$

$$(x_i y_i + x_i y_i) = x_i \oplus y_i$$
XNOR

$$\overline{x_i} \, \overline{y_i} + x_i \, y_i = \overline{x_i \oplus y_i}$$

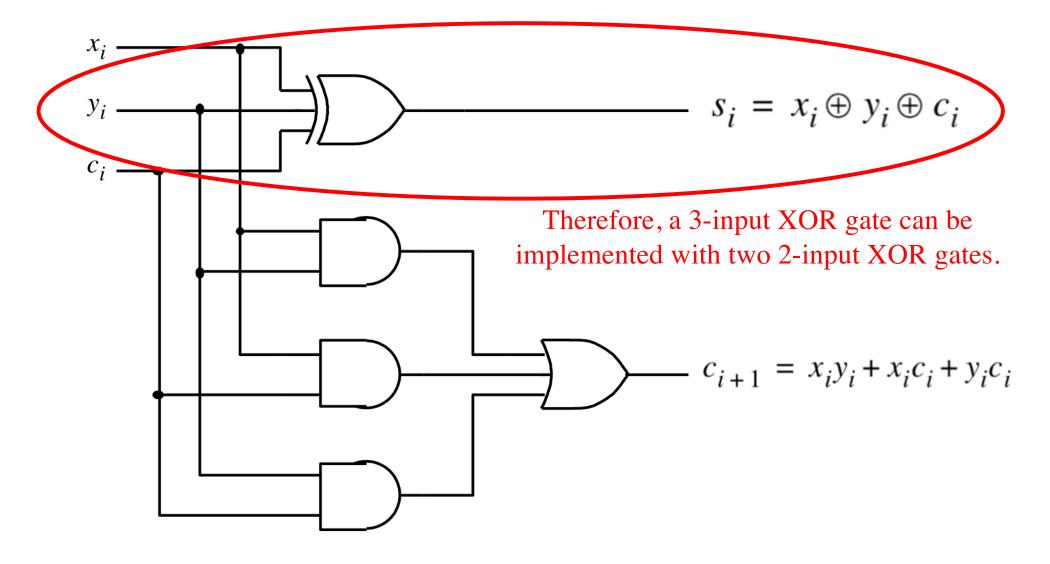
$$XOR$$

$$\overline{x_i} \, \overline{y_i} + x_i \, y_i = x_i \oplus y_i$$
XNOR

$$\overline{x_i} \, \overline{y_i} + x_i \, y_i = \overline{x_i \oplus y_i}$$

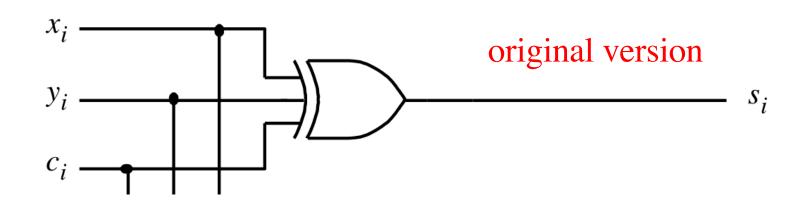
You can also prove this using the theorems of Boolean algebra. Try that at home.

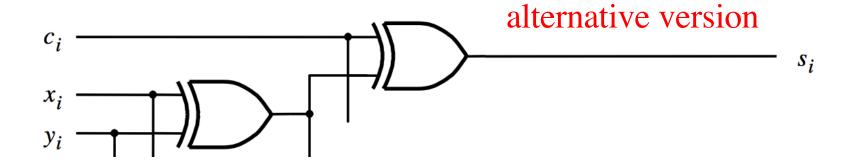
The Full-Adder Circuit

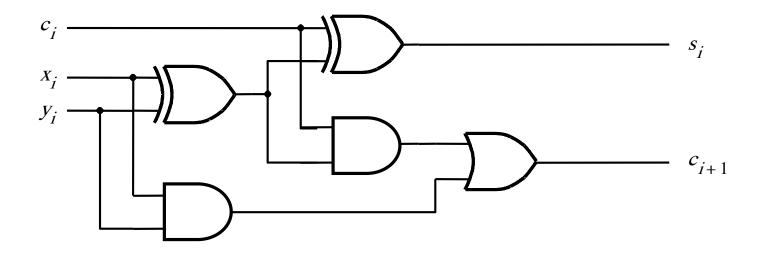


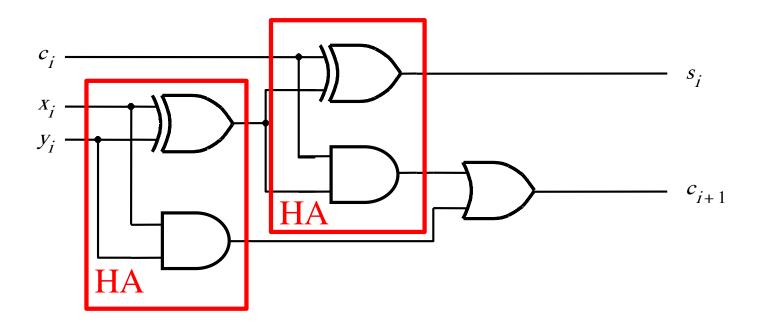
s_i can be implemented in two different ways

