

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Boolean Algebra

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- HW1 is due today @ 10 pm (but the deadline pushed to Wednesday @ 10pm)
- Sample solutions will be posted on Canvas after the deadline.
- No late homeworks will be accepted.

Administrative Stuff

- HW2 is out
- It is due on Wednesday Sep 6 @ 10pm.
- Submit it on Canvas before the deadline.

Did you play with this toy?

AND Gate

OR Gate

NOT Gate

(the switch is ON but the light is OFF)

NOT Gate

(the switch is OFF but the light is ON)

Boolean Algebra

George Boole 1815-1864

- An algebraic structure consists of
- a set of elements $\{0,1\}$
- binary operators $\{+, \bullet\}$
- and a unary operator $\{$ ' $\}$ or $\{$ - $\}$ or $\{\sim\}$
- Introduced by George Boole in 1854
- An effective means of describing circuits built with switches
- A powerful tool that can be used for designing and analyzing logic circuits

Different Notations for Negation

- All three of these mean "negate x "

$$
\begin{aligned}
& =\mathbf{x}^{\prime} \\
& -\overline{\mathbf{x}} \\
& \sim \sim \mathbf{x}
\end{aligned}
$$

Axioms of Boolean Algebra

1a.
$0-0=0$
1b.
$1+1=1$

2a. $1-1=1$
2b.
$0+0=0$

3a. $0 \cdot 1=1 \cdot 0=0$
3b.
$1+0=0+1=1$

4a. If $x=0$, then $\bar{x}=1$
4b. If $x=1$, then $\bar{x}=0$

Single-Variable Theorems

5a.	$x \cdot 0=0$
5b.	$x+1=1$
6a.	$x \cdot 1=x$
6b.	$x+0=x$
7a.	$x \cdot x=x$
7b.	$x+x=x$
8a.	$x \cdot \bar{x}=0$
8b.	$x+\bar{x}=1$
9.	$\bar{x}=x$

Two- and Three-Variable Properties

10a.
$x \cdot y=y \bullet x$
10b.
$x+y=y+x$

11a.
11b.
$x+(y+z)=(x+y)+z$

12a.
$x \cdot(y+z)=x^{\bullet} y+x^{\bullet} z$
Distributive
12b. $x+y \cdot z=(x+y)^{\bullet}(x+z)$

13a.
$x+x \cdot y=x$
13b.
$\mathbf{x} \cdot(\mathbf{x}+\mathbf{y})=\mathbf{x}$
Commutative

Associative

Absorption

Two- and Three-Variable Properties

14a.
$\mathbf{x} \cdot \mathbf{y}+\mathbf{x} \cdot \overline{\mathbf{y}}=\mathbf{x}$
$(x+y)^{\bullet}(x+\bar{y})=x$

15a. $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$
15b. $\overline{x+y}=\bar{x} \cdot \bar{y}$

16a.
$x+\bar{x}^{\bullet} y=x+y$
16b.
$x^{\bullet}(\bar{x}+y)=x^{\bullet} y$
$17 a$.
$x^{\bullet} y+y^{\bullet} z+\bar{x}^{\bullet} z=x^{\bullet} y+\bar{x}^{\bullet} z$
17b.
$(x+y)^{\bullet}(y+z) \cdot(\bar{x}+z)=(x+y)^{\bullet}(\bar{x}+z)$

Combining

DeMorgan's
theorem

Consensus

Now, let's prove all of these

The First Four are Axioms (i.e., they don't require a proof)

