P1 (8 points): Express -58_{10} in the following binary formats. If it is not possible simply write Not Possible. Indicate how many bits are needed.
a. Unsigned
b. Sign \& Magnitude
c. 1's Compliment
d. 2's Compliment

P2 (12 points): Perform the following operations on the numbers and indicate if overflow occurs for each operation. All numbers are 6 bits wide (stored in 2's complement). Show your work and all carry bits.

P3 (10 points) Draw the complete circuit diagram for a 3-bit ripple-carry adder. You are allowed to use 2 -input and 3 -input logical gates (of any type), but you can't use any higher-level abstractions (e.g., can't use halfadders or full-adders).

P4 (10 Points): You are given a 4-bit adder as a black box (say a microchip that you can't modify). The adder is too small for what you need to do and also does not compute an overflow bit. Draw a circuit that uses the 4 -bit adder and any additional elements that you think are necessary to implement a 6 -bit ripple-carry adder that also computes an overflow bit. Label all inputs, outputs and components.

Representation and Arithmetic
 Assigned: Week 7
 Due Date: Oct. 9, 2023

P5 (15 Points): In all problems below, the binary numbers are in 2's complement representation. Assign either a 0 or a 1 to each input and output of the 5-bit adder such that it computes the given expression. The problem in a) is already solved.
a) $(+5)+(+6)=+11$

b) $(+13)+(+2)=$

c) $(-12)+(+5)=$

d) $(+14)+(-6)=$
f) $(-9)-(-5)=$

Representation and Arithmetic
 Assigned: Week 7
 Due Date: Oct. 9, 2023

P6 (15 Points): Perform the following multiplications using 2's complement binary numbers. Show all your work using binary numbers:
a. $011_{2} * 010_{2}$
b. $0101_{2} * 0110_{2}$
c. $10010_{2} * 00101_{2}$
d. $-6_{10} * 3_{10}$
e. $10_{10} * 20_{10}$

P7 (15 points): Convert the following numbers to IEEE 754 SinglePrecision Floating Point format. Write your answer as a 32-bit number. Show your derivations.
a) -72
b) 21
c) 54
d) 46
e) -105

P8 (15 points): Convert the following numbers from IEEE 754 SinglePrecision Floating Point format to decimal. Show your derivations.
a) $01000001100100000000000000000000_{2}$
b) $11000001110010000000000000000000_{2}$
c) 42040000_{16}
d) $\mathrm{C} 2280000_{16}$
e) $\mathrm{C} 2 \mathrm{~B} 80000_{16}$