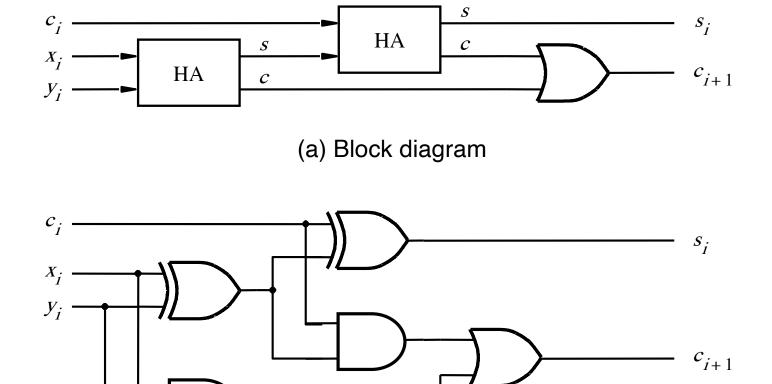
$$s_i = x_i \oplus y_i \oplus c_i$$



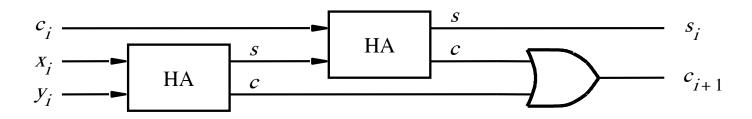




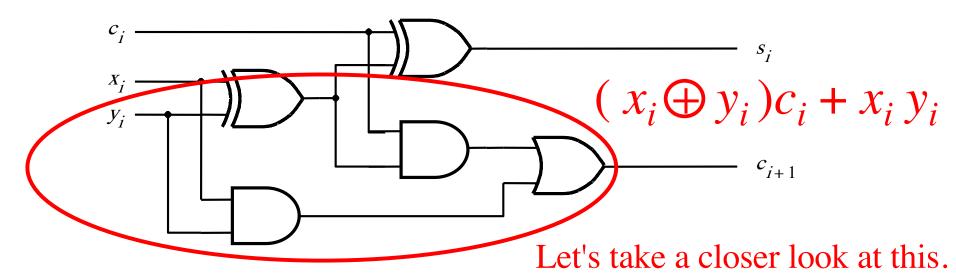




(b) Detailed diagram

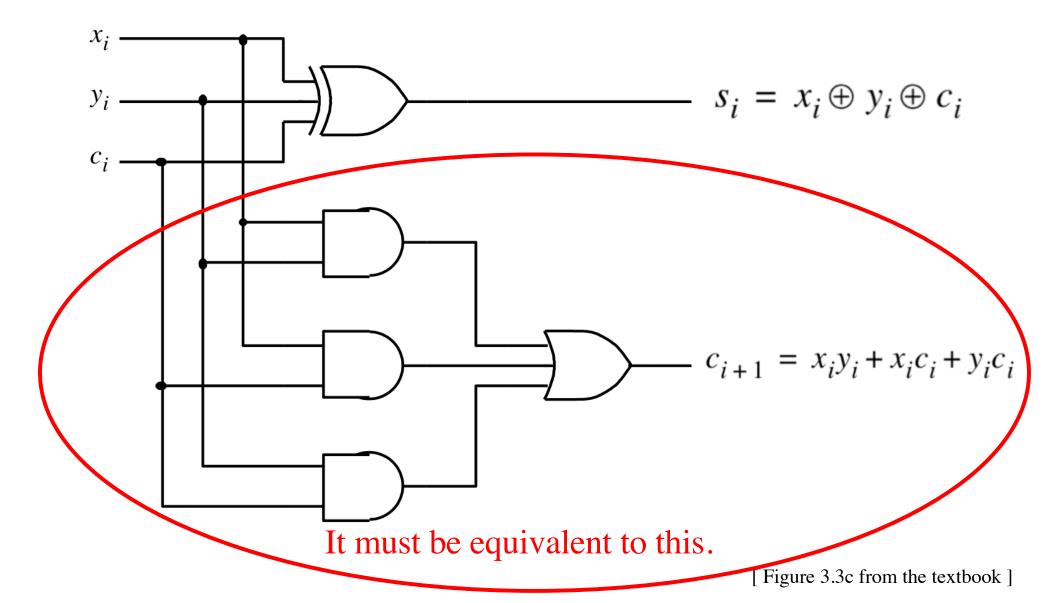


(a) Block diagram



(b) Detailed diagram

The Full-Adder Circuit



$$(x_i \oplus y_i)c_i + x_i y_i = x_i y_i + x_i c_i + c_i y_i$$

$$(x_i \oplus y_i)c_i + x_i y_i =$$

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$
$$= \overline{x_i} y_i c_i + x_i \overline{y_i} c_i + x_i y_i + x_i y_i$$

double this term

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$
$$= \overline{x_i} y_i c_i + \overline{x_i} \overline{y_i} c_i + \overline{x_i} y_i + \overline{x_i} y_i$$