1a.
$0 \cdot 0=0$
1b.
$1+1=1$

2a. $1 \cdot 1=1$
2b. $\quad 0+0=0$

3a. $0 \cdot 1=1 \cdot 0=0$
3b.
$1+0=0+1=1$

4a. If $x=0$, then $\bar{x}=1$
4b. If $x=1$, then $\bar{x}=0$

But here are some other ways to think about them

1a. $0 \cdot 0=0$ 1b. $1+1=1$

AND gate

OR gate

1a. $0 \cdot 0=0$ 1b. $1+1=1$

AND gate

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

1a. $0 \cdot 0=0$ 1b. $1+1=1$

AND gate

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

x_{1}	X_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

$$
\text { 2a. } 1 \cdot 1=1 \quad \text { 2b. } 0+0=0
$$

AND gate

OR gate

2a. 1 - $1=1$

AND gate

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

2b. $0+0=0$

3a. $0 \cdot 1=1 \cdot 0=0$

3b. $1+0=0+1=1$

3a.
$0 \cdot 1=1 \cdot 0=0$

0

AND gate

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

3b. $\quad 1+0=0+1=1$

OR gate

x_{1}	X_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

3a. $0 \cdot 1=1 \cdot 0=0$

3b. $\quad 1+0=0+1=1$

0

AND gate

x_{1}	X_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

x_{1}	X_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

3a.
$0 \cdot 1=1 \cdot 0=0$
3b.
$1+0=0+1=1$

0

AND gate

x_{1}	x_{2}	f
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

x_{1}	x_{2}	f
0	0	0
0	1	1
1	0	1
1	1	1

4a. If $x=0$, then $\bar{x}=1$ 4b. If $x=1$, then $\bar{x}=0$

4a. If $x=0$, then $\bar{x}=1$ ib. If $x=1$, then $\bar{x}=0$

NOT gate

x	\bar{x}
0	1
1	0

NOT gate

Single-Variable Theorems

5a.	$x \cdot 0=0$
5b.	$x+1=1$
6a.	$x \cdot 1=x$
6b.	$x+0=x$
7a.	$x \cdot x=x$
7b.	$x+x=x$
8a.	$x \cdot \bar{x}=0$
8b.	$x+\bar{x}=1$
9.	$\bar{x}=x$

5a. $x \cdot 0=0$

5a. $x \cdot 0=0$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.

5a. $x \cdot 0=0$

The Boolean variable x can have only two possible values: 0 or 1 . Let's look at each case separately.
i) If $x=0$, then we have

$$
0 \cdot 0=0 \quad \text { I/ axiom 1a }
$$

5a. $x \cdot 0=0$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0 \cdot 0=0 \quad / / \text { axiom 1a }
$$

ii) If $x=1$, then we have

$$
1 \cdot 0=0 \quad / / \text { axiom 3a }
$$

5b.
 $x+1=1$

5b. $x+1=1$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0+1=1 \quad / / \text { axiom 3b }
$$

5b. $x+1=1$

The Boolean variable x can have only two possible values: 0 or 1 . Let's look at each case separately.
i) If $x=0$, then we have

$$
0+1=1 \quad / / \text { axiom 3b }
$$

ii) If $x=1$, then we have

$$
1+1=1 \quad / / \text { axiom } 1 \mathrm{~b}
$$

6a. $x \cdot 1=x$

The Boolean variable x can have only two possible values: 0 or 1 . Let's look at each case separately.
i) If $x=0$, then we have

$$
0 \cdot 1=0 \quad \text { // axiom 3a }
$$

ii) If $x=1$, then we have

$$
1 \cdot 1=1 \quad / / \text { axiom 2a }
$$

6a. $x \cdot 1=x$

The Boolean variable x can have only two possible values: 0 or 1 . Let's look at each case separately.
i) If $x=0$, then we have

$$
0 \cdot 1=0
$$

I/ axiom 3a
ii) If $x=1$, then we have

$$
1 \cdot 1=1 \quad / / \text { axiom 2a }
$$

6b. $x+0=x$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0+0=0 \quad \text { }
$$

ii) If $x=1$, then we have

$$
1+0=1 \quad / / \text { axiom 3b }
$$

6b. $x+0=x$

The Boolean variable x can have only two possible values: 0 or 1. Let's look at each case separately.
i) If $x=0$, then we have

