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Quick Review



[ Figure 3.1a from the textbook ]

Adding two bits
(there are four possible cases)



[ Figure 3.1b from the textbook ]

Adding two bits
(the truth table)

s



[ Figure 3.1c from the textbook ]

Adding two bits
(the logic circuit)



[ Figure 3.1c-d from the textbook ]

The Half-Adder



Bit position i

Addition of multibit numbers

[ Figure 3.2 from the textbook ]



Analogy with addition in base 10

c3 c2 c1 c0
x2 x1 x0
y2 y1 y0
s2 s1 s0

+



3 8 9
1 5 7
5 4 6

Analogy with addition in base 10

+



0 1 1 0
3 8 9
1 5 7
5 4 6

Analogy with addition in base 10

+
carry



Analogy with addition in base 10

c3 c2 c1 c0
x2 x1 x0
y2 y1 y0
s2 s1 s0

+



9 3 8
2 1 4

1 1 5 2

Another example in base 10

+



1 0 1 0
9 3 8
2 1 4
1 5 2

Another example in base 10

+
carry



Problem Statement and Truth Table

[ Figure 3.3a from the textbook ][ Figure 3.2b from the textbook ]



Let’s fill-in the two K-maps

[ Figure 3.3a-b from the textbook ]



Let’s fill-in the two K-maps

[ Figure 3.3a-b from the textbook ]



The circuit for the two expressions

[ Figure 3.3c from the textbook ]



This is called the Full-Adder

[ Figure 3.3c from the textbook ]



XOR Magic
(si can be implemented in two different ways)



These two circuits are equivalent

c i 

x i 
y i 

c i 1 + 

s i 

ci+1 =( xi + yi )ci + xi yi

si = xi + yi  + ci



HA
HAs 

c 

s 
c 

c i 
x i 
y i 

c i 1 + 

s i 

c i 

x i 
y i 

c i 1 + 

s i 

(a) Block diagram 

(b) Detailed diagram

A decomposed implementation 
of the full-adder circuit

[ Figure 3.4 from the textbook ]
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c i 

x i 
y i 
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(a) Block diagram 

(b) Detailed diagram

A decomposed implementation 
of the full-adder circuit

[ Figure 3.4 from the textbook ]

HA

HA



FA
c i 
x i 
y i 

c i 1 + 

s i 

The Full-Adder Abstraction
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FA
c i 
x i 
y i 

c i 1 + 

s i 

The Full-Adder Abstraction



FA

We can place the arrows anywhere

xi yi

si

ci+1 ci



FA

x n – 1 

c n c n 1 

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

MSB position LSB position

n-bit ripple-carry adder

[ Figure 3.5 from the textbook ]

-



FA

x n – 1 

c n c n 1 

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

MSB position LSB position

n-bit ripple-carry adder abstraction

-



x n – 1 

c n 

y n 1 –

s n 1 –

x 1 y 1 

s 1 

x 0 y 0 

s 0 

c 0 

n-bit ripple-carry adder abstraction



The x and y lines are typically 
grouped together for better visualization, 
but the underlying logic remains the same

x n – 1 

c n 

y n 1 –

s n 1 –

x 1 y 1 

s 1 

y 0 

s 0 

c 0 

x 0 



Example:
Computing 5+6 using a 5-bit adder



Example:
Computing 5+6 using a 5-bit adder

11 in decimal

5 in decimal 6 in decimal





Math Review: Subtraction

39
15-
??



Math Review: Subtraction

39
15-
24



Math Review: Subtraction

82
61-
??

48
26-
??

32
11-
??



Math Review: Subtraction

82
61-
21

48
26-
22

32
11-
21





Math Review: Subtraction

82
64-
??

48
29-
??

32
13-
??



Math Review: Subtraction

82
64-
18

48
29-
19

32
13-
19





The problems in which row are easier to calculate?

82
64-
??

48
29-
??

32
13-
??

82
61-
??

48
26-
??

32
11-
??