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$= \overline{x_i} y_i c_i + \overline{x_i} \overline{y_i} c_i + \overline{x_i} y_i + \overline{x_i} y_i$$

$$= (\overline{x_i} c_i + x_i) y_i + x_i (\overline{y_i} c_i + y_i)$$

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$= \overline{x_i} y_i c_i + x_i \overline{y_i} c_i + x_i y_i + x_i y_i$$

$$= (\overline{x_i} c_i + x_i) y_i + x_i (\overline{y_i} c_i + y_i)$$
use Theorem 16a twice
$$= (c_i + x_i) y_i + x_i (c_i + y_i)$$

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$= \overline{x_i} y_i c_i + x_i \overline{y_i} c_i + x_i y_i + x_i y_i$$

$$= (\overline{x_i} c_i + x_i) y_i + x_i (\overline{y_i} c_i + y_i)$$

$$= (c_i + x_i) y_i + x_i (c_i + y_i)$$

$$= c_i y_i + x_i y_i + x_i c_i + x_i y_i$$

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$= \overline{x_i} y_i c_i + x_i \overline{y_i} c_i + x_i y_i + x_i y_i$$

$$= (\overline{x_i} c_i + x_i) y_i + x_i (\overline{y_i} c_i + y_i)$$

$$= (c_i + x_i) y_i + x_i (c_i + y_i)$$

$$= c_i y_i + x_i y_i + x_i c_i + x_i y_i$$

remove one copy of this doubled term

$$(x_i \oplus y_i)c_i + x_i y_i = (\overline{x_i} y_i + x_i \overline{y_i})c_i + x_i y_i$$

$$= \overline{x_i} y_i c_i + x_i \overline{y_i} c_i + x_i y_i + x_i y_i$$

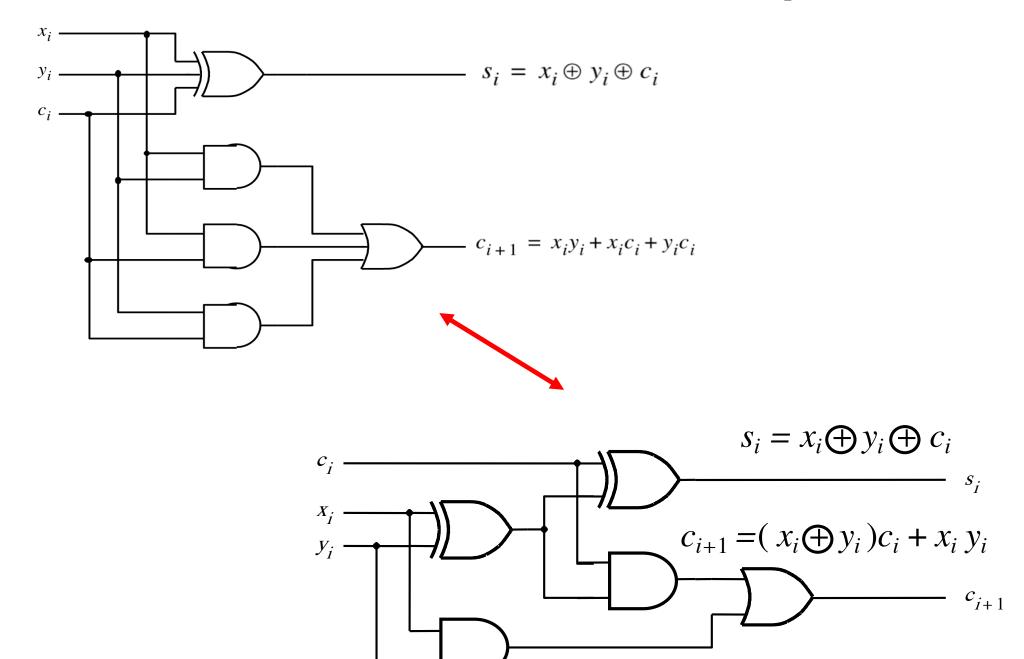
$$= (\overline{x_i} c_i + x_i) y_i + x_i (\overline{y_i} c_i + y_i)$$

$$= (c_i + x_i) y_i + x_i (c_i + y_i)$$

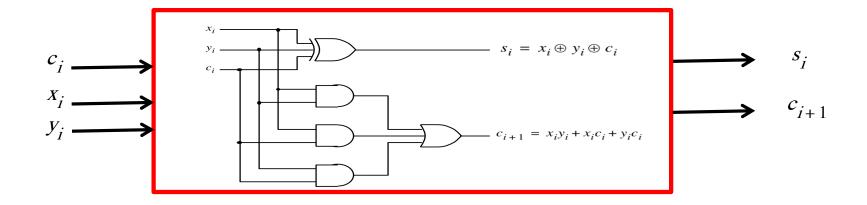
$$= c_i y_i + x_i y_i + x_i c_i + x_i y_i$$

