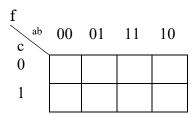


Minimization and Karnaugh Maps Assigned: Week 4 Due Date: Sep. 18, 2023


P1 (10 points): Given the following Verilog code:

```
module P3(f, a, b, c);
  output f;
  input a, b, c;
  reg f;

always@(*)
    if (c==0)
        f=(~a) & (~b);
  else
    f=a&b;

endmodule
```

Fill in the following K-map for f:

P2 (10 points): Write a Verilog module for a 4-to-1 multiplexer.

Cpr E 281 HW04 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Minimization and Karnaugh Maps Assigned: Week 4

Due Date: Sep. 18, 2023

 $xy + \bar{x}z$

P3 (20 points):

a. Prove Theorem17a of Boolean Algebra $(xy + yz + \bar{x}z = xy + \bar{x}z)$ using two K-maps. For instance, show that the K-map for the left-hand side is equivalent to the K-map for the right-hand side.

$$xy + yz + \bar{x}z$$
 $xy = 00 = 01 = 11 = 10$
 $0 = 0$
 $1 = 0$

b. Prove Theorem17b $(x+y)(y+z)(\bar{x}+z) = (x+y)(\bar{x}+z)$ with truth tables. That is, show that the truth table for the left-hand side is the same as the truth table for the right-hand side.

P4 (15 points): Derive the simplified SOP expressions that correspond to the following K-maps:

\mathbf{F}_2				
WX YZ	00	01	11	10
00	0	1	0	0
01	0	1	1	0
11	0	1	1	0
10	0	1	1	0

$\underset{yz}{F_3}$	00	01	11	10
00	1	0	0	1
01	0	0	0	0
11	0	1	1	0
10	1	1	1	1

Minimization and Karnaugh Maps Assigned: Week 4

Due Date: Sep. 18, 2023

P5 (15 points): Derive the simplified POS expressions that correspond to the following K-maps:

\mathbf{F}_1					F_2					F_3				
CAB	00	01	11	10	WX YZ	00	01	11	10	WX YZ	00	01	11	10
0	0	1	0	0	00	1	0	0	1	00	1	0	0	1
1	1	0	0	1	01	0	0	0	0	01	1	0	0	1
					11	0	0	0	0	11	1	1	1	1
					10	1	0	0	1	10	1	0	0	1

P6 (10 points): Use Karnaugh Maps to convert the following expressions to <u>simplified SOP expressions</u>:

a.
$$Q_1(A, B, C, D) = AB\overline{C} + ABD + AC\overline{D} + A\overline{B}\overline{C}D$$

b.
$$Q_2(A, B, C, D) = \sum m(1,5,6,7)$$

P7 (10 points): Use Karnaugh Maps to convert the following expressions to <u>simplified POS expressions</u>:

a.
$$Q_1(A, B, C, D) = (A + \overline{B} + C)(\overline{A} + \overline{B} + D)(A + B + D)(A + B + \overline{D})$$

b.
$$Q_2(A, B, C, D) = \prod M(2,4,7,11)$$

P8 (10 points): For each expression below, derive the simplest SOP expression using don't care terms for simplification wherever possible:

a.
$$H_1(a, b, c) = \sum m(0,3,5,7) + D(1,4)$$

b.
$$H_2(a,b,c,d) = \prod M(1,5,9,12,15) + D(3,4,7,11)$$