
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

Algorithmic State Machine (ASM) Charts

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

• Homework 12 is out

• It is due on Wednesday November 30 @ 10pm

• Final Project Proposals
§ Did you hear back from your TAs?
§ Did you make the changes that they recommended?

Administrative Stuff

• Extra credit lab is due on December 2 @ 10 pm

Administrative Stuff

• Final Project: due during your last lab (dead week).

§ The grading rubric is posted on the class web page.

§ presentation of your work to your TAs

§ final report pdf (upload on canvas)

§ zip file with your design (upload on canvas)

§ If you work in a team: each student needs to present
separately to their lab TAs.

Administrative Stuff
• The FINAL exam is scheduled for

Wednesday Dec 14 @ 2:15 – 4:15 PM

Reading Material for Next Lecture

• “The Seven Secrets of Computer Power Revealed” by
Daniel Dennett.

• This is Chapter 24 in his book
“Intuition Pumps and Other Tools for Thinking”, 2013

Algorithmic State Machine (ASM) Charts

Output signals
or actions

(Moore type)

State name

Condition
expression

0 (False) 1 (True)

Conditional outputs
or actions (Mealy type)

(a) State box (b) Decision box

(c) Conditional output box

Elements used in ASM charts

[Figure 6.81 from the textbook]

Output signals
or actions

(Moore type)

State name

State Box

[Figure 6.81a from the textbook]

Output signals
or actions

(Moore type)

State name

State Box

• Indicated with a rectangle
• Equivalent to a node in the State diagram
• The name of the state is written outside the box
• Moore-type outputs are written inside the box
• Only the output that must be set to 1 is written

(by default, if an output is not listed it is set to 0)

Decision Box

Condition
expression

0 (False) 1 (True)

[Figure 6.81b from the textbook]

Decision Box

• Indicated with a diamond shape
• Used for a condition expression that must be tested
• The exit path is chosen based on the outcome of the test
• The condition is on one or more inputs to the FSM
• Shortcut notation: w means “is w equal to 1?”

Condition
expression

0 (False) 1 (True)

Conditional Output Box

• Indicated with an oval shape
• Used for a Mealy-type output signals
• The outputs depend on the state variables and inputs
• The condition that determines when such outputs are

generated is placed in a separate decision box

[Figure 6.81c from the textbook]

Conditional outputs
or actions (Mealy type)

Some Examples

[Figure 6.82 from the textbook]

C z 1 = ⁄

Reset

B z 0 = ⁄ A z 0 = ⁄ w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

[Figure 6.3 from the textbook]

Moore FSM ASM chart

w

w
0 1

0

1

A

B

Reset

z

[Figure 6.83 from the textbook]

Mealy FSM ASM chart

[Figure 6.23 from the textbook]

[Figure 6.84 from the textbook][Figure 6.73 from the textbook]

FSM ASM chart

ASM Chart is different from a Flow Chart

• The ASM chart implicitly includes timing info

• It is assumed that the underlying FSM changes from
one state to another on every active clock edge

• Flow charts don’t make that assumption.

Combinational
circuit

Y k

Y 1

y k

y 1

w 1

w n

z 1

z m

Outputs

Next-state
variables

Present-state
variables

Inputs

The general model for a sequential circuit

[Figure 6.85 from the textbook]

The general model for a sequential circuit

Examples of Solved Problems

Example 6.12

Goal
• Design an FSM that detects if the previous two

values of the input w were equal to 00 or 11.

• If either condition is true then the output z should be
set to 1; otherwise to 0.

State Diagram

[Figure 6.86 from the textbook]

State Table for the FSM

[Figure 6.87 from the textbook][Figure 6.86 from the textbook]

State Table for the FSM

[Figure 6.87 from the textbook]

State-Assigned Table for the FSM

[Figure 6.88 from the textbook]

State-Assigned Table for the FSM

[Figure 6.88 from the textbook]

State-Assigned Table for the FSM

How can we derive this expression?