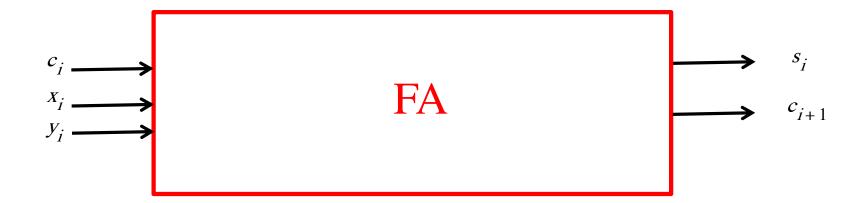
$$= c_i y_i + x_i y_i + x_i c_i$$

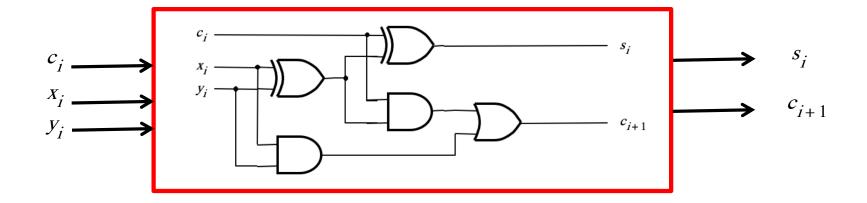
Therefore, these circuits are equivalent