The problems in which row are easier to calculate?

82
64-
18

48
29-
19

32
13-
19

82
61-
21

48
26-
22

32
11-
21

Why?



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  

=  82 + (99 + 1 – 64) - 100  



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  

=  82 + (99 + 1 – 64) - 100  

=  82 + (99 – 64) +1 - 100  



Another Way to Do Subtraction

82 – 64 =  82 + 100 – 100 - 64 

=  82 + (100 – 64) - 100  

=  82 + (99 + 1 – 64) - 100  

=  82 + (99 – 64) +1 - 100  
Does not require borrows



9’s Complement
(subtract each digit from 9)

99
64-
35



10’s Complement
(subtract each digit from 9 and add 1 to the result)

99
64-
35 + 1 = 36



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    
9’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

9’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

9’s complement

10’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

9’s complement

=  82 + 36 - 100  

10’s complement



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

=  118 - 100  

9’s complement

=  82 + 36 - 100  

10’s complement

// Add the first two.



Another Way to Do Subtraction

82 – 64 =  82 + (99 – 64) +1 - 100    

=  82 + 35 + 1 - 100  

=  118 - 100  

9’s complement

=  82 + 36 - 100  

=    18

10’s complement

// Add the first two.

// Just delete the leading 1.
// No need to subtract 100.





bn 1– b1 b0

Magnitude

MSB

(a) Unsigned number

bn 1– b1 b0

MagnitudeSign

(b) Signed number

bn 2–

0 denotes
1 denotes

+
– MSB

Formats for representation of integers

[ Figure 3.7 from the textbook ]



Unsigned Representation 

0 0 1 0 1 1 0 0
2021222324252627

This represents + 44.



Unsigned Representation 

1 0 1 0 1 1 0 0
2021222324252627

This represents + 172.



Three Different Ways to 
Represent Negative Integer Numbers

• Sign and magnitude

• 1’s complement

• 2’s complement



Three Different Ways to 
Represent Negative Integer Numbers

• Sign and magnitude

• 1’s complement

• 2’s complement only this method is used 
in modern computers



[ Table 3.2 from the textbook ]

Interpretation of four-bit signed integers



Interpretation of four-bit signed integers

The top half is the same in all three representations.
It corresponds to the positive integers.



Interpretation of four-bit signed integers

In all three representations the first bit represents the sign.
If that bit is 1, then the number is negative.



Interpretation of four-bit signed integers

Notice that in this representation there are two zeros!



Interpretation of four-bit signed integers

There are two zeros in this representation as well!



Interpretation of four-bit signed integers

In this representation there is one more negative number.



Sign and Magnitude



Sign and Magnitude Representation
(using  the left-most bit as the sign)

0 0 1 0 1 1 0 0
20212223242526sign

This represents + 44.



1 0 1 0 1 1 0 0
20212223242526sign

This represents – 44.

Sign and Magnitude Representation
(using  the left-most bit as the sign)



Circuit for negating a number stored in 
sign and magnitude representation

y7

y7
_

y6

y6

y5

y5

y4

y4

y3

y3

y2

y2

y1

y1

y0

y0



Circuit for negating a number stored in 
sign and magnitude representation

0

1

0

0

1

1

0

0

1

1

1

1

0

0

0

0



1’s Complement



Let K be the negative equivalent of an n-bit positive number P.

Then, in 1’s complement representation K is obtained by 
subtracting P from 2n – 1, namely

K = (2n – 1) – P

This means that K can be obtained by inverting all bits of P.

1’s complement
(subtract each digit from 1)



Let K be the negative equivalent of an 8-bit positive number P.

Then, in 1’s complement representation K is obtained by 
subtracting P from 28 – 1, namely

K = (28 – 1) – P = 255 - P

This means that K can be obtained by inverting all bits of P.

Provided that P is between 0 and 127, because the most 
significant bit must be zero to indicate that it is positive.