State-Assigned Table for the FSM

ddd
ddd
ddd

ddd
ddd
ddd

101
110
111

d
d
d

y3 y2 y1 z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Truth Table for the Output z

y3 y2 y1 z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 d

1 1 0 d

1 1 1 d

Truth Table for the Output z

y3 y2 y1 z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 d

1 1 0 d

1 1 1 d

Truth Table for the Output z

y3 y2 y1 z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 d

1 1 0 d

1 1 1 d

K-Map for the Output z
y1 00 01 11 10

0

1

y 3 y 2
z

0 1 d 1
0 0 d d

y3 y2 y1 z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 d

1 1 0 d

1 1 1 d

The Expression for the Output z
y1 00 01 11 10

0

1

y 3 y 2
z

0 1 d 1
0 0 d d

y3y1 y2

State-Assigned Table for the FSM

How can we derive these expressions?

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 d

0 1 1 0 d

0 1 1 1 d

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 d

1 1 1 0 d

1 1 1 1 d

Truth Table for Y3

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 0 0

0 0 0 1 0 1

0 0 1 0 0 1

0 0 1 1 0 0

0 1 0 0 0 0

0 1 0 1 d d

0 1 1 0 d d

0 1 1 1 d d

1 0 0 0 0 1

1 0 0 1 0 1

1 0 1 0 0 1

1 0 1 1 1 0

1 1 0 0 1 0

1 1 0 1 d d

1 1 1 0 d d

1 1 1 1 d d

Truth Table for Y2

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 0 0 1

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 0 1

0 1 0 0 0 0 1

0 1 0 1 d d d

0 1 1 0 d d d

0 1 1 1 d d d

1 0 0 0 0 1 1

1 0 0 1 0 1 1

1 0 1 0 0 1 1

1 0 1 1 1 0 0

1 1 0 0 1 0 0

1 1 0 1 d d d

1 1 1 0 d d d

1 1 1 1 d d d

Truth Table for Y1

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 0 0 1

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 0 1

0 1 0 0 0 0 1

0 1 0 1 d d d

0 1 1 0 d d d

0 1 1 1 d d d

1 0 0 0 0 1 1

1 0 0 1 0 1 1

1 0 1 0 0 1 1

1 0 1 1 1 0 0

1 1 0 0 1 0 0

1 1 0 1 d d d

1 1 1 0 d d d

1 1 1 1 d d d

K-Maps for Y3, Y2, Y1
w y3y2 y1

0

00 01 11 10

0 1 0

0 d d 0

0 d d 1

0 d d 0

00

01

11

10

Y3

w y3y2 y1

1

00 01 11 10

1 0 1

0 d d 1

1 d d 0

0 d d 1

00

01

11

10

Y1

w y3y2 y1

0

00 01 11 10

0 0 1

1 d d 1

0 d d 0

1 d d 1

00

01

11

10

Y2

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 0 0 1

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 0 1

0 1 0 0 0 0 1

0 1 0 1 d d d

0 1 1 0 d d d

0 1 1 1 d d d

1 0 0 0 0 1 1

1 0 0 1 0 1 1

1 0 1 0 0 1 1

1 0 1 1 1 0 0

1 1 0 0 1 0 0

1 1 0 1 d d d

1 1 1 0 d d d

1 1 1 1 d d d

K-Maps for Y3, Y2, Y1
w y3y2 y1

0

00 01 11 10

0 1 0

0 d d 0

0 d d 1

0 d d 0

00

01

11

10

Y3

w y3y2 y1

1

00 01 11 10

1 0 1

0 d d 1

1 d d 0

0 d d 1

00

01

11

10

Y1

w y3y2 y1

0

00 01 11 10

0 0 1

1 d d 1

0 d d 0

1 d d 1

00

01

11

10

Y2

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 0 0 1

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 1 1 0 0 1

0 1 0 0 0 0 1

0 1 0 1 d d d

0 1 1 0 d d d

0 1 1 1 d d d

1 0 0 0 0 1 1

1 0 0 1 0 1 1

1 0 1 0 0 1 1

1 0 1 1 1 0 0

1 1 0 0 1 0 0

1 1 0 1 d d d

1 1 1 0 d d d

1 1 1 1 d d d

Expressions for Y3, Y2, Y1
w y3y2 y1

0

00 01 11 10

0 1 0

0 d d 0

0 d d 1

0 d d 0

00

01

11

10

Y3

w y3y2 y1

1

00 01 11 10

1 0 1

0 d d 1

1 d d 0

0 d d 1

00

01

11

10

Y1

w y3y2 y1

0

00 01 11 10

0 0 1

1 d d 1

0 d d 0

1 d d 1

00

01

11

10

Y2

Next State and Output Expressions

An Improved State-Assigned Table

[Figure 6.89 from the textbook][Figure 6.87 from the textbook]

