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Administrative Stuff

« HWS5 is due today



Administrative Stuff

« No homework due next week

« HWG6 will be due on Monday, Oct 10



Quick Review



Number Systems

N =d,B" +d, (B" '+ ...+ d; B + doyB°



Number Systems

N=d,B"+d, {B"'4+...+dB! + d¢0130

\

n-th digit 0-th digit
(most significant) (least significant)



Number Systems

base power

N/

N=d,B"+d, {B"'+...+dB! + dTOB.O

\

n-th digit 0-th digit
(most significant) (least significant)



The Decimal System

52410 = 5x10°+2x 10" +4x10°



The Decimal System

52410 = 5x10%+2x 10 +4x 10"

= 5x10042x104+4x1

500+20+4

— 52410



Another Way to Look at This




Another Way to Look at This

102 10" 10°
S(12 |4




Another Way to Look at This

10> 10" 100 < labels
boxes > 51214

Each box can contain only one digit and has only one label. From right
to left, the labels are increasing powers of the base, starting from O.



Base 7

5247 = 5X T2 4+2x 7' +4x 7°



Base 7

base power

N,/

5247 = 5X T2 +2X T  +4x 7°



Base 7

base power

N,/

5247 = 5X T +2X T +4x 7

most significant least significant
digit digit



Base 7

524y = 5X T2+ 2x T 44 x7°
— Hx494+2xT7T4+4x1

= 26310



Another Way to Look at This

77 102 10" 10°
S(12 |4 = 2163




Binary Numbers (Base 2)

1001 = 1x22 + 0x2% 4+ 0x28 + 1x2Y



Binary Numbers (Base 2)

base power

N/

1001 = 1x2% + 0x2%2 4+ 0x2! 4+ 1x2°

most significant bit least significant bit



10012 =

Binary Numbers (Base 2)

1 x 23
1 x8

&
910

+ 0 x 22
+ 0x4
+ 0

+ 0 x2!
+ 0x2

+ 0

+ 1x2°
+ 1x1

+ 1



11101,

1 x 24

Another Example

+ 1x2°

1x16 + 1x8

16

+ 8

+ 1 x 22
+ 1x4
+ 4

+ 0x21
+ 0x2
+ 0

+ 1x2°
+ 1x1
+ 1




Powers of 2

210 — 1024
279 = 512
28— 256
27 = 128
26 = 64
2 = 32
24— 16
23 = 3
22 = 4
2l = 2
20 = 1



What is the value of this binary number?

« 00101100

0*27 + 0*26+ 1*25 + 0*24 + 1*23 + 1*22 + 0*21 + 0*20

0*128 + 064 + 1*32 + 0*16 + 1*8 +1*4 + 0*2 + 0*1

0°128 + 0"64 +1*32 + 0"16 +1*8 +1*4 + 0"2 + 0*1

32+ 8 + 4 = 44 (in decimal)



Another Way to Look at This




Another Way to Look at This

27 260 2> 24 23 22 20 Q0




Signed v.s. Unsigned Numbers



Two Different Types of Binary Numbers

Unsigned numbers

e All bits jointly represent a positive integer.
e Negative numbers cannot be represented this way.

Signed numbers
e The left-most bit represents the sign of the number.
e If that bit is 0, then the number is positive.
e If that bit is 1, then the number is negative.

e The magnitude of the largest number that can be
represented in this way is twice smaller than the
largest number in the unsigned representation.



Unsighed Representation

This represents + 44.



Unsighed Representation

This represents + 172.



Signed Representation
(using the left-most bit as the sign)

sign 26 925 24 93 92 Al 90

This represents + 44.