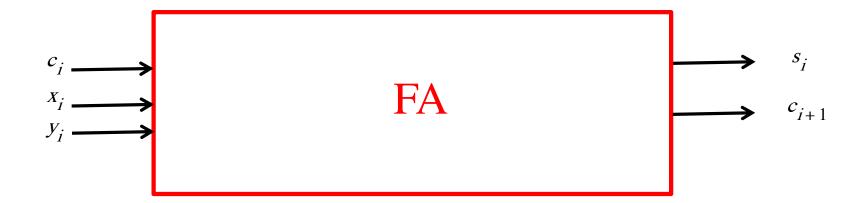


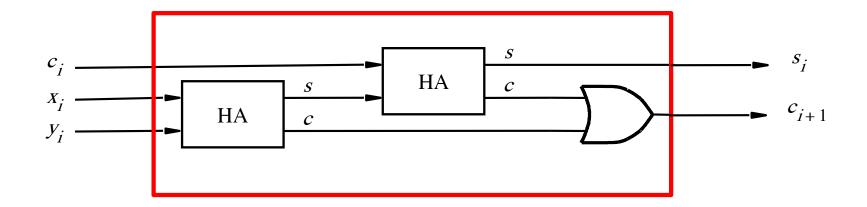
The Full-Adder Abstraction

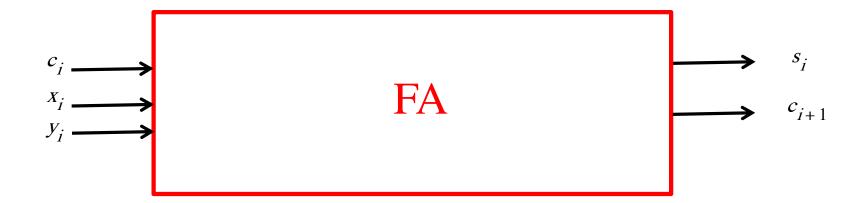




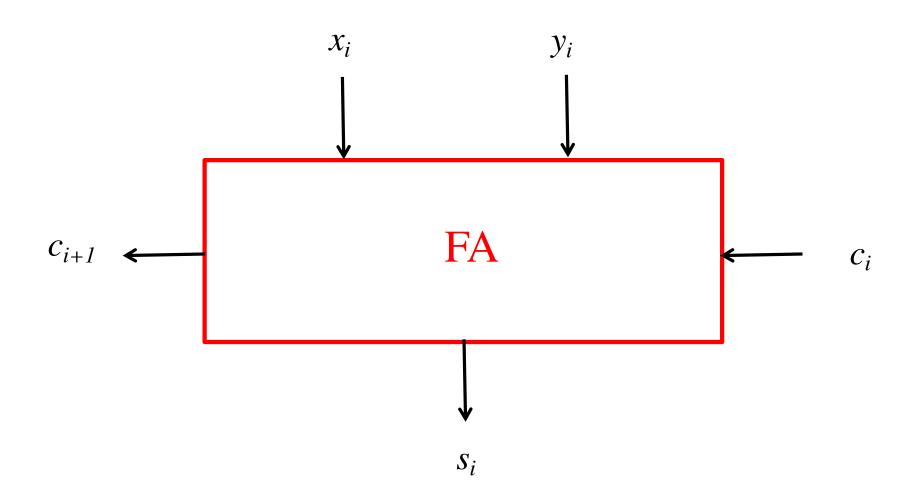




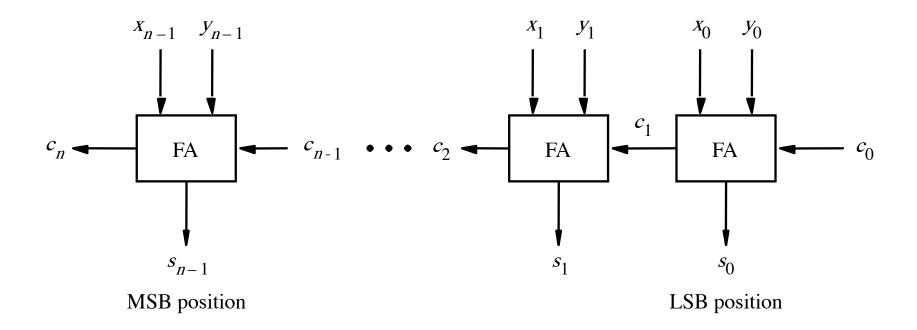




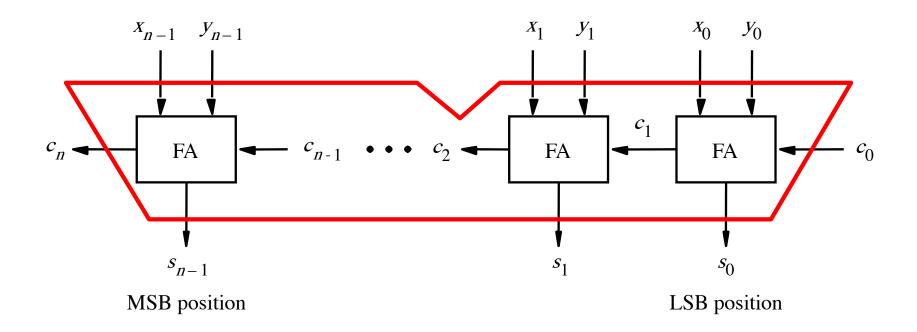
We can place the arrows anywhere



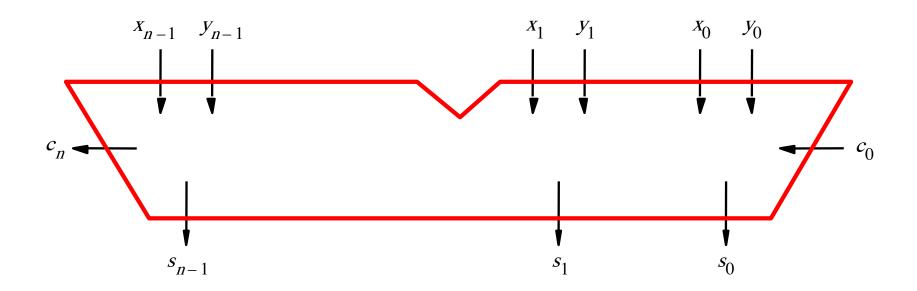
n-bit ripple-carry adder



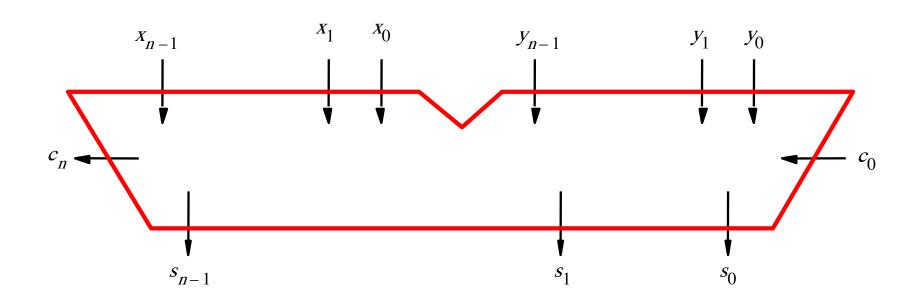