B,C, D, E – when y3=1

An Improved State-Assigned Table

[Figure 6.89 from the textbook][Figure 6.87 from the textbook]

B,C, D, E – when y3=1

An Improved State-Assigned Table

[Figure 6.89 from the textbook]

An Improved State-Assigned Table

cut here

An Improved State-Assigned Table

ddd
ddd
ddd

ddd
ddd
ddd

001
010
011

d
d
d

y3 y2 y1 z

0 0 0 0

0 0 1 d

0 1 0 d

0 1 1 d

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Truth Table for the Output z

y3 y2 y1 z

0 0 0 0

0 0 1 d

0 1 0 d

0 1 1 d

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Expression for the Output z
y1 00 01 11 10

0

1

y 3 y 2
z

0 d 0 0
d d 1 1

y1

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 1

0 0 0 1 d

0 0 1 0 d

0 0 1 1 d

0 1 0 0 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 1

1 0 0 0 1

1 0 0 1 d

1 0 1 0 d

1 0 1 1 d

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

Truth Table for Y3

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 1 0

0 0 0 1 d d

0 0 1 0 d d

0 0 1 1 d d

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 1 0

0 1 1 1 1 0

1 0 0 0 1 1

1 0 0 1 d d

1 0 1 0 d d

1 0 1 1 d d

1 1 0 0 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 1 1

Truth Table for Y2

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 1 0 0

0 0 0 1 d d d

0 0 1 0 d d d

0 0 1 1 d d d

0 1 0 0 1 0 1

0 1 0 1 1 0 1

0 1 1 0 1 0 0

0 1 1 1 1 0 0

1 0 0 0 1 1 0

1 0 0 1 d d d

1 0 1 0 d d d

1 0 1 1 d d d

1 1 0 0 1 1 0

1 1 0 1 1 1 0

1 1 1 0 1 1 1

1 1 1 1 1 1 1

Truth Table for Y1

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 1 0 0

0 0 0 1 d d d

0 0 1 0 d d d

0 0 1 1 d d d

0 1 0 0 1 0 1

0 1 0 1 1 0 1

0 1 1 0 1 0 0

0 1 1 1 1 0 0

1 0 0 0 1 1 0

1 0 0 1 d d d

1 0 1 0 d d d

1 0 1 1 d d d

1 1 0 0 1 1 0

1 1 0 1 1 1 0

1 1 1 0 1 1 1

1 1 1 1 1 1 1

w y3y2 y1

1

00 01 11 10

1 1 1

d 1 1 d

d 1 1 d

d 1 1 d

00

01

11

10

Y3

w y3y2 y1

0

00 01 11 10

1 0 0

d 1 0 d

d 0 1 d

d 0 1 d

00

01

11

10

Y1

w y3y2 y1

0

00 01 11 10

0 1 1

d 0 1 d

d 0 1 d

d 0 1 d

00

01

11

10

Y2

K-Maps for Y3, Y2, Y1

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 1 0 0

0 0 0 1 d d d

0 0 1 0 d d d

0 0 1 1 d d d

0 1 0 0 1 0 1

0 1 0 1 1 0 1

0 1 1 0 1 0 0

0 1 1 1 1 0 0

1 0 0 0 1 1 0

1 0 0 1 d d d

1 0 1 0 d d d

1 0 1 1 d d d

1 1 0 0 1 1 0

1 1 0 1 1 1 0

1 1 1 0 1 1 1

1 1 1 1 1 1 1

w y3y2 y1

1

00 01 11 10

1 1 1

d 1 1 d

d 1 1 d

d 1 1 d

00

01

11

10

Y3

w y3y2 y1

0

00 01 11 10

1 0 0

d 1 0 d

d 0 1 d

d 0 1 d

00

01

11

10

Y1

w y3y2 y1

0

00 01 11 10

0 1 1

d 0 1 d

d 0 1 d

d 0 1 d

00

01

11

10

Y2

K-Maps for Y3, Y2, Y1

w y3 y2 y1 Y3 Y2 Y1

0 0 0 0 1 0 0

0 0 0 1 d d d

0 0 1 0 d d d

0 0 1 1 d d d

0 1 0 0 1 0 1

0 1 0 1 1 0 1

0 1 1 0 1 0 0

0 1 1 1 1 0 0