1’s complement
(subtract each digit from 1)



1’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign



1’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

25 + 23 + 22 = 44



1’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

+ 44 in 1’s complement representation



1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44



1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

negative

positive



1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

27 +  26 + 24 + 21 + 20 = 211 (as unsigned)



1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

211 = 255 – 44 (as unsigned)



1’s Complement Representation
(invert all the bits to negate the number)

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 0 1 1
20212223242526sign

- 44

- 44  in 1’s complement representation



1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1’s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_



1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1’s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_

No need to borrow!



1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1’s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_
255

44



1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1’s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_

211

211 = 255 – 44 (as unsigned)



1 1 1 1 1 1 1 1

1 1 0 1 0 0 1 1

1’s complement
(subtract each digit from 1)

0 0 1 0 1 1 0 0

_

- 44

211 = 255 – 44 (as unsigned)
or

- 44  in 1’s complement representation



Circuit for negating a number stored in 
1’s complement representation

y7

y7
_

y6

y6
_

y5

y5
_

y4

y4
_

y3

y3
_

y2

y2
_

y1

y1
_

y0

y0
_



Circuit for negating a number stored in 
1’s complement representation

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1



This works in reverse too
(from negative to positive)



1’s Complement Representation

1 1 0 1 0 0 1 1
20212223242526sign

- 44



1’s Complement Representation
(invert all the bits to negate the number)

1 1 0 1 0 0 1 1
20212223242526sign

- 44

0 0 1 0 1 1 0 0
20212223242526sign

+ 44



1’s Complement Representation
(invert all the bits to negate the number)

1 1 0 1 0 0 1 1
20212223242526sign

- 44

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

44 = 255 – 211  (as unsigned)

211  (as unsigned)



1’s Complement Representation
(invert all the bits to negate the number)

1 1 0 1 0 0 1 1
20212223242526sign

- 44

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

- 44 in 1’s complement representation

+ 44 in 1’s complement representation



0 1 0 1 1 0 1 1 

0 1 1 11 1 1 0

Negate these numbers stored in 
1’s complement representation



0 1 0 1 1 0 1 1 

0 1 1 11 1 1 0

1 0 1 0 0 1 0 0

1 0 0 00 0 0 1

Just flip 1's to 0's and vice versa.

Negate these numbers stored in 
1’s complement representation



0 1 0 1 = +5 1 0 1 1 = -4 

0 1 1 1 = +71 1 1 0 = -1

1 0 1 0 = -5 0 1 0 0 = +4

1 0 0 0 = -70 0 0 1 = +1

Just flip 1's to 0's and vice versa.

Negate these numbers stored in 
1’s complement representation



Addition of two numbers stored 
in 1’s complement representation



There are four cases to consider

• (+5)  +  (+2)

• (-5)  +  (+2)

• (+5)  +  (-2)

• (-5)  +  (-2)



There are four cases to consider

• (+5)  +  (+2) positive plus positive

• (-5)  +  (+2) negative plus positive

• (+5)  +  (-2) positive plus negative

• (-5)  +  (-2) negative plus negative



A) Example of 1’s complement addition

+
0 1 1 1

0 1 0 1
0 0 1 0

5+( )
2+( )
7+( )

+

[ Figure 3.8 from the textbook ]



A) Example of 1’s complement addition

+
0 1 1 1

0 1 0 1
0 0 1 0

5+( )
2+( )
7+( )

+



B) Example of 1’s complement addition

+
1 1 0 0

1 0 1 0
0 0 1 0

5-( )
2+( )
3-( )

+

[ Figure 3.8 from the textbook ]



B) Example of 1’s complement addition

+
1 1 0 0

1 0 1 0
0 0 1 0

5-( )
2+( )
3-( )

+



C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1

5+( )

3+( )
+ 2–( )

[ Figure 3.8 from the textbook ]



C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1

5+( )

3+( )
+ 2–( )



C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1

5+( )

3+( )
+ 2–( )

But this is 2!