Signed Representation
(using the left-most bit as the sign)

sign 26 925 24 93 92 Al 90

This represents — 44,



Today’s Lecture is About
Addition of Unsigned Numbers



Addition of two 1-bit numbers

+y

\)

C
Carry ? T Sum

[ Figure 3.1a from the textbook ]



Addition of two 1-bit numbers
(there are four possible cases)

X 0 0 1
+y +0 + 1 +0 +

cs
Carry ? T Sum

[ Figure 3.1a from the textbook ]



Addition of two 1-bit numbers
(the truth table)

Carry Sum
Xy C )
0 O 0 0
0 1 0 1
1 0 0 1
1 1 1 0

[ Figure 3.1b from the textbook ]



Addition of two 1-bit numbers

[ Figure 2.12 from the textbook ]



Addition of two 1-bit numbers

X 0 0 ] ]
+y + 0 | +0 + 1
C S 00 01 01 |

X Y C )




Addition of two 1-bit numbers

X 0 0 | |
+y + 0 | +0 + 1
C S 00 01 01 |

X Y C )




Addition of two 1-bit numbers

X 0 0 | |
+y + 0 | +0 + 1
C S 00 01 01 |

X Yy C )
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0




Addition of two 1-bit numbers

X 0 0 ] ]
+y + 0 | +0 + 1
C S 00 01 01 |

X Y C )




Addition of two 1-bit numbers

X 0 0 | ]
+y +0 | +0  +1
C S 00 01 01 |

X Yy C )




Addition of two 1-bit numbers

X 0 0 | ]
+y +0 | +0  +1
C S 00 01 01 |




Addition of two 1-bit numbers

X 0 0 ] ]
+y + 0 | +0 + 1
C S 00 01 01 |

X Y C )




Addition of two 1-bit numbers

X 0 0 | ]
+y + 0 | +0 + 1
C S 00 01 01 |

X Yy C )




Addition of two 1-bit numbers

X 0 0 ] ]
+y + 0 | +0 + 1
c S 00 01 01 |

X Y C )

-
_—_0 O O
S = = O




Addition of two 1-bit numbers

X 0 0 ] ]
+y + 0 | +0 + 1
C S 00 01 01 |

X Y C )




Addition of two 1-bit numbers

X 0 0 ] |
+y + 0 | +0 + 1
C 'S 00 01 01 |




Addition of two 1-bit numbers

X 0 0 1 ]
+y + 0 | +0 + 1
C S 00 01 01 1

X Yy C )

-
-
S = = O




Addition of two 1-bit numbers

X 0 0 ] ]
+y + 0 | +0 + 1
C S 00 01 01 |

X Y C )




Addition of two 1-bit numbers




Addition of two 1-bit numbers

=
~
o
G

-
_—_0 O O




Addition of two 1-bit numbers

AND

=
~
o
G

-
_—_0 O O




Addition of two 1-bit numbers




Addition of two 1-bit numbers

-
-
S = = O




Addition of two 1-bit numbers

XOR

-
-
S = = O




Addition of two 1-bit numbers




Addition of two 1-bit numbers

Lo
-

\)

0 0 0 0




Addition of two 1-bit numbers




Addition of two 1-bit numbers
(the logic circuit)

X
S
y —e—

_ﬁ )
L/

[ Figure 3.1c from the textbook ]



X

y

The Half-Adder

To—

(c) Circuit

)

X —

Yy —

— S

HA

(d) Graphical symbol

[ Figure 3.1c-d from the textbook ]



Addition of Multibit Unsighed Numbers



Analogy with addition in base 10

Xy, Xp X

Y> Y1 Yo
S, S1 Sy




Analogy with addition in base 10

ol — W
= U1 OO0
O J O



Analogy with addition in base 10

+

ol — W
= U1 OO0
o) J O



Analogy with addition in base 10

C; C, C; C,




Analogy with addition in base 10

given these

C3 CZ Cl CO 3 inputs




Analogy with addition in base 10

Cj

Cr, €&

given these
3 inputs

compute these
2 outputs



Analogy with addition in base 10

C3;3 Cy C; Cy




Analogy with addition in base 10

Ci3 C, C; Cy




Addition of multibit numbers

Civ1 €

X = Xy X3X XX, 01111 (]5’)10 R
Y =y nmnhny,  t01010  +(10), e oo 8
S = 54575785, 11001 (25)10 o 8

Bit position i

[ Figure 3.2 from the textbook ]