n-bit ripple-carry adder abstraction



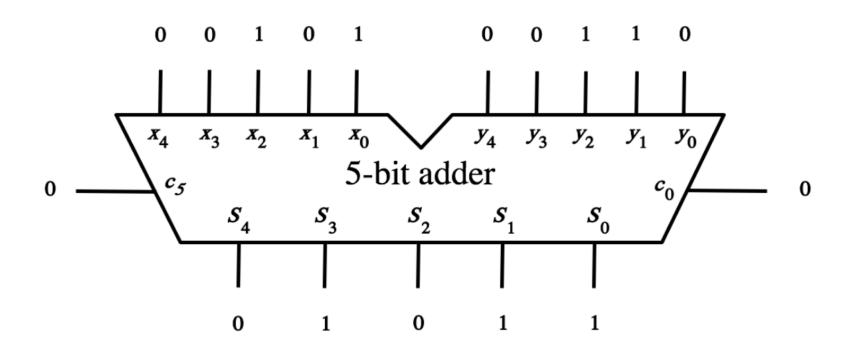
n-bit ripple-carry adder abstraction



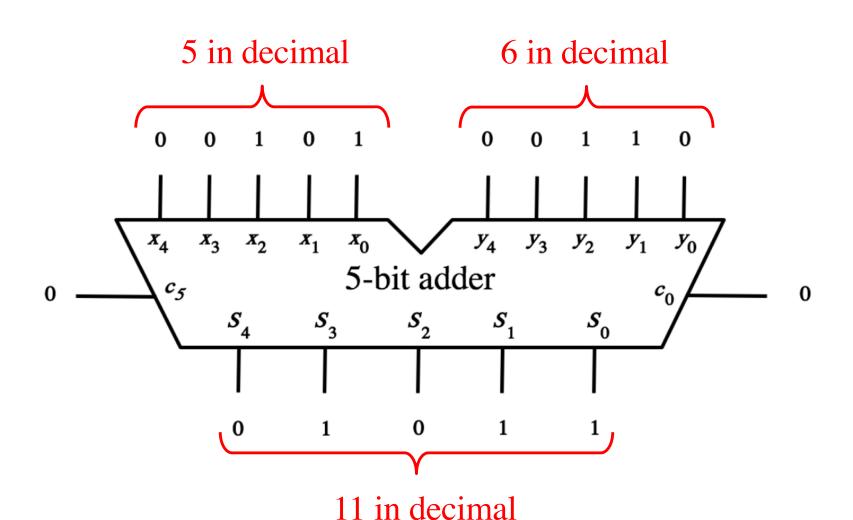
The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same



Example: Computing 5+6 using a 5-bit adder



Example: Computing 5+6 using a 5-bit adder



Design Example:

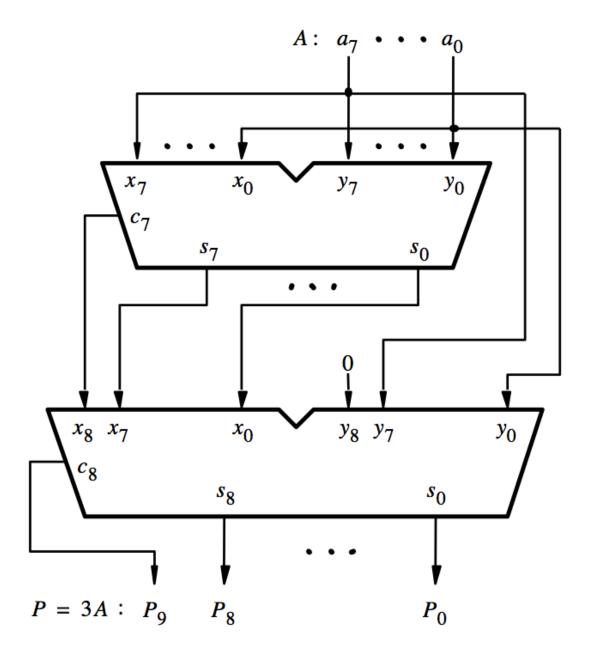
Create a circuit that multiplies a number by 3

How to Get 3A from A?