C) Example of 1’s complement addition

+
0 0 1 0

0 1 0 1
1 1 0 1

1
1

0 0 1 1

5+( )

3+( )
+ 2–( )

We need to perform one 
more addition to get the result.



0 0 1 0

C) Example of 1’s complement addition

+
0 1 0 1
1 1 0 1

1
1

0 0 1 1

5+( )

3+( )
+ 2–( )

We need to perform one 
more addition to get the result.



D) Example of 1’s complement addition

+
0 1 1 1

1 0 1 0
1 1 0 1

1

5–( )

7–( )
+ 2–( )

[ Figure 3.8 from the textbook ]



D) Example of 1’s complement addition

+
0 1 1 1

1 0 1 0
1 1 0 1

1

5–( )

7–( )
+ 2–( )



D) Example of 1’s complement addition

+
0 1 1 1

1 0 1 0
1 1 0 1

1

5–( )

7–( )
+ 2–( )

But this is +7!



D) Example of 1’s complement addition

We need to perform one 
more addition to get the result.

+
0 1 1 1

1 0 1 0
1 1 0 1

1
1

1 0 0 0

5–( )

7–( )
+ 2–( )



D) Example of 1’s complement addition

We need to perform one 
more addition to get the result.

+
0 1 1 1

1 0 1 0
1 1 0 1

1
1

1 0 0 0

5–( )

7–( )
+ 2–( )



Implications for arithmetic operations 
in 1’s complement representation

• We could do addition in 1’s complement, but the 
circuit will need to handle these exceptions.

• In some cases it will run faster that others, thus 
creating uncertainties in the timing.

• Therefore, 1’s complement is not used in practice 
to do arithmetic operations.

• But it may show up as an intermediary step in 
doing 2’s complement operations.



2’s Complement



Let K be the negative equivalent of an n-bit positive number P.

Then, in 2’s complement representation K is obtained by 
subtracting P from 2n , namely

K = 2n – P

2’s complement
(subtract each digit from 1 and add 1 to the result)



Let K be the negative equivalent of an 8-bit positive number P.

Then, in 2’s complement representation K is obtained by 
subtracting P from 28 , namely

K = 28 – P = 256 - P

2’s complement
(subtract each digit from 1 and add 1 to the result)



2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44



2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 1 0 0
20212223242526sign

- 44



2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 1 0 0
20212223242526sign

- 44

negative

positive



2’s Complement Representation

0 0 1 0 1 1 0 0
20212223242526sign

+ 44

1 1 0 1 0 1 0 0
20212223242526sign

- 44

212 = 256 - 44



For a positive n-bit number P, let K1 and K2 denote its 1’s 
and 2’s complements, respectively.

K1 = (2n – 1) – P

K2 = 2n – P

Since K2 = K1 + 1, it is evident that in a logic circuit the 2’s 
complement can be computed by inverting all bits of P and 
then adding 1 to the resulting 1’s-complement number.

Deriving 2’s complement



For a positive 8-bit number P, let K1 and K2 denote its 1’s 
and 2’s complements, respectively.

K1 = (2n – 1) – P = 255 - P

K2 = 2n – P = 256 - P

Since K2 = K1 + 1, it is evident that in a logic circuit the 2’s 
complement can be computed by inverting all bits of P and 
then adding 1 to the resulting 1’s-complement number.

Deriving 2’s complement



0 1 0 1

0 1 1 11 1 0 0

Negate these numbers stored in 
2’s complement representation

1 1 1 0



0 1 0 1

0 1 1 1

1 0 1 0

1 0 0 0

Invert all bits…

Negate these numbers stored in 
2’s complement representation

1 1 1 0
0 0 0 1

1 1 0 0
0 0 1 1



0 1 0 1

0 1 1 1

1 0 1 0
1

1 0 1 1
+

1 0 0 0
1

1 0 0 1
+

.. then add 1.