1 0 0 0 1 1 0

1 0 0 1 d d d

1 0 1 0 d d d

1 0 1 1 d d d

1 1 0 0 1 1 0

1 1 0 1 1 1 0

1 1 1 0 1 1 1

1 1 1 1 1 1 1

w y3y2 y1

1

00 01 11 10

1 1 1

d 1 1 d

d 1 1 d

d 1 1 d

00

01

11

10

Y3

w y3y2 y1

0

00 01 11 10

1 0 0

d 1 0 d

d 0 1 d

d 0 1 d

00

01

11

10

Y1

w y3y2 y1

0

00 01 11 10

0 1 1

d 0 1 d

d 0 1 d

d 0 1 d

00

01

11

10

Y2

K-Maps for Y3, Y2, Y1

An Improved State-Assigned Table

An Improved State-Assigned Table

The Circuit Diagram
Y1 = w y2 + w y3 y2
Y2 = w
Y3 = 1
z = y1D Q

Q

D Q

Q

Y 3

Y 2
w

Clock

z

y 2

y 3

Reset_n

1

y 2

D Q

Q

Y 1 y 1

The Circuit Diagram
Y1 = w y2 + w y3 y2
Y2 = w
Y3 = 1
z = y1D Q

Q

D Q

Q

Y 3

Y 2
w

Clock

z

y 2

y 3

Reset_n

1

y 2

D Q

Q

Y 1 y 1

this is always 1,
except when reset_n=0

The Circuit Diagram
Y1 = w y2 + w y3 y2
Y2 = w
Y3 = 1
z = y1

D Q

Q

Y 2
w

Clock

z

y 2

Reset_n

y 2

D Q

Q

Y 1 y 1

State Diagram

[Figure 6.86 from the textbook]

Example 6.13

Goal
• Design an FSM that detects if the previous two

values of the input w were equal to 00 or 11.

• But do this with two different FSMs. The first one
detects two consecutive 1's. The second one detects
two consecutive 0's.

• If either condition (i.e., output of FSM) is true then the
output z should be set to 1; otherwise to 0.

Example 6.13

(Construct the first FSM)

FSM to detect two consecutive 1's
(this was the first example in Chapter 6)

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

[Figure 6.3 from the textbook]

Present Next state Output
state w = 0 w = 1 z

A
B
C

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

[Figure 6.4 from the textbook]

A Better State Encoding

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

Suppose we encoded our states another way:

A ~ 00
B ~ 01
C ~ 11

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

Present Next state

state w = 0 w = 1 Output
z

A ~ 00
B ~ 01
C ~ 11

A Better State Encoding

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

Present Next state

state w = 0 w = 1 Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1
z

A 00 00 01 0
B 01 00 11 0
C 11 00 11 1

10 dd dd d

A Better State Encoding

Let's Derive the Logic Expressions

Present Next state

state w = 0 w = 1 Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1
z

A 00 00 01 0
B 01 00 11 0
C 11 00 11 1

10 dd dd d

[Figure 6.16 from the textbook]

Present
Next state

state w = 0 w = 1
Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1

z

A 00 00 01 0

B 01 00 11 0

C 11 00 11 1

10 dd dd d

0 1

0

1

y
1

y
2

z

w
00 01 11 10

0

1

y
2

y
1

Y2 Y1

w 00 01 11 10

0

1

y
2

y
1

Let's Derive the Logic Expressions

Warning:

This table does not

enumerate y2y1, in the

standard way, so be

careful when filling

out the K-Map.