$$
0+0=0
$$

// axiom 2b
ii) If $x=1$, then we have

$$
1+0=1
$$

// axiom 3b

7a. \mathbf{x} - $\mathbf{x}=\mathbf{x}$

i) If $x=0$, then we have

$$
0 \cdot 0=0 \quad \text { I/ axiom 1a }
$$

ii) If $x=1$, then we have

$$
1 \cdot 1=1 \quad / / \text { axiom 2a }
$$

7a. $\mathbf{x} \cdot \mathbf{x}=\mathbf{x}$

i) If $x=0$, then we have

$$
0 \cdot 0=0
$$

// axiom 1a
ii) If $x=1$, then we have

$$
1 \cdot 1=1
$$

// axiom 2a

7b. $\quad x+x=x$

i) If $x=0$, then we have

$$
0+0=0 \quad / / \text { axiom 2b }
$$

ii) If $x=1$, then we have

$$
1+1=1 \quad / / \text { axiom } 1 b
$$

7b. $\quad x+x=x$

i) If $x=0$, then we have

$$
0+0=0 \quad / / \text { axiom } 2 b
$$

ii) If $x=1$, then we have

$$
1+1=1
$$

// axiom 1b

8a. $x \cdot \bar{x}=0$

i) If $x=0$, then we have

$$
0 \cdot 1=0 \quad / / \text { axiom 3a }
$$

ii) If $x=1$, then we have

$$
1 \cdot 0=0 \quad / / \text { axiom 3a }
$$

8a. $\mathbf{x} \cdot \overline{\mathbf{x}}=0$

i) If $x=0$, then we have

$$
\mathbf{0} \cdot 1=0 \quad / / \text { axiom 3a }
$$

ii) If $x=1$, then we have

$$
1 \cdot 0=0
$$

I/ axiom 3a

8b. $\quad \mathrm{x}+\overline{\mathrm{x}}=1$

i) If $x=0$, then we have

$$
0+1=1
$$

// axiom 3b
ii) If $x=1$, then we have

$$
1+0=1 \quad / / \text { axiom } 3 b
$$

8b. $\quad x+\bar{x}=1$

i) If $x=0$, then we have

$$
0+1=1
$$

// axiom 3b
ii) If $x=1$, then we have

$$
1+0=1
$$

// axiom 3b

9. $\overline{\bar{x}}=\mathbf{x}$

i) If $x=0$, then we have

$$
\bar{x}=1
$$

// axiom 4a
let $\mathrm{y}=\overline{\mathbf{x}}=1$, then we have

$$
\bar{y}=0
$$

// axiom 4b

Therefore,

$$
\overline{\bar{x}}=x \quad(\text { when } x=0)
$$

$$
\text { 9. } \overline{\overline{\mathbf{x}}}=\mathbf{x}
$$

ii) If $x=1$, then we have

$$
\bar{x}=0
$$

// axiom 4b
let $\mathbf{y}=\overline{\mathbf{x}}=0$, then we have

$$
\bar{y}=1
$$

// axiom 4a

Therefore,

$$
\overline{\bar{x}}=x \quad(\text { when } x=1)
$$

10a.
$\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$
10b. $\quad \mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$

10a.

10b. $\quad x+y=y+x$

AND gate

x	y	f
0	0	0
0	1	0
1	0	0
1	1	1

OR gate

x	y	f
0	0	0
0	1	1
1	0	1
1	1	1

The order of the inputs does not matter.

11a. $\mathbf{x} \cdot(\mathbf{y} \cdot \mathbf{z})=(x \cdot y)$ Z

| x | y | z | x | $y \cdot z$ | $x \cdot(y \circ z)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | | | |
| 0 | 0 | 1 | | | |
| 0 | 1 | 0 | | | |
| 0 | 1 | 1 | | | |
| 1 | 0 | 0 | | | |
| 1 | 0 | 1 | | | |
| 1 | 1 | 0 | | | |
| 1 | 1 | 1 | | | |

Truth table for the left-hand side

11a.
 $\mathbf{x} \cdot(\mathrm{y} \cdot \mathrm{z})=(\mathrm{x} \cdot \mathrm{y})$
 Z

\mathbf{x}	\mathbf{y}	\mathbf{z}	x	$\mathrm{y} \cdot \mathrm{z}$	x •(y॰z)
0	0	0	0	0	
0	0	1	0	0	
0	1	0	0	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Truth table for the left-hand side

11a. $x \cdot(y \cdot z)=(x \cdot y) \cdot z$

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{x}	$\mathrm{y} \cdot \mathbf{z}$	$\mathrm{x} \cdot(\mathrm{y} \cdot \mathrm{z})$
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	0	0
1	1	1	1	1	1