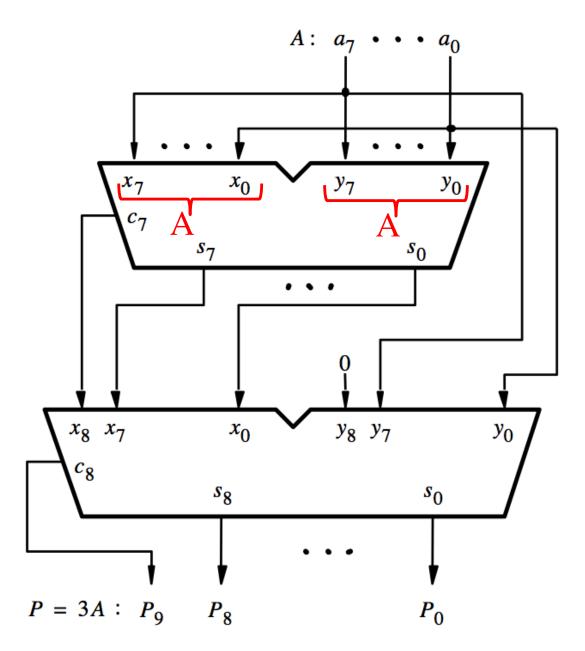
•
$$3A = A + A + A$$

•
$$3A = (A+A) + A$$

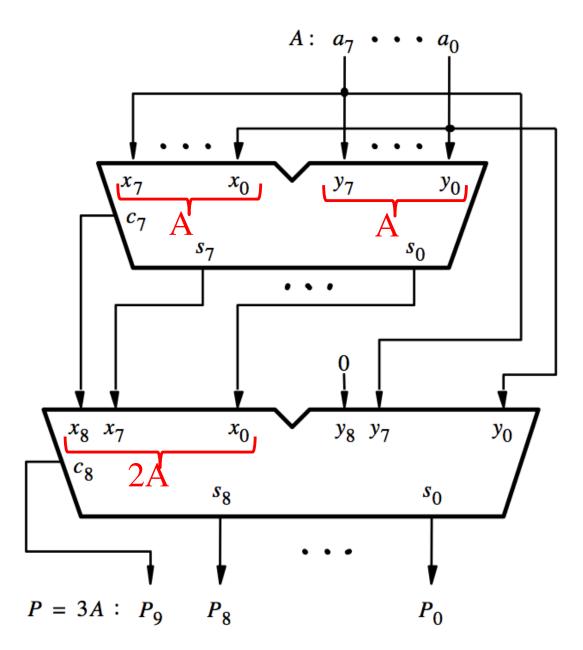
•
$$3A = 2A + A$$



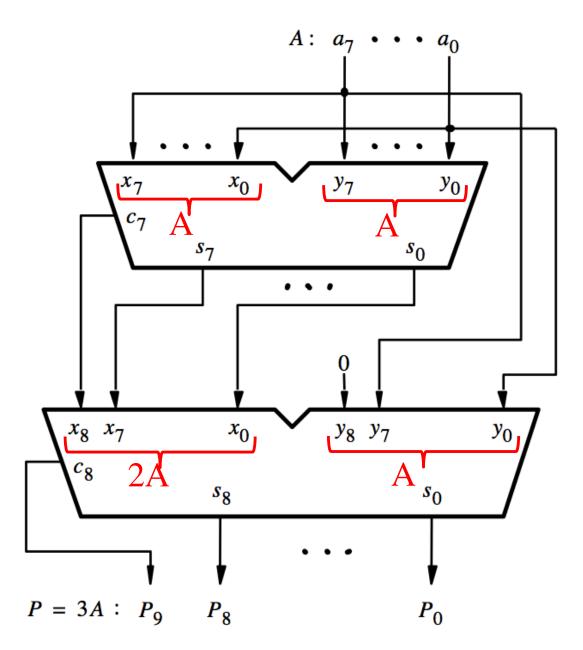
[Figure 3.6a from the textbook]



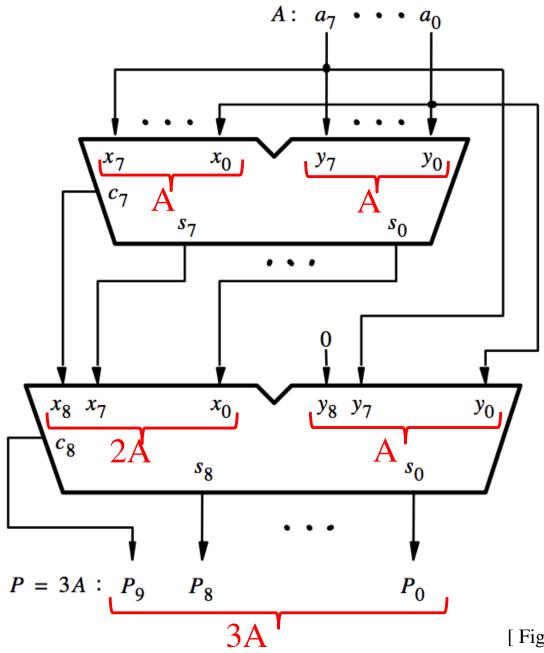
[Figure 3.6a from the textbook]



[Figure 3.6a from the textbook]



[Figure 3.6a from the textbook]



[Figure 3.6a from the textbook]

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = ?$$

$$542 \times 10 = ?$$

$$1245 \times 10 = ?$$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

Decimal Multiplication by 10

What happens when we multiply a number by 10?

$$4 \times 10 = 40$$

$$542 \times 10 = 5420$$

$$1245 \times 10 = 12450$$

You simply add a zero as the rightmost number

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = ?

101 times 2 = ?

110011 times 2 = ?

Binary Multiplication by 2

What happens when we multiply a number by 2?