Negate these numbers stored in 
2’s complement representation

1 1 1 0
0 0 0 1

1
0 0 1 0

+

1 1 0 0
0 0 1 1

1
0 1 0 0

+



0 1 0 1 1 1 1 0

0 1 1 11 1 0 0

1 0 1 0
1

1 0 1 1
+

0 0 1 1
1

0 1 0 0
+

1 0 0 0
1

1 0 0 1
+

0 0 0 1
1

0 0 1 0
+

Negate these numbers stored in 
2’s complement representation

= +5

= -5

= -2

= +2

= -4

= +4

= +7

= -7



Circuit #1 for negating a number stored 
in 2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

1

1
0

10 11

0



Circuit #1 for negating a number stored 
in 2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

1

1
0

10 11

0

= +5
(in 2’s complement)



Circuit #1 for negating a number stored 
in 2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

1

1
0

10 11

0 invert all the bits



Circuit #1 for negating a number stored 
in 2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

1

1
0

10 11

0

+1 =
(in 2’s complement)



Circuit #1 for negating a number stored 
in 2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

1

1
0

10 11

0

= -5 (in 2’s complement)



Alternative Circuit



Circuit #2 for negating a number stored 
in 2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0
1

10 11

0



Circuit #2 for negating a number stored 
in 2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0
1

10 11

0

= +5
(in 2’s complement)



Circuit #2 for negating a number stored 
in 2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0
1

10 11

0 invert all the bits



Circuit #2 for negating a number stored 
in 2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0
1

10 11

0

0 =
(in 2’s complement)



Circuit #2 for negating a number stored 
in 2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0
1

10 11

0

add 1 by setting the 
c0 carry input to 1



Circuit #2 for negating a number stored 
in 2’s complement representation

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0
1

10 11

0

= -5 (in 2’s complement)



This also works for negating 
a negative number,

thus making it positive 



Circuit #2 for negating a number stored 
in 2’s complement representation

1

0

1

0

0

1

0

1

0

0

0

0

0

0

0

0
1

01 00

0



Circuit #2 for negating a number stored 
in 2’s complement representation

1

0

1

0

0

1

0

1

0

0

0

0

0

0

0

0
1

01 00

0

= -4
(in 2’s complement)



Circuit #2 for negating a number stored 
in 2’s complement representation

1

0

1

0

0

1

0

1

0

0

0

0

0

0

0

0
1

01 00

0 invert all the bits



Circuit #2 for negating a number stored 
in 2’s complement representation

1

0

1

0

0

1

0

1

0

0

0

0

0

0

0

0
1

01 00

0

0 =
(in 2’s complement)



Circuit #2 for negating a number stored 
in 2’s complement representation

1

0

1

0

0

1

0

1

0

0

0

0

0

0

0

0
1

01 00

0

add 1 by setting the 
c0 carry input to 1



Circuit #2 for negating a number stored 
in 2’s complement representation

1

0

1

0

0

1

0

1

0

0

0

0

0

0

0

0
1

01 00

0

= +4 (in 2’s complement)



Quick way (for a human) negate a 
number stored in 2’s complement

• Scan the binary number from right to left

• Copy all bits that are 0 from right to left

• Stop at the first 1

• Copy that 1 as well

• Invert all remaining bits



0 1 0 1 1 1 1 0

0 1 1 11 1 0 0

Negate these numbers stored in 
2’s complement representation



0 1 0 1 1 1 1 0

0 1 1 11 1 0 0

.  .  .  .

.  .  0 0 .  .  .  .

.  .  .  0

Copy all bits that are 0 from right to left.

Negate these numbers stored in 
2’s complement representation



0 1 0 1 1 1 1 0

0 1 1 11 1 0 0

.  .  .  1

.  1 0 0 .  .  .  1

.  .  1 0

Stop at the first 1. Copy that 1 as well.

Negate these numbers stored in 
2’s complement representation



0 1 0 1 1 1 1 0

0 1 1 11 1 0 0

1 0 1 1

0 1 0 0 1 0 0 1

0 0 1 0

Invert all remaining bits.