Truth table for the left-hand side

11a. $x \cdot(y \cdot z)=(x \cdot y) \cdot z$

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathrm{x} \cdot \mathrm{y}$	z	$(\mathrm{x} \cdot \mathrm{y}) \cdot \mathbf{z}$
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	1	1

Truth table for the right-hand side

11a.
 $\mathbf{x} \cdot(\mathrm{y} \cdot \mathrm{z})=(\mathrm{x} \cdot \mathrm{y}) \cdot \mathbf{z}$

$x \cdot(y \times z)$	$(x \cdot y) \cdot z$
0	0
0	0
0	0
0	0
0	0
0	0
0	0
1	1

These two are identical, which concludes the proof.

11b. $\quad x+(y+z)=(x+y)+z$

x	y	z	x	$\mathrm{y}+\mathrm{z}$	$\mathrm{x}+(\mathrm{y}+\mathrm{z})$
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Truth table for the left-hand side

11b. $x+(y+z)=(x+y)+z$

x	y	z	x	$\mathrm{y}+\mathrm{z}$	$\mathrm{x}+(\mathrm{y}+\mathrm{z})$
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	1	1	
1	1	0	1	1	
1	1	1	1	1	

Truth table for the left-hand side

11b. $\quad x+(y+z)=(x+y)+z$

x	y	z	x	$\mathrm{y}+\mathrm{z}$	$\mathrm{x}+(\mathrm{y}+\mathrm{z})$
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	1	1
0	1	1	0	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Truth table for the left-hand side

11b. $x+(y+z)=(x+y)+z$

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathrm{x}+\mathrm{y}$	z	$(\mathrm{x}+\mathrm{y})+\mathbf{z}$
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	1	0	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Truth table for the right-hand side

11b. $\quad x+(y+z)=(x+y)+z$

$x+(y+z)$	$(x+y)+z$
0	0
1	1
1	1
1	1
1	1
1	1
1	1
1	1

These two are identical, which concludes the proof.

The Venn Diagram Representation

Venn Diagram Basics

(a) Constant 1

(c) Variable x

(b) Constant 0

(d) \bar{X}
[Figure 2.14 from the textbook]

Venn Diagram Basics

(e) $x y$

(g) $x \bar{y}$

(f) $x+y$

[Figure 2.14 from the textbook]

Let's Prove the Distributive Properties

12a. $x \cdot(y+z)=x^{\bullet} y+x^{\bullet} z$ 12b. $x+y \cdot z=(x+y)^{\bullet}(x+z)$

12a. $x \cdot(y+z)=x^{\bullet} y+x^{\bullet} z$

(a) x

(b) $y+z$

(c) $x(y+z)$

(d) $x y$

(e) $x Z$

(f) $x y+x z$
[Figure 2.15 from the textbook]

12b. $x+y \cdot z=(x+y)^{\bullet}(x+z)$

(a) x

(b) $y \cdot z$

(c) $x+y \cdot z$

(d) $x+y$

(e) $x+z$

(f) $(x+y) \cdot(x+z)$
[Figure 2.17 from the textbook]

Try to prove these ones at home

13a. $\mathrm{x}+\mathrm{x} \cdot \mathrm{y}=\mathrm{x}$
13b. $x \cdot(x+y)=x$

14a. $\mathrm{x} \cdot \mathrm{y}+\mathrm{x} \cdot \overline{\mathrm{y}}=\mathrm{x}$
14b. $(x+y) \cdot(x+\bar{y})=x$

DeMorgan's Theorem

$$
\begin{array}{ll}
\text { 15a. } & \overline{x \cdot y}=\bar{x}+\bar{y} \\
\text { 15b. } & \overline{x+y}=\bar{x} \cdot \bar{y}
\end{array}
$$

Proof of DeMorgan's theorem

$$
\text { 15a. } \overline{x \cdot y}=\bar{x}+\bar{y}
$$

Proof of DeMorgan's theorem

15a. $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$

Proof of DeMorgan's theorem

15a. $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$

x	y	$x \cdot y$	$\bar{x} \cdot y$	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0				
0	1	0				
1	0	0				
1	1	1				
LHS						
RHS						