011 times 2 = 0110

101 times 2 = 1010

110011 times 2 = 1100110

Binary Multiplication by 2

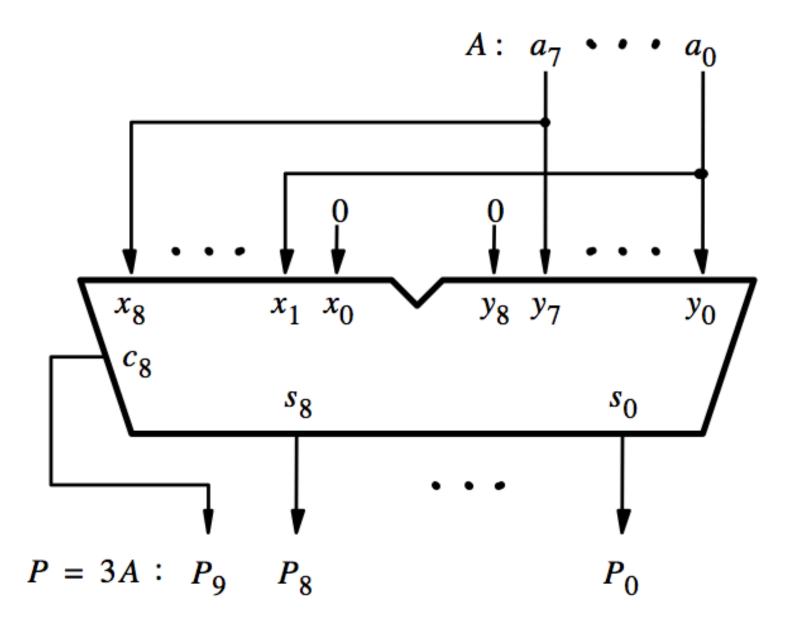
What happens when we multiply a number by 2?

011 times 2 = 0110

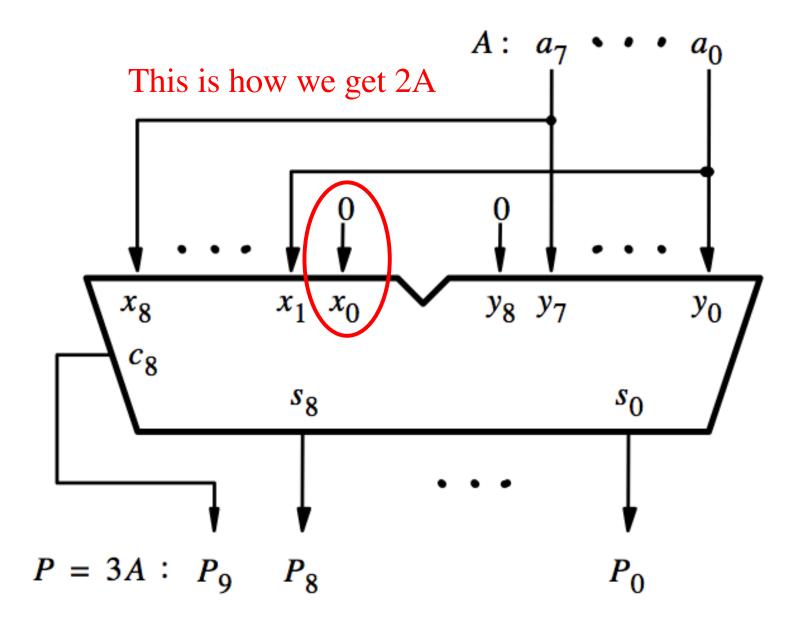
101 times 2 = 1010

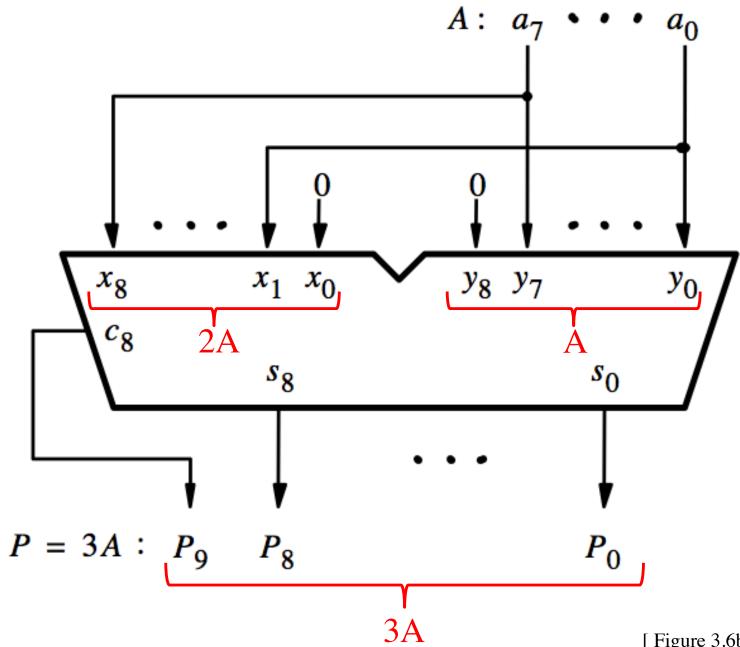
110011 times 2 = 1100110

You simply add a zero as the rightmost number



[Figure 3.6b from the textbook]





[Figure 3.6b from the textbook]

Questions?

THE END