Negate these numbers stored in 
2’s complement representation



0 1 0 1 1 1 1 0

0 1 1 11 1 0 0

1 0 1 1

0 1 0 0 1 0 0 1

0 0 1 0

Negate these numbers stored in 
2’s complement representation

= +5
= -5

= -2
= +2

= -4
= +4

= +7
= -7



The number circle for 2's complement

[ Figure 3.11a from the textbook ]



Addition of two numbers stored 
in 2’s complement representation



There are four cases to consider

• (+5)  +  (+2)

• (-5)  +  (+2)

• (+5)  +  (-2)

• (-5)  +  (-2)



There are four cases to consider

• (+5)  +  (+2) positive plus positive

• (-5)  +  (+2) negative plus positive

• (+5)  +  (-2) positive plus negative

• (-5)  +  (-2) negative plus negative



A) Example of 2’s complement addition

[ Figure 3.9 from the textbook ]

+

0 1 1 1

0 1 0 1
0 0 1 0

5+( )
2+( )

7+( )

+



B) Example of 2’s complement addition

+

1 1 0 1

1 0 1 1
0 0 1 02+( )

5–( )

3–( )

+

[ Figure 3.9 from the textbook ]



C) Example of 2’s complement addition

+

0 0 1 1

0 1 0 1
1 1 1 0

1

ignore

5+( )

3+( )

+ 2–( )

[ Figure 3.9 from the textbook ]



D) Example of 2’s complement addition

+

1 0 0 1

1 0 1 1
1 1 1 0

1

ignore

5–( )

7–( )

+ 2–( )

[ Figure 3.9 from the textbook ]





Naming Ambiguity: 2's Complement

2's complement has two different meanings:

• representation for signed integer numbers

• algorithm for computing the 2's complement 
(regardless of the representation of the number)



Naming Ambiguity: 2's Complement

2's complement has two different meanings:

• representation for signed integer numbers
in 2's complement

• algorithm for computing the 2's complement 
(regardless of the representation of the number)
take the 2's complement (or negate)



Subtraction of two numbers stored 
in 2’s complement representation



There are four cases to consider

• (+5)  - (+2)

• (-5)  - (+2)

• (+5)  - (-2)

• (-5)  - (-2)



There are four cases to consider

• (+5)  - (+2) positive minus positive

• (-5)  - (+2) negative minus positive

• (+5)  - (-2) positive minus negative

• (-5)  - (-2) negative minus negative



There are four cases to consider

• (+5)  - (+2)

• (-5)  - (+2)

• (+5)  - (-2)

• (-5)  - (-2)



There are four cases to consider

• (+5)  - (+2) =    (+5)  +  (-2)

• (-5)  - (+2) =    (-5)  +  (-2)

• (+5)  - (-2) =    (+5)  +  (+2)

• (-5)  - (-2)    =    (-5)  +  (+2)



There are four cases to consider

• (+5)  - (+2) =    (+5)  + (-2)

• (-5)  - (+2) =    (-5)  + (-2)

• (+5)  - (-2) =    (+5)  + (+2)

• (-5)  - (-2)    =    (-5)  + (+2)

We can change subtraction into addition ...



There are four cases to consider

• (+5)  - (+2) =    (+5)  +  (-2)

• (-5)  - (+2) =    (-5)  +  (-2)

• (+5)  - (-2) =    (+5)  +  (+2)

• (-5)  - (-2)    =    (-5)  +  (+2)

… if we negate the second number.



There are four cases to consider

• (+5)  - (+2) =    (+5)  +  (-2)

• (-5)  - (+2) =    (-5)  +  (-2)

• (+5)  - (-2) =    (+5)  +  (+2)

• (-5)  - (-2)    =    (-5)  +  (+2)

These are the four addition cases
(arranged in a shuffled order)



Example of 2’s complement subtraction

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]

means take the 2's complement (or negate)



Example of 2’s complement subtraction

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]

means take the 2's complement (or negate)

Notice that the minus changes to a plus.