Problem Statement and Truth Table

i X Vi Citl 5
Ci+1 &
. 000 | 0 | 0
| 0 0 1 0 1
Vi 0O 1 O 0 1
0 1 1 1 0
S, 1 0 O 0 |
1 0 1 1 0
1 1 O 1 0
1 1 1 1 1

[ Figure 3.2b from the textbook ] [ Figure 3.3a from the textbook |



O

—— e — OO OO OO

Ko

—_—— O O == O O

Let’s fill-in the two K-maps

Y Civl
0 0
1 0
0 0
1 1
0 0
1 |
0 1
1 1

e

— O O ek O e e O

XiYi
C 00 01 11 10
0
1
S; =
XiYi
C; 00 01 11 10
0
1
Civ1 =

[ Figure 3.3a-b from the textbook ]



Note that the textbook switched
to the other way to draw a K-Map

C;

— e e OO OO

Aj

— e (OO = OO

Let’s fill-in the two K-maps

Y Ci

— O = O = O = O

1+ 1

— O = O OO

Si

— O O e O e = O

[ Figure 3.3a-b from the textbook ]



Let’s fill-in the two K-maps

Note that the textbook switched
to the other way to draw a K-Map Xy

Ci Xi Yi | Cisl | S

O > | <«
00 0 0 0 I — T
0 0 1 0 |
01 0 0 | 5; =
0 1 1 1 0 o
o0 0 I ¢\, 00 01 11 10
1 0 1 1 0
1 1 0 1 0 N1
1 1 1 1 1 ol
Civ1 =

[ Figure 3.3a-b from the textbook ]



S

—— e — OO OO OO

Ko

—_—— O O == O O

Let’s fill-in the two K-maps

=

— O = O = O = O

v
~.
RS

— O = O OO

e

— O O ek O e e O

XiYi
C; 00 01 11 10
0 1 1
11 1 1
;= X, @Yy;,® ¢
XiYi
C 00 01 11 10
0 1
1 1 1 1
Civ1 = XY T X6+ YiC

[ Figure 3.3a-b from the textbook ]



S

— e e OO OO

Ka

— e (OO = OO

Let’s fill-in the two K-maps

-

— O = O = O = O

+.

— ek e (O —m O O O

e

— O O e O e = O

XiYi

C; 00 01 11 10
0 1 :
1o :

3-input XOR 5= X;®y;® ¢

XiYi

C; 00 01 11 10
, 0
1 (1 '@ 1>|
Civ1 = XY+ X6+ Y

[ Figure 3.3a-b from the textbook ]



The circuit for the two expressions

Xl L
Vi ¢ _/, > 5; = Xi@yi@Ci
Ci o
> —
¢
\ C. = X;y;+X.C;+ y.C.
)| ) D_ I+ 1 1V 171 171

[ Figure 3.3c from the textbook ]



This is called the Full-Adder

Xl L
Vi ¢ _/, > 5; = Xi@yi@Ci
Ci o
> —
¢
\ C. = X.V:-+ X.C.+ V.C.
)| ) D_ I+ 1 1-)1 T A

[ Figure 3.3c from the textbook ]



This is called the Full-Adder

Let's take a closer look at this.

D— Ciyl = XY T X6+ Y

LT

[ Figure 3.3c from the textbook ]



XOR Magic

XiYi

00 01 11 10
0 | 1
| | |




XOR Magic




XOR Magic

A — _—\:,"\','-(-:,' T .\',-ﬁ‘f,- -+ XiY;Ci + X;ViC;i

5 = (.Ii,\'i =1 -\.i.\—'j)z:i 4 (TI-.\—'I. — X;Yi )C;

(x; @ y;)ci + (xi D yi)Ci

(X; DY) ;i



XOR Magic

+ X;ViC;



XOR Magic

;i;i'l'xiyi = X; DYy,



XOR Magic

XNOR




XOR Magic

;i;i_l_xiyi @

XOR




XOR Magic

;i;i+xiyi = X, DY,



XOR Magic

;i;i+xiyi = X; DYy,

You can also prove this using the theorems of Boolean algebra.
Try that at home.



The Full-Adder Circuit

oD

Therefore, a 3-input XOR gate can be
implemented with two 2-input XOR gates.