Present
Next state

state w = 0 w = 1
Output

y 2 y 1 Y 2 Y 1 Y 2 Y 1

z

A 00 00 01 0

B 01 00 11 0

C 11 00 11 1

10 dd dd d

w
00 01 11 10

0

1

0 0

1 1

y
2

y
1

0

0

d

Y2 Y1

0 1

0

1

0

1

y
1

0

d

y
2

z

d

Y2(w, y2, y1) = wy1 Y1(w, y2, y1) = w z(y2, y1) = y2

w 00 01 11 10

0

1

0

1 1

y
2

y
1

0

1

d

d

0

Let's Derive the Logic Expressions

Warning:

This table does not

enumerate y2y1, in the

standard way, so be

careful when filling

out the K-Map.

w 00 01 11 10

0

1

0

1 0

y 2 y 1

d

d

0

0

0

Y 1

w
00 01 11 10

0

1

0 d

1 d

y 2 y 1

0

0

0

1

Y 2

0 1

0

1

0

d

y 1

0

1

y 2

z

Original State
Encodings

New State
Encodings

w
00 01 11 10

0

1

0 0

1 1

y 2 y 1

0

0

d

Y2

d

Y1

w 00 01 11 10

0

1

0

1 1

y 2 y 1

0

1

d

d

0

0 1

0

1

0

1

y 1

0

d

y 2

z

D Q

Q

D Q

Q

Y 2

Y 1
w

Clock

z

y 1

y 2

Resetn

The Circuit Diagram

Y1(w, y2, y1) = w

Y2(w, y2, y1) = wy1

z(y2, y1) = y2

[Figure 6.17 from the textbook]

Example 6.13

(Construct the second FSM)

FSM to detect two consecutive 0's

F: z = 1

Reset

E: z = 0 D: z = 0 w 1 =

w 0 =

w 0 =

w 1 =

w 1 = w 0 =

This is similar to the previous one. Just invert the w's and relabel the states to D,E,F.

Present Next state Output
state w = 0 w = 1 z

D
E
F

F: z = 1

Reset

E: z = 0 D: z = 0 w 1 =

w 0 =

w 0 =

w 1 =

w 1 = w 0 =

Present Next state Output
state w = 0 w = 1 z

D
E
F

F: z = 1

Reset

E: z = 0 D: z = 0 w 1 =

w 0 =

w 0 =

w 1 =

w 1 = w 0 =

E D
F D
F D

0
0
1

FSM that detects a sequence of two zeros

[Figure 6.90 from the textbook]

FSM that detects a sequence of two zeros

[Figure 6.90 from the textbook]

Only these two columns
are swapped relative to
the first FSM. And the
states have different
names now.

Only these two columns
are swapped relative to
the first FSM.

Let's Derive the Logic Expressions

Present Next state

state w = 0 w = 1 Output

y 4 y 3 Y 4 Y 3 Y 4 Y 3
z

D 00 01 00 0
E 01 11 00 0
F 11 11 00 1

10 dd dd d

[Figure 6.90 from the textbook]

Let's Derive the Logic Expressions

Present Next state

state w = 0 w = 1 Output

y 4 y 3 Y 4 Y 3 Y 4 Y 3
z

D 00 01 00 0
E 01 11 00 0
F 11 11 00 1

10 dd dd d

w
00 01 11 10

0

1

y 4 y 3
Y4 Y3

0 1

0

1

y 4
y 3

z

w 00 01 11 10

0

1

y 4 y 3

Let's Derive the Logic Expressions

Present Next state

state w = 0 w = 1 Output

y 4 y 3 Y 4 Y 3 Y 4 Y 3
z

D 00 01 00 0
E 01 11 00 0
F 11 11 00 1

10 dd dd d

w
00 01 11 10

0

1

1 1

0 0

y 4 y 3

0

0

d

Y4 Y3
0 1

0

1

0

1

y 3

0

d

y 4

z

d

z(y4 , y3) = y4

w 00 01 11 10

0

1

1

0 0

y 4 y 3

1

0

d

d

1

Y4(w, y4 , y3) = w y3 Y3(w, y4 , y3) = w

D Q

Q

D Q

Q

Y 4

Y 3
w

Clock

z

y 3

y 4

Resetn

The Circuit Diagram

Y3(w, y4 , y3) = w

Y4(w, y4 , y3) = w y3

z(y2, y1) = y4

Example 6.13

(Combine the two FSMs)

C: z = 1

Reset

B: z = 0 A: z = 0 w 0 =

w 1 =

w 1 =

w 0 =

w 0 = w 1 =

F: z = 1

Reset

E: z = 0 D: z = 0 w 1 =

w 0 =

w 0 =

w 1 =

w 1 = w 0 =

The Two FSMs

Detect two consecutive 1's Detect two consecutive 0's

The Two Circuit Diagrams

Detect two consecutive 1's Detect two consecutive 0's

The Combined Circuit Diagram

Detect two consecutive 1's or two consecutive 0's

Example 6.14

Goal
• Design an FSM that detects if the previous two

values of the input w were equal to 00 or 11.