Example of 2’s complement subtraction

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]



Example of 2’s complement subtraction

–
0 1 0 1
0 0 1 0

5+( )
2+( )

3+( )

–

1

ignore

+

0 0 1 1

0 1 0 1
1 1 1 0

[ Figure 3.10 from the textbook ]



[ Figure 3.11 from the textbook ]

Graphical interpretation of four-bit 
2’s complement numbers



Example of 2’s complement subtraction

[ Figure 3.10 from the textbook ]

–
1 0 1 1
0 0 1 0–

1

ignore

+

1 0 0 1

1 0 1 1
1 1 1 0

5–( )

7–( )

2+( )



Example of 2’s complement subtraction

–
0 1 0 1
1 1 1 0

5+( )

7+( )

– +

0 1 1 1

0 1 0 1
0 0 1 02–( )

[ Figure 3.10 from the textbook ]



Example of 2’s complement subtraction

–
1 0 1 1
1 1 1 0– +

1 1 0 1

1 0 1 1
0 0 1 02–( )

5–( )

3–( )

[ Figure 3.10 from the textbook ]



decimal b3 b2 b1 b0 take the 2's 
complement

b3 b2 b1 b0 decimal

+7 0111 1001 -7
+6 0110 1010 -6
+5 0101 1011 -5
+4 0100 1100 -4
+3 0011 1101 -3
+2 0010 1110 -2
+1 0001 1111 -1
+0 0000 0000 +0
-8 1000 1000 -8
-7 1001 0111 +7
-6 1010 0110 +6
-5 1011 0101 +5
-4 1100 0100 +4
-3 1101 0011 +3
-2 1110 0010 +2
-1 1111 0001 +1

Taking the 2’s complement negates the number



decimal b3 b2 b1 b0 take the 2's 
complement

b3 b2 b1 b0 decimal

+7 0111 1001 -7
+6 0110 1010 -6
+5 0101 1011 -5
+4 0100 1100 -4
+3 0011 1101 -3
+2 0010 1110 -2
+1 0001 1111 -1
+0 0000 0000 +0
-8 1000 1000 -8
-7 1001 0111 +7
-6 1010 0110 +6
-5 1011 0101 +5
-4 1100 0100 +4
-3 1101 0011 +3
-2 1110 0010 +2
-1 1111 0001 +1

Taking the 2’s complement negates the number

This is
the only
exception



decimal b3 b2 b1 b0 take the 2's 
complement

b3 b2 b1 b0 decimal

+7 0111 1001 -7
+6 0110 1010 -6
+5 0101 1011 -5
+4 0100 1100 -4
+3 0011 1101 -3
+2 0010 1110 -2
+1 0001 1111 -1
+0 0000 0000 +0
-8 1000 1000 -8
-7 1001 0111 +7
-6 1010 0110 +6
-5 1011 0101 +5
-4 1100 0100 +4
-3 1101 0011 +3
-2 1110 0010 +2
-1 1111 0001 +1

Taking the 2’s complement negates the number

And this 
one too.



–
1 0 1 1
1 0 0 0– +

1 0 0 1 1

1 0 1 1
1 0 0 08–( )

5–( )

3+ ( )

ignore

But that exception does not matter



But that exception does not matter

Add 8



Subtract 8

But that exception does not matter



Take-Home Message



Take-Home Message

• Subtraction can be performed by simply adding the 
2’s complement of the second number, regardless of 
the signs of the two numbers.

• Thus, the same adder circuit can be used to perform 
both addition and subtraction !!!



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Adder/subtractor unit



XOR Tricks

y

control
out



y

0
y

XOR as a repeater



y y

XOR as a repeater



y

1
y

XOR as an inverter



y

XOR as an inverter

y



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Addition: when control = 0



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Addition: when control = 0

0

000



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Addition: when control = 0

0

000

yn-1 y1 y0…



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1

1

111



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1

1

111

yn-1 y1 y0…



s 0 s 1 s n 1 –

x 0 x 1 x n 1 –

c n n -bit adder

y 0 y 1 y n 1 –

c 0 

Add ⁄ Sub 
control 

[ Figure 3.12 from the textbook ]

Subtraction: when control = 1

1

111

yn-1 y1 y0…

1

carry for the 
first column!