D— Ciyl = XY T X6+ Y€

LT

[ Figure 3.3c from the textbook ]



s. can be implemented in two different ways

original version

. D alternative version
I
S;




The Full-Adder Circuit
(alternative drawing)

pwus IDSRE
N
-/

[ Figure 3.4b from the textbook ]



The Full-Adder Circuit
(alternative drawing)

Xi_

HA

i+1

[ Figure 3.4b from the textbook ]



The Full-Adder Circuit
(alternative drawing)

HA

Dﬁ Civrl

(a) Block diagram

C i [
S
HA c
Y ——=
C

Lo

P ) O
.
-/

(b) Detailed diagram

[ Figure 3.4 from the textbook ]



The Full-Adder Circuit

HA

HA

(alternative drawing)

¢
X]' —
Vi —"
¢

(a) Block diagram

—)

/J

)
_/

(X, @y;)c; +x;y;

CI'+ 1

Let's take a closer look at this.

(b) Detailed diagram

[ Figure 3.4 from the textbook ]



The Full-Adder Circuit

> —

o) O
o

)

)

It must be equivalent to this.

Si — x,@yl@ Ci

D— Ciyl = XY T X6+ Y€

Figure 3.3c from the textbook ]



Let’s Prove This

(X, @y))c;+x;y; = XY, +X;,¢ +C; Y,




Let’s Prove This

(X, @y;)c; +x;y; =



Let’s Prove This

(X, @y;)c;+x;¥; = (X;¥; +X; ¥, )¢; + X; Y



Let’s Prove This

(X, @y;)c;+x;¥; = (X;¥; +X; ¥, )¢; + X; Y

= X V; G+ X ¥, ¢+ X Y+ X Y,

double
this term



Let’s Prove This

(X, @y;)c;+x;¥; = (X;¥; +X; ¥, )¢; + X; Y

A Vi €

l

+

X Vi G

l

+

X; Vi

+




Let’s Prove This

(X, @y;)c;+x;¥; = (X;¥; +X; ¥, )¢; + X; Y

= XY ¢ XY ¢ X Y+ XY,

l

= (;ici'l'xi) Vi + X (y;c;i+y)



Let’s Prove This
(5, @y)c;+x;y; = (X y;+x ;)¢ + % y;
= X, Vi G+ X i €+ X i+ X, Y,
= (X C;+X) Y + X (V¢ + )

use Theorem 16a twice

=(c;+x)y; +x;(c;+y,)



Let’s Prove This
(5, @y)c;+x;y; = (X y;+x ;)¢ + % y;
= X, Vi G+ X i €+ X i+ X, Y,
=(x;¢c;+x)y; +x(yici+y)

=(c;+x)y; +x;(c;+y,)

=C Yy T XY T X6 T XY,



Let’s Prove This

(X, @y;)c;+x;¥; = (X;¥; +X; ¥, )¢; + X; Y

= X V; ¢+ X ¥, ¢+ X Y+ X Y,
=(x;¢c;+x)y; +x;(y;¢;+y)

=(c;+x)y; +x;(c;+y)
=C Y T XY T X6 T XY

remove one copy of
this doubled term



Let’s Prove This
(5, @y)c;+x;y; = (X y;+x ;)¢ + % y;
= X, Vi G+ X i €+ X i+ X, Y,
=(x;¢c;+x)y; +x(yici+y)

=(c;+x)y; +x;(c;+y,)

=C Yy T XY T X6 T XY,

=C Y T XY T X



Therefore, these circuits are equivalent

Xi

Vi

S

LHUKHU

—\

§S; = X;,®y;® ¢

D— Civl = XY T X6+ Vi€

;i =X @Dy® ¢

4

) >

S;
Civ1 =(X;Dy;)ci + x; y;

Ci+1

!
09| /




The Full-Adder Abstraction

- Civl

:
Il




The Full-Adder Abstraction

C; S;
! FA —> iy
f




The Full-Adder Abstraction




The Full-Adder Abstraction

C; S;
! FA —> iy
f




N

The Full-Adder Abstraction

HA

HA




The Full-Adder Abstraction

C; S;
! FA —> iy
f




We can place the arrows anywhere

Xi Vi

|




n-bit ripple-carry adder

Xn-1 Vo1 N % N
Y | A | Y
|
C, a— FA - C,;, | e oo CH) - FA -] FA -—
Sn—1 51 50
MSB position LSB position