Proof of DeMorgan's theorem

15a. $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$

x	y	$x \cdot y$	$\bar{x} \cdot y$	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0	1			
0	1	0	1			
1	0	0	1			
1	1	1	0			$\underbrace{}_{\text {LHS }}$
RHS						

Proof of DeMorgan's theorem

15a. $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$

x	y	$x \cdot y$	$\bar{x} \cdot y$	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0	1	1		
0	1	0	1	1		
1	0	0	1	0		
1	1	1	0	0		$\underbrace{}_{\text {LHS }}$
RHS						

Proof of DeMorgan's theorem

15a. $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$

x	y	$x \cdot y$	$\bar{x} \cdot y$	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0	1	1	1	
0	1	0	1	1	0	
1	0	0	1	0	1	
1	1	1	0	0	0	
LHS	$\underbrace{}_{\text {RHS }}$					

Proof of DeMorgan's theorem

15a. $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$

x	y	$x \cdot y$	$\bar{x} \cdot y$	\bar{x}	\bar{y}	$\bar{x}+\bar{y}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0
LHS						

Proof of DeMorgan's theorem

15a. $\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}}+\overline{\mathrm{y}}$

These two columns are equal. Therefore, the theorem is true.

Alternative proof using Venn Diagrams

15a. $\overline{x \cdot y}=\bar{x}+\bar{y}$

(e)

Let's prove the other DeMorgan's theorem

 15b. $\overline{\mathrm{x}+\mathrm{y}}=\overline{\mathrm{x}} \cdot \overline{\mathrm{y}}$Let's prove the other DeMorgan's theorem 15b. $\overline{x+y}=\bar{x} \cdot \bar{y}$

Let's prove the other DeMorgan's theorem 15b. $\overline{x+y}=\bar{x} \cdot \bar{y}$

Let's prove the other DeMorgan's theorem 15b. $\overline{x+y}=\bar{x} \cdot \bar{y}$

Let's prove the other DeMorgan's theorem 15b. $\overline{x+y}=\bar{x} \cdot \bar{y}$

Let's prove the other DeMorgan's theorem 15b. $\overline{x+y}=\bar{x} \cdot \bar{y}$

Let's prove the other DeMorgan's theorem 15b. $\overline{\mathrm{x}+\mathrm{y}}=\overline{\mathrm{x}} \cdot \overline{\mathrm{y}}$

Let's prove the other DeMorgan's theorem

15b. $\overline{\mathrm{x}+\mathrm{y}}=\overline{\mathrm{x}} \cdot \overline{\mathrm{y}}$
These two columns are equal, so the theorem is true.

DeMorgan's Theorem
 Generalizes to more than 2 variables

$$
\begin{aligned}
& \overline{x \cdot y \cdot z}=\bar{x}+\bar{y}+\bar{z} \\
& \overline{x+y+z}=\bar{x} \cdot \bar{y} \cdot \bar{z}
\end{aligned}
$$

DeMorgan's Theorem
 Generalizes to more than 2 variables

Try to prove these ones at home

16a. $\quad x+\bar{x} \cdot y=x+y$
16b. $\quad x^{\bullet}(\bar{x}+y)=x \cdot y$

17a. $\quad x^{\bullet} y+y^{\bullet} z+\bar{x}^{\bullet} z=x^{\bullet} y+\bar{x}^{\bullet} z$
17b.
$(x+y)^{\bullet}(y+z) \cdot(\bar{x}+z)=(x+y) \cdot(\bar{x}+z)$

Venn Diagram Example Proof of Property 17a

17a. $\quad x^{\bullet} \cdot \mathbf{y}+y^{\bullet} \mathbf{z}+\bar{x} \cdot \mathbf{z}=x^{\bullet} \cdot \mathbf{y}+\bar{x} \bullet \mathbf{z}$

Left-Hand Side

[Figure 2.16 from the textbook]

Left-Hand Side

x y

$\bar{X}{ }_{Z}$

$y z$

Right-Hand Side

[Figure 2.16 from the textbook]

Left-Hand Side

x y

$\bar{X}{ }_{Z}$

These two are equal

$y z$

$x y+\bar{x} z+y z$

[Figure 2.16 from the textbook]

Questions?

THE END