Detecting Overflow



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow

[ Figure 3.13 from the textbook ]



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits:  c4 c3 c2 c1 c0



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits:  c4 c3 c2 c1 c0



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Include the carry bits:  c4 c3 c2 c1 c0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

Overflow occurs only in these two cases.

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4 + c3c4



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
0 1 1 0 0 0 0 0 0 0

1 0 0 0 01 1 1 0 0

c4 0=
c3 1=

c4 1=
c3 1=

c4 0=
c3 0=

c4 1=
c3 0=

Overflow = c3c4 + c3c4

XOR



Calculating overflow for 4-bit numbers 
with only three significant bits



Calculating overflow for n-bit numbers 
with only n-1 significant bits



FA

x n – 1 

c n c n 1 

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

Detecting Overflow

-



FA

x n – 1 

c n c n 1 

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

Detecting Overflow
(with one extra XOR)

overflow

-



FA

x n – 1 

c n c n 1 

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

Detecting Overflow
(with one extra XOR)

overflow

-

This method detects overflow 
for both addition and subtraction.



Detecting Overflow
(alternative method)



Detecting Overflow
(alternative method)

Used if you don’t have access to the internal carries of the adder.



FA

x n – 1 

c n c n 1 

y n 1 –

s n 1 –

FA

x 1 

c 2 

y 1 

s 1 

FA
c 1 

x 0 y 0 

s 0 

c 0 

Detecting Overflow
(with one extra XOR)

overflow

-

If the adder is implemented on a chip, 
then this line is not available. 

So the first method can’t be used.



X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue



X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If  both numbers that we are adding have the same sign 
but the sum does not, then we have an overflow.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

In 2's complement, both +9 and -9 are not representable with 4 bits.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow occurs only in these two cases.



++

1 0 1 1

1 0 0 1
0 0 1 0

1 0 0 1

0 1 1 1
0 0 1 0

7+( )
2+( )

9+( )

+

++

0 1 1 1

1 0 0 1
1 1 1 0

0 1 0 1

0 1 1 1
1 1 1 0

7+( )

5+( )

+ 2–( )

11

2+( )
7–( )

5–( )

+

7–( )

9–( )

+ 2–( )

Examples of determination of overflow
x3 0=
y3 0=
s3 1=

x3 0=
y3 1=
s3 0=

x3 1=
y3 0=
s3 1=

x3 1=
y3 1=
s3 0=

Overflow = x3 y3 s3 + x3 y3 s3



X= x3 x2 x1 x0
Y= y3 y2 y1 y0

S= s3 s2 s1 s0

+

Another way to look at the overflow issue

If  both numbers that we are adding have the same sign 
but the sum does not, then we have an overflow.

Overflow = x3 y3 s3 + x3 y3 s3



Overflow Detection

x0

c4 4-bit adder c0

x1x2x3 y0y1y2y3

S
0

S
1

S 
2

S
3

Add ⁄ Sub 
control 



Overflow Detection

x0

c4 4-bit adder c0

x1x2x3 y0y1y2y3

S
0

S
1

S 
2

S
3

overflow

Add ⁄ Sub 
control 

x3 y3 s3 + x3 y3 s3



Overflow Detection

x0

c4 4-bit adder c0

x1x2x3 y0y1y2y3

S
0

S
1

S 
2

S
3

overflow

Add ⁄ Sub 
control 

This must be taken after the XOR!



Overflow Detection

x0

c4 4-bit adder c0

x1x2x3 y0y1y2y3

S
0

S
1

S 
2

S
3

overflow

Add ⁄ Sub 
control 

This method also detects overflow 
for both addition and subtraction.



Questions?



THE END