[ Figure 3.5 from the textbook ]



n-bit ripple-carry adder abstraction

Xn-1 Va1 1N % N
_ M
| B | \/ | A | . | A |
Ch FA -— ¢ oo O, w— FA <1— FA <
Y ' Y
Sn—1 | S0

MSB position

LSB position



n-bit ripple-carry adder abstraction




The x and y lines are typically
grouped together for better visualization,
but the underlying logic remains the same




Example:
Computing 5+6 using a 5-bit adder

0 0 1 0 1 0 0 1 1 0
X, X3 X, X X \/ Yo V3 Yo V1 N
o cs 5-bit adder , o
S4 S3 52 Sl SO




Example:
Computing 5+6 using a 5-bit adder

5 1n decimal 6 1n decimal
A A
[ \ [ \
o 0o 1 0 1 0 0o 1 1 0

X, X3 X, X Xo\/}’4 Y3 Yo N N

5-bit adder c

0 Cs 0 0
S4 5'3 52 Sl SO
0 1 0 1 1
\ J
Y

11 in decimal



Design Example:

Create a circuit that multiplies a number by 3



How to Get 3A from A?

- 3BA=A+A+A

. 3A = (A+A) + A

« JA=2A+A



A:a7.°.a0

X7 X0 v Y7 Yo
C7
57 S0
0 | .
\ A | Y | I | |
Xg X7 X0 hd yg Y7 Yo
Cg
S8 50
P=3A: Py, Py P,

[ Figure 3.6a from the textbook ]



A:a7.°.a0

*7 xo; Y D7 Y0
7 A' A'
57 S0
0 | .
\ A | Y | I | |
Xg X7 X0 A yg Y7 Yo
Cg
S8 50
P=3A: P, Pg P,

[ Figure 3.6a from the textbook ]



A:a7.°.a0

*7 *0 | v 7 Y0
|
7 A A
57 S0
0 | .
\ B | Y | | |
‘xs X7 xo, v yg Y7 Yo
C
8
28 .
P=3A: Py Py P,

[ Figure 3.6a from the textbook ]



:a7'°.a0

&7 *0 27 Y0
|
7 A AI
S7 SO
0 | .
\ B | Y | | |
‘xs X7 xo, ‘)’8 Y7 Yo
|
cg A A
S8 S0
P=3A: Py Py P,

[ Figure 3.6a from the textbook ]



:a7'°.a0

*7 o, ¥ 1 Y0)
|
7 A AI
57 S0
0 | .
\ B | Y | | |
‘xs X7 xo, v ‘)’8 Y7 Yo
|
cg A A
S8 S0
P=3A: Py Py P,

[ Figure 3.6a from the textbook ]



Decimal Multiplication by 10

What happens when we multiply a number by 10?

4x10="7

942 x10 =7

1245 x 10 =7



Decimal Multiplication by 10

What happens when we multiply a number by 10?

4x10=40

542 x 10 = 5420

1245 x 10 = 12450



Decimal Multiplication by 10

What happens when we multiply a number by 10?

4x10=40

542 x 10 = 5420

1245 x 10 = 12450

You simply add a zero as the rightmost number



Binary Multiplication by 2

What happens when we multiply a number by 27?

011 times 2 =7

101 times 2= 7

110011 times 2= ?



Binary Multiplication by 2

What happens when we multiply a number by 27?

011 times 2 = 0110

101 times 2= 1010

110011 times 2 = 1100110



Binary Multiplication by 2

What happens when we multiply a number by 27?

011 times 2 = 0110

101 times 2= 1010

110011 times 2 = 1100110

You simply add a zero as the rightmost number



[ Figure 3.6b from the textbook ]



[ Figure 3.6b from the textbook ]



3A [ Figure 3.6b from the textbook ]



Questions?



THE END