• If either condition is true then the output z should be
set to 1; otherwise to 0.

• Implement this as a Mealy-type machine

[Figure 6.91 from the textbook]

State Diagram

[Figure 6.92 from the textbook]

Building the State Table

[Figure 6.92 from the textbook]

State Table

[Figure 6.93 from the textbook]

Building the State-Assigned Table

[Figure 6.93 from the textbook]

State-Assigned Table

State-Assigned Table

cut here

State-Assigned Table

State-Assigned Table

1 0 d d d d d d

w y2 y1 Y2 Y1 z

0 0 0 0 1 0

0 0 1 0 1 1

0 1 0 d d d

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 1 1 0

1 1 0 d 1 d

1 1 1 1 1 1

Truth Table for Y2, Y1, and z

w y2 y1 Y2 Y1 z

0 0 0 0 1 0

0 0 1 0 1 1

0 1 0 d d d

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 1 1 0

1 1 0 d 1 d

1 1 1 1 1 1

K-Maps for Y2, Y1, and z

y1 00 01 11 10

0

1

w y 2
Y2

0 d d 1
0 0 1 1

y1 00 01 11 10

0

1

w y 2
Y1

1 d 1 1
1 1 1 1

y1 00 01 11 10

0

1

w y 2
z

0 d d 0
1 0 1 0

w y2 y1 Y2 Y1 z

0 0 0 0 1 0

0 0 1 0 1 1

0 1 0 d d d

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 1 1 0

1 1 0 d 1 d

1 1 1 1 1 1

K-Maps for Y2, Y1, and z

y1 00 01 11 10

0

1

w y 2
Y2

0 d d 1
0 0 1 1

y1 00 01 11 10

0

1

w y 2
Y1

1 d 1 1
1 1 1 1

y1 00 01 11 10

0

1

w y 2
z

0 d d 0
1 0 1 0

Y2 = w

Y1 = 1

z = w y1 y2 + w y2

State-Assigned Table

Y1 = 1
Y2 = w
z = w y1 y2 + w y2

State-Assigned Table

Y1 = 1
Y2 = w
z = w y1 y2 + w y2

The Circuit Diagram

D Q

Q

D Q

Q

Y 1

Y 2
w

Clock

z

y 2

y 1

Reset_n

1

y 2

The Circuit Diagram

D Q

Q

D Q

Q

Y 1

Y 2
w

Clock

z

y 2

y 1

Reset_n

1

y 2

Y1 = 1
Y2 = w
z = w y1 y2 + w y2

The Circuit Diagram

D Q

Q

D Q

Q

Y 1

Y 2
w

Clock

z

y 2

y 1

Reset_n

1

y 2

Y1 = 1
Y2 = w
z = w y1 y2 + w y2

The Circuit Diagram

D Q

Q

D Q

Q

Y 1

Y 2
w

Clock

z

y 2

y 1

Reset_n

1

y 2

Y1 = 1
Y2 = w
z = w y1 y2 + w y2

this is always 1,
except when reset_n=0

The Simplified Circuit Diagram

D Q

Q

Y 2
w

Clock

z

y 2

Reset_n

y 2

Y2 = w
z = w y2 + w y2

[Figure 6.91 from the textbook]

Original State Diagram

New State Diagram

Example 6.15

Goal
Implement this state-assigned Table using JK flip-flops

[Figure 6.94 from the textbook]

Excitation table with JK flip-flops

Excitation table with JK flip-flops

Excitation table with JK flip-flops

Excitation table with JK flip-flops

Excitation table with JK flip-flops

Excitation table with JK flip-flops

Excitation table with JK flip-flops

Excitation table with JK flip-flops

And so on...

The Expression for z

z is equal to y1

The Expression for J3

J3 is equal to 1

The Expression for K3

K3 is equal to 0

The Expression for J2

J2 is equal to w

The Expression for K2

K2 is equal to w

The Expression for J1

J1 is equal to w y2 + w y3 y2

The Expression for K1

K1 is equal to w y2 + w y2 y1

001 d

All Logic Expressions

Questions?

THE END

