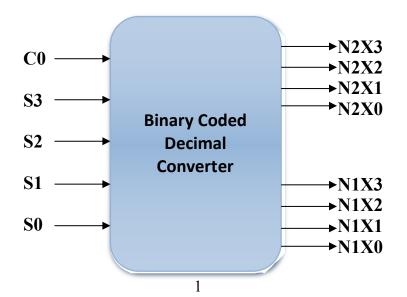
Name and Std ID:	Lab Section:


Date:_____

PRELAB:

Q1. Add the following numbers then write them in decimal:

Binary numbers to add a3 a2 a1 a0 + b3 b2 b1 b0	Binary result C0 S3 S2 S1 S0	Decimal conversion N2 N1 (X3 X2 X1 X0) (X3 X2 X1 X0)
1001 + 0111	10000	16
1011 + 1001		
1110 + 0101		
0010 + 1110		
1101 + 1011		

Q2. Consider the five-bit binary result (C0, S3, S2, S1, S0) representation in the table above. We would like to represent each combination as its equivalent in two decimal digits, each of which can be represented in binary as shown in the following table. Finish filling in the following truth table.

Cpr E 281 LAB06 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Lab 6 Answer Sheet

C0	S 3	S2	S1	SO	Dec	imal	N2X3	N2X2	N2X1	N2X0	N1X3	N1X2	N1X1	N1X0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	1	0	0	0	0	0	0	0	1
0	0	0	1	0	0	2	0	0	0	0	0	0	1	0
0	0	0	1	1	0	3	0	0	0	0	0	0	1	1
0	0	1	0	0	0	4	0	0	0	0	0	1	0	0
0	0	1	0	1	0	5	0	0	0	0	0	1	0	1
0	0	1	1	0	0	6	0	0	0	0	0	1	1	0
0	0	1	1	1	0	7	0	0	0	0	0	1	1	1
0	1	0	0	0	0	8	0	0	0	0	1	0	0	0
0	1	0	0	1	0	9	0	0	0	0	1	0	0	1
0	1	0	1	0	1	0	0	0	0	1	0	0	0	0
0	1	0	1	1	1	1	0	0	0	1	0	0	0	1
0	1	1	0	0	1	2	0	0	0	1	0	0	1	0
0	1	1	0	1	1	3	0	0	0	1	0	0	1	1
0	1	1	1	0	1	4	0	0	0	1	0	1	0	0
0	1	1	1	1	1	5	0	0	0	1	0	1	0	1
1	0	0	0	0	1	6	0	0	0	1	0	1	1	0
1	0	0	0	1										
1	0	0	1	0										
1	0	0	1	1										
1	0	1	0	0										
1	0	1	0	1										
1	0	1	1	0										
1	0	1	1	1										
1	1	0	0	0										
1	1	0	0	1				Į						
1	1	0	1	0				Ļ						
1	1	0	1	1										
1	1	1	0	0										
1	1	1	0	1										
1	1	1	1	0				ļ						
1	1	1	1	1										

Q3. Find the logic expressions for N2X3, N2X2, N2X1, N2X0, N1X3, N1X2, N1X1, and N1X0 as a function of C0, S3, S2, S1 and S0:

N2X3 =		
N2X2 =		
N2X1 =		
N2X0 =		
N1X3 =		
N1X2 =		
N1X1 =		
N1X0 =		

Q4. Write the Verilog code for the Binary Coded Decimal Converter from **Section 3.3** using the assign statement.

Example:

module

input ... output ... assign ... endmodule

TA Initials: _____

LAB:

Hardware demonstrates a good design. TA Initials: