

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Signed Numbers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Signed Integer Numbers

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Today's Lecture is About Addition and Subtraction of Signed Numbers

Quick Review

Signed v.s. Unsigned Numbers

Signed v.s. Unsigned Numbers

positive and negative integers

only positive integers

Signed v.s. Unsigned Numbers

positive and

negative

integers

only

positive

integers

and zero

and zero

Two Different Types of Binary Numbers

Unsigned numbers

- All bits jointly represent a positive integer.
- Negative numbers cannot be represented this way.

Signed numbers

- The left-most bit represents the sign of the number.
- If that bit is 0, then the number is positive.
- If that bit is 1, then the number is negative.
- The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.

Two Different Types of Binary Numbers

Unsigned numbers

- All bits jointly represent a positive integer.
- Negative numbers cannot be represented this way.

Signed numbers

There are 3 different ways to represent signed numbers. They will be introduced today. But only the last method will be used later.

- The left-most bit represents the sign of the number.
- If that bit is 0, then the number is positive.
- If that bit is 1, then the number is negative.
- The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.

Important Clarificaiton

Addition of Boolean variables, e.g.,

$$x + y$$
 where $x, y \in \{0, 1\}$

```
x_4x_3x_2x_1x_0 + y_4y_3y_2y_1y_0 where each x_k, y_k \in \{0, 1\}
```

Addition of Boolean variables, e.g.,

$$1 + 0 = 1$$

$$00101 + 00110 = 01011$$

Addition of Boolean variables, e.g.,

$$\begin{array}{c} 1 \\ 0 \end{array} \longrightarrow \begin{array}{c} 1 \\ \end{array}$$

Addition of Boolean variables, e.g.,

$$\begin{array}{c} 1 \\ 0 \end{array} \longrightarrow \begin{array}{c} 1 \\ \end{array}$$

Addition of Boolean variables, e.g.,

```
1 + 1 = 10 (because in decimal 1 + 1 = 2)
```

Addition of 1-bit Unsigned Numbers

Addition of two 1-bit numbers (there are four possible cases)

Addition of two 1-bit numbers (there are four possible cases)

Adding two bits (the truth table)

x y	Carry c	Sum s
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

Adding two bits (the truth table)

	Carry	Sum
x y	С	S
0 + 0	= 0	$0 = 0_{10}$
0 + 1	= 0	$1 = 1_{10}$
1 + 0	= 0	$1 = 1_{10}$
1 + 1	= 1	$0 = 2_{10}$

Adding two bits (the logic circuit)

The Half-Adder

(d) Graphical symbol

Addition of multibit numbers

Generated carries
$$\longrightarrow$$
 1 1 1 0 ... c_{i+1} c_i ... $X = x_4 x_3 x_2 x_1 x_0$ 0 1 1 1 1 (15)₁₀ ... x_i ...

Bit position *i*

carry		0	1	1	0
			3	8	9
	T		1	5	7
			5	4	6

Another example in base 10

Another example in base 10

carry		1	0	1	0	
			9	3	8	
	T		2	1	4	
			1	5	2	

Problem Statement and Truth Table

 c_{i+1}	c_{i}	
 	x_i	
 	y_i	
 	s_i	

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Problem Statement and Truth Table

$c_i x_i y_i$	c_{i+1}	s_i	
0+0+0 0+0+1 0+1+0 0+1+1 1+0+0 1+0+1 1+1+0 1+1+1	= 0 = 0 = 0 = 1 = 0 = 1 = 1 = 1	0 1 1 0 1 0 0	$= 0_{10}$ $= 1_{10}$ $= 1_{10}$ $= 2_{10}$ $= 2_{10}$ $= 2_{10}$ $= 3_{10}$

Let's fill-in the two K-maps

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0 1	0 0	0 1
0 0		0	0 0 1	1 1 0
1	0	0	0	1
1 1	0	1 0	1	0
1	1	1	1	1

 $c_{i+1} =$

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1		0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s_i = x_i \oplus y_i \oplus c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

[Figure 3.3a-b from the textbook]

The circuit for the two expressions

This is called the Full-Adder

XOR Magic (s_i can be implemented in two different ways)

$$s_i = x_i \oplus y_i \oplus c_i$$

These two circuits are equivalent

A decomposed implementation of the full-adder circuit

A decomposed implementation of the full-adder circuit

[Figure 3.4 from the textbook]

We can place the arrows anywhere

n-bit ripple-carry adder

n-bit ripple-carry adder abstraction

n-bit ripple-carry adder abstraction

The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same

Example: Computing 5+6 using a 5-bit adder

Example: Computing 5+6 using a 5-bit adder

_ 82	_ 48	_ 32
61	26	11
??	??	??

_ 82	_ 48	_ 32
61	2 6	11
21	22	21

The problems in which row are easier to calculate?

The problems in which row are easier to calculate?

82
61
21

Why?

$$82 - 64 = 82 + 100 - 100 - 64$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$= 82 + (99 + 1 - 64) - 100$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$= 82 + (99 + 1 - 64) - 100$$

$$= 82 + (99 - 64) + 1 - 100$$

$$82 - 64 = 82 + 100 - 100 - 64$$

$$= 82 + (100 - 64) - 100$$

$$= 82 + (99 + 1 - 64) - 100$$

Does not require borrows

$$= 82 + (99 - 64) + 1 - 100$$

9's Complement (subtract each digit from 9)

10's Complement (subtract each digit from 9 and add 1 to the result)

$$\begin{array}{r}
-99 \\
-64 \\
\hline
35 + 1 = 36
\end{array}$$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

= $82 + 35 + 1 - 100$

$$82 - 64 = 82 + (99 - 64) + 1 - 100$$

$$= 82 + 35 + 1 - 100$$

$$82 - 64 = 82 + 99 - 64) + 1 - 100$$

$$= 82 + 35 + 1 - 100$$

$$= 82 + 36 - 100$$

$$82 - 64 = 82 + 99 - 64 + 1 - 100$$

$$= 82 + 35 + 1 - 100$$

$$= 82 + 36 - 100$$
// Add the first two.
$$= 118 - 100$$

$$82 - 64 = 82 + 99 - 64 + 1 - 100$$

$$= 82 + 35 + 1 - 100$$

$$= 82 + 36 - 100$$
// Add the first two.
$$= 18$$
// No need to subtract 100.
$$= 18$$

Formats for representation of integers

(a) Unsigned number

(b) Signed number

[Figure 3.7 from the textbook]

Unsigned Representation

_	_	_	_	_	_	_	2^0
0	0	1	0	1	1	0	0

This represents +44.

Unsigned Representation

27	_	_	_	_		_	_
1	0	1	0	1	1	0	0

This represents + 172.

Three Different Ways to Represent Negative Integer Numbers

- Sign and magnitude
- 1's complement
- 2's complement

Three Different Ways to Represent Negative Integer Numbers

- Sign and magnitude
- 1's complement
- 2's complement

only this method is used in modern computers

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

The top half is the same in all three representations. It corresponds to the positive integers.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In all three representations the first bit represents the sign. If that bit is 1, then the number is negative.

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	$\overline{-1}$	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Notice that in this representation there are two zeros!

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	_1_	-2
1111	-7	-0	-1

There are two zeros in this representation as well!

$b_3b_2b_1b_0$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In this representation there is one more negative number.

Sign and Magnitude

Sign and Magnitude Representation (using the left-most bit as the sign)

sign	2^6	2^5	2^4	2^3	2^2	2^1	2^0
0	0	1	0	1	1	0	0

This represents +44.

Sign and Magnitude Representation (using the left-most bit as the sign)

sign	2^6	2^5	2^4	2^3	2^2	2^1	2^0
1	0	1	0	1	1	0	0

This represents -44.

Circuit for negating a number stored in sign and magnitude representation

Circuit for negating a number stored in sign and magnitude representation

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an n-bit positive number P.

Then, in 1's complement representation K is obtained by subtracting P from $2^n - 1$, namely

$$K = (2^n - 1) - P$$

This means that K can be obtained by inverting all bits of P.

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an 8-bit positive number P.

Then, in 1's complement representation K is obtained by subtracting P from $2^8 - 1$, namely

$$K = (2^8 - 1) - P = 255 - P$$

This means that K can be obtained by inverting all bits of P.

Provided that P is between 0 and 127, because the most significant bit must be zero to indicate that it is positive.

1's Complement Representation

sign	26	25	24	2^3	2^2	2^1	2^0
0	O	1	0	1	1	0	0

1's Complement Representation

1's Complement Representation

+ 44 in 1's complement representation

sign	_			_		_	2^0	
0	0	1	0	1	1	0	0	+ 44

sign	2^6	2^5	24	2^3	2^2	2^1	2^0	
1	1	0	1	0	0	1	1	- 44

$$2^7 + 2^6 + 2^4 + 2^1 + 2^0 = 211$$
 (as unsigned)

sign	_		_			_	2^0	
0	0	1	0	1	1	0	0	+ 44

211 = 255 - 44 (as unsigned)

sign	26	25	2^4	23	2^2	2^1	20	_
0	0	1	0	1	1	0	0	+ 44

- 44 in 1's complement representation

1's complement (subtract each digit from 1)

No need to borrow!

1	1	0	1	0	0	1	1	
0	0	1	0	1	1	0	0	
 1	1	1	1	1	1	1	1	

211 = 255 - 44 (as unsigned)

211 = 255 - 44 (as unsigned)

or

- 44 in 1's complement representation

Circuit for negating a number stored in 1's complement representation

Circuit for negating a number stored in 1's complement representation

This works in reverse too (from negative to positive)

1's Complement Representation

sign	26	25	24	23	2^2	21	20
1	1	0	1	0	O	1	1

- 44

1's Complement Representation (invert all the bits to negate the number)

sign	2^6	25	2^4	23	2^2	2^1	2^0	
1	1	0	1	0	0	1	1	- 44

sign	26	25	24	2^3	2^2	2^1	2^0	
0	0	1	0	1	1	0	0	+ 44

1's Complement Representation (invert all the bits to negate the number)

44 = 255 - 211 (as unsigned)

1's Complement Representation (invert all the bits to negate the number)

- 44 in 1's complement representation

+ 44 in 1's complement representation

Negate these numbers stored in 1's complement representation

0 1 0 1

1011

1 1 1 0

0 1 1 1

Negate these numbers stored in 1's complement representation

0 1 0 1	1 0 1 1
1010	0100

Just flip 1's to 0's and vice versa.

Negate these numbers stored in 1's complement representation

$$0\ 1\ 0\ 1 = +5$$

$$1\ 0\ 1\ 0 = -5$$

$$1 \ 0 \ 1 \ 1 = -4$$

$$0\ 1\ 0\ 0 = +4$$

$$1\ 1\ 1\ 0 = -1$$

$$0\ 0\ 0\ 1 = +1$$

$$0.1111 = +7$$

$$1\ 0\ 0\ 0 = -7$$

Just flip 1's to 0's and vice versa.

Addition of two numbers stored in 1's complement representation

There are four cases to consider

$$\bullet$$
 (-5) + (+2)

$$\bullet$$
 (+5) + (-2)

$$\bullet$$
 (-5) + (-2)

There are four cases to consider

•
$$(-5)$$
 + (-2) negative plus negative

$$\begin{array}{c} (+5) \\ +(+2) \\ \hline (+7) \end{array} \qquad \begin{array}{c} 0\ 1\ 0\ 1 \\ +\ 0\ 0\ 1\ 0 \\ \hline \hline 0\ 1\ 1\ 1 \end{array}$$

$b_3b_2b_1b_0$	1's complement
0111 0110 0101 0100 0011 0010 0001 0000 1000 1001 1011	+7 +6 +5 +4 +3 +2 +1 +0 -7 -6 -5 -4
1011 1100 1101 1110 1111	$ \begin{array}{r} -4 \\ -3 \\ -2 \\ -1 \\ -0 \end{array} $

$$\begin{array}{ccc}
(+5) & & 0 & 1 & 0 & 1 \\
+ & (+2) & & + & 0 & 0 & 1 & 0 \\
\hline
(+7) & & & \hline
0 & 1 & 1 & 1 & 1
\end{array}$$

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$\begin{array}{ccc} (-5) & & 1010 \\ +(+2) & & +0010 \\ \hline (-3) & & \hline 1100 \end{array}$$

$b_3b_2b_1b_0$	1's complement
0111 0110 0101 0100 0011 0010 0001 0000 1000 1001 1011 1100 1101 1110	+7 $+6$ $+5$ $+4$ $+3$ $+2$ $+1$ $+0$ -7 -6 -5 -4 -3 -2 -1
1111	-0

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$\begin{array}{ccc} (+5) & & 0 & 1 & 0 & 1 \\ +(-2) & & & +1 & 1 & 0 & 1 \\ \hline (+3) & & 1 & 0 & 0 & 1 & 0 \end{array}$$

$b_3b_2b_1b_0$	1's complement
0111 0110 0101 0100 0011 0010 0001 0000 1000 1001 1011	+7 +6 +5 +4 +3 +2 +1 +0 -7 -6 -5 -4
1011 1100 1101 1110 1111	$ \begin{array}{r} -4 \\ -3 \\ -2 \\ -1 \\ -0 \end{array} $

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$(+5)$$
 $+(-2)$
 $+1101$
 $(+3)$
 10010

But this is 2!

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement				
0111	+7				
0110	+6				
0101	+5				
0100	+4				
0011	+3				
0010	+2				
0001	+1				
0000	+0				
1000	-7				
1001	-6				
1010	-5				
1011	-4				
1100	-3				
1101	-2				
1110	-1				
1111	-0				

We need to perform one more addition to get the result.

43				
1's complement				
+7				
+6				
+5				
+4				
+3				
+2				
+1				
+0				
-7				
-6				
-5				
-4				
-3				
-2				
-1				
-0				

$$\begin{array}{ccc}
 & (-5) & 1010 \\
 + (-2) & + 1101 \\
\hline
 & (-7) & 1011
\end{array}$$

$b_3b_2b_1b_0$	1's complement
0111 0110 0101 0100 0011 0010 0001 0000 1000 1001 1010 1011 1100 1101	+7 +6 +5 +4 +3 +2 +1 +0 -7 -6 -5 -4 -3 -2
1110 1111	$ \begin{array}{c} -1 \\ -0 \end{array} $

$$+\frac{(-5)}{(-7)}$$
 $+\frac{1010}{10111}$

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

$$+\frac{(-5)}{(-7)}$$
 $+\frac{1010}{10111}$

But this is +7!

$b_3b_2b_1b_0$	1's complement					
0111	+7					
0110	+6					
0101	+5					
0100	+4					
0011	+3					
0010	+2					
0001	+1					
0000	+0					
1000	-7					
1001	-6					
1010	-5					
1011	-4					
1100	-3					
1101	-2					
1110	-1					
1111	-0					

We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement				
0111	+7				
0110	+6				
0101	+5				
0100	+4				
0011	+3				
0010	+2				
0001	+1				
0000	+0				
1000	-7				
1001	-6				
1010	-5				
1011	-4				
1100	-3				
1101	-2				
1110	-1				
1111	-0				

We need to perform one more addition to get the result.

$b_3b_2b_1b_0$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0
I	

Implications for arithmetic operations in 1's complement representation

- We could do addition in 1's complement, but the circuit will need to handle these exceptions.
- In some cases it will run faster that others, thus creating uncertainties in the timing.
- Therefore, 1's complement is not used in practice to do arithmetic operations.
- But it may show up as an intermediary step in doing 2's complement operations.

2's Complement

2's complement (subtract each digit from 1 and add 1 to the result)

Let K be the negative equivalent of an n-bit positive number P.

Then, in 2's complement representation K is obtained by subtracting P from 2ⁿ, namely

$$K = 2^n - P$$

2's complement (subtract each digit from 1 and add 1 to the result)

Let K be the negative equivalent of an 8-bit positive number P.

Then, in 2's complement representation K is obtained by subtracting P from 2⁸, namely

$$K = 2^8 - P = 256 - P$$

2's Complement Representation

sign		_	_	_	_		_	_
0	0	1	0	1	1	0	0	+ 44

2's Complement Representation

sign	2^6	25	2^4	23	2^2	2^1	2^0	
0	0	1	0	1	1	0	0	+ 44

sign	2^6	2^5	24	2^3	2^2	2^1	2^0	
1	1	0	1	0	1	0	0	- 44

2's Complement Representation

2's Complement Representation

sign	2^6	25	24	23	2^2	2^1	2^0	
0	0	1	0	1	1	0	0	+ 44

$$212 = 256 - 44$$

Deriving 2's complement

For a positive n-bit number P, let K_1 and K_2 denote its 1's and 2's complements, respectively.

$$\mathbf{K}_1 = (2^{\mathbf{n}} - 1) - \mathbf{P}$$

$$K_2 = 2^n - P$$

Since $K_2 = K_1 + 1$, it is evident that in a logic circuit the 2's complement can be computed by inverting all bits of P and then adding 1 to the resulting 1's-complement number.

Deriving 2's complement

For a positive 8-bit number P, let K_1 and K_2 denote its 1's and 2's complements, respectively.

$$K_1 = (2^n - 1) - P = 255 - P$$

 $K_2 = 2^n - P = 256 - P$

Since $K_2 = K_1 + 1$, it is evident that in a logic circuit the 2's complement can be computed by inverting all bits of P and then adding 1 to the resulting 1's-complement number.

0 1 0 1

1 1 1 0

1 1 0 0

0 1 1 1

1 1 1 0

0001

0 1 0 1
1 0 1 0

Invert all bits...

$$\begin{array}{r}
0 \ 1 \ 0 \ 1 \\
+ \ 1 \\
\hline
1 \ 0 \ 1 \ 1
\end{array}$$

$$\begin{array}{c}
1 \ 1 \ 1 \ 0 \\
+ \ 0 \ 0 \ 1 \\
\hline
0 \ 0 \ 1 \ 0
\end{array}$$

$$\begin{array}{c}
1 \ 1 \ 0 \ 0 \\
+ \ & 1 \\
\hline
0 \ 1 \ 0 \ 0
\end{array}$$

$$\begin{array}{c}
0 \ 1 \ 1 \ 1 \\
+ \ 1 \ 0 \ 0 \ 1 \\
\hline
1 \ 0 \ 0 \ 1
\end{array}$$

.. then add 1.

$$\begin{array}{rcl}
1 & 1 & 1 & 0 & = -2 \\
 & & & 0 & 0 & 1 \\
 & & & & 1 \\
\hline
 & & & 0 & 0 & 1 & 0 & = +2
\end{array}$$

$$\begin{array}{rcl}
0 & 1 & 1 & 1 & = +7 \\
1 & 0 & 0 & 0 \\
+ & & 1 \\
\hline
1 & 0 & 0 & 1 & = -7
\end{array}$$

Alternative Circuit

This also works for negating a negative number, thus making it positive

Circuit #2 for negating a number stored in 2's complement representation (in 2's complement)

Quick way (for a human) negate a number stored in 2's complement

- Scan the binary number from right to left
- Copy all bits that are 0 from right to left
- Stop at the first 1
- Copy that 1 as well
- Invert all remaining bits

0 1 0 1

1 1 1 0

1 1 0 0

0 1 1 1

0 1 0 1 1 1 1 0

1 1 0 0 0 1 1 1

. . 0 0

Copy all bits that are 0 from right to left.

0 1 0 1

. . 1

1 1 1 0

1 1 0 0 0 1 1 1

. 100

Stop at the first 1. Copy that 1 as well.

0 1 0 1

1110

1011

0010

1 1 0 0

0 1 1 1

0 1 0 0

1001

Invert all remaining bits.

$$0\ 1\ 0\ 1 = +5$$

$$1\ 0\ 1\ 1 = -5$$

$$1 \ 1 \ 1 \ 0 = -2$$

$$0 \ 0 \ 1 \ 0 = +2$$

$$1\ 1\ 0\ 0\ = -4$$

$$0\ 1\ 0\ 0\ = +4$$

$$0 \ 1 \ 1 \ 1 = +7$$

$$1\ 0\ 0\ 1\ = -7$$

The number circle for 2's complement

Addition of two numbers stored in 2's complement representation

$$\bullet$$
 (-5) + (+2)

$$\bullet$$
 (+5) + (-2)

$$\bullet$$
 (-5) + (-2)

•
$$(-5)$$
 + (-2) negative plus negative

A) Example of 2's complement addition

$$(+5)$$
 $+(+2)$
 $+(+7)$
 0101
 $+(+7)$

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

B) Example of 2's complement addition

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

C) Example of 2's complement addition

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

D) Example of 2's complement addition

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

representation for signed integer numbers

 algorithm for computing the 2's complement (regardless of the representation of the number)

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

- representation for signed integer numbers in 2's complement
- algorithm for computing the 2's complement (regardless of the representation of the number) take the 2's complement (or negate)

Subtraction of two numbers stored in 2's complement representation

$$\bullet$$
 (-5) - (+2)

•
$$(+5)$$
 - (-2)

$$\bullet$$
 (-5) - (-2)

•
$$(-5)$$
 - (-2) negative minus negative

$$\bullet$$
 (-5) - (+2)

•
$$(+5)$$
 - (-2)

$$\bullet$$
 (-5) - (-2)

$$\bullet$$
 (+5) - (+2) = (+5) + (-2)

$$\bullet \ (-5) - (+2) = (-5) + (-2)$$

$$\bullet$$
 (+5) - (-2) = (+5) + (+2)

$$\bullet \ (-5) - (-2) = (-5) + (+2)$$

$$\bullet \ (+5) \quad - \quad (+2) \qquad = \qquad (+5) \quad + \quad (-2)$$

$$\bullet \ (-5) \quad - \quad (+2) \qquad = \qquad (-5) \quad + \quad (-2)$$

$$\bullet$$
 (+5) $-$ (-2) = (+5) $+$ (+2)

$$\bullet \ (-5) \quad - \quad (-2) \qquad = \qquad (-5) \quad + \quad (+2)$$

We can change subtraction into addition ...

•
$$(+5)$$
 - $(+2)$ = $(+5)$ + (-2)
• (-5) - $(+2)$ = (-5) + (-2)
• $(+5)$ - (-2) = $(+5)$ + $(+2)$

$$\bullet \ (-5) - (-2) = (-5) + (+2)$$

... if we negate the second number.

$$\bullet \ (+5) - (+2) = (+5) + (-2)$$

$$\bullet \ (-5) - (+2) = (-5) + (-2)$$

$$\bullet \ (+5) - (-2) = (+5) + (+2)$$

$$\bullet \ (-5) - (-2) = (-5) + (+2)$$

These are the four addition cases (arranged in a shuffled order)

means take the 2's complement (or negate)

Notice that the minus changes to a plus.

means take the 2's complement (or negate)

2's complement
+7
+6
+5
+4
+3
+2
+1
+0
-8
-7
-6
-5
-4
-3
-2
-1

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

Graphical interpretation of four-bit 2's complement numbers

- (a) The number circle
- (b) Subtracting 2 by adding its 2's complement

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

$b_3b_2b_1b_0$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

Taking the 2's complement negates the number

decimal	b ₃ b ₂ b ₁ b ₀	take the 2's complement	b ₃ b ₂ b ₁ b ₀	decimal
+7	0111	=>	1001	-7
+6	0110	\Longrightarrow	1010	-6
+5	0101	=>	1011	- 5
+4	0100	=>	1100	-4
+3	0011	\Longrightarrow	1101	-3
+2	0010	=>	1110	-2
+1	0001	=>	1111	-1
+0	0000	=>	0000	+0
-8	1000	\Longrightarrow	1000	-8
- 7	1001	=>	0111	+7
-6	1010	\Longrightarrow	0110	+6
-5	1011	=>	0101	+5
-4	1100	⇒	0100	+4
-3	1101	\Longrightarrow	0011	+3
-2	1110	\Longrightarrow	0010	+2
-1	1111	=>	0001	+1

Taking the 2's complement negates the number

decimal	$b_3 b_2 b_1 b_0$	take the 2's complement	b ₃ b ₂ b ₁ b ₀	decimal	
+7	0111	⇒ >	1001	- 7	
+6	0110	⇒	1010	-6	
+5	0101	\Longrightarrow	1011	- 5	
+4	0100	⇒	1100	-4	
+3	0011	\Longrightarrow	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	⇒	1111	-1 T	his is a
+0	0000	\Longrightarrow	0000	+0 ex	ception
-8	1000	\Longrightarrow	1000	-8	
- 7	1001	\Longrightarrow	0111	+7	
-6	1010	⇒	0110	+6	
- 5	1011	\Longrightarrow	0101	+5	
-4	1100	\Longrightarrow	0100	+4	
-3	1101	⇒	0011	+3	
-2	1110	⇒	0010	+2	
-1	1111	\Longrightarrow	0001	+1	

Taking the 2's complement negates the number

decimal	$b_3 b_2 b_1 b_0$	take the 2's complement	b ₃ b ₂ b ₁ b ₀	decimal	
+7	0111	= ⇒	1001	- 7	
+6	0110	⇒ >	1010	-6	
+5	0101	=>	1011	- 5	
+4	0100	⇒	1100	-4	
+3	0011	\Longrightarrow	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	⇒	1111	-1	
+0	0000	\Longrightarrow	0000	+0 A	nd th
-8	1000	\Longrightarrow	1000	-8	ne to
- 7	1001	⇒	0111	+7	
-6	1010	\Longrightarrow	0110	+6	
- 5	1011	=>	0101	+5	
-4	1100	=>	0100	+4	
-3	1101	⇒	0011	+3	
-2	1110	\Longrightarrow	0010	+2	
-1	1111	\Longrightarrow	0001	+1	

But that exception does not matter

But that exception does not matter

But that exception does not matter

Take-Home Message

Take-Home Message

 Subtraction can be performed by simply negating the second number and adding it to the first, regardless of the signs of the two numbers.

 Thus, the same adder circuit can be used to perform both addition and subtraction !!!

Adder/subtractor unit

XOR Tricks

control	у	out
0	0	0
0	1	1
1	0	1
1	1	0

XOR as a repeater

XOR as a repeater

out
0
1

y _____*y*

XOR as an inverter

XOR as an inverter

Addition: when control = 0

Addition: when control = 0

Addition: when control = 0

Addition Examples: all inputs and outputs are given in 2's complement representation

 $+ \begin{array}{r} 00101 \\ 00110 \\ \hline 00111 \\ \hline 001011 \\ \end{array}$

Addition: 4 + (-7) = -3

Addition: 4 + (-7) = -3

Addition: 4 + (-7) = -3

 $\begin{array}{r} + & 0 & 0 & 1 & 0 & 0 \\ & & 1 & 1 & 0 & 0 & 1 \\ \hline & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ \end{array}$

Subtraction Examples: all inputs and outputs are given in 2's complement representation

100100

+ 111110 00100 100011 Ignore

Detecting Overflow

$$\frac{(-7)}{+(+2)} + \frac{1001}{0010}$$

$$\frac{(-5)}{1011}$$

$$\begin{array}{ccc} (-7) & + & 1001 \\ + & (-2) & & 1110 \\ \hline & & & & 10111 \end{array}$$

$$\begin{array}{c}
(+7) \\
+(+2) \\
\hline
(+9)
\end{array}
+
\begin{array}{c}
01100 \\
0111 \\
0010 \\
\hline
1001
\end{array}$$

$$\begin{array}{c}
(+7) \\
+ (-2) \\
\hline
(+5)
\end{array}
+ \begin{array}{c}
11100 \\
0111 \\
1110
\end{array}$$

Include the carry bits: $c_4 c_3 c_2 c_1 c_0$

$$\begin{array}{c}
(+7) \\
+(+2) \\
(+9)
\end{array} + \begin{array}{c}
0 \ 1 \ 1 \ 0 \ 0 \\
0 \ 1 \ 1 \ 1 \\
0 \ 0 \ 1 \ 0 \\
1 \ 0 \ 0 \ 1
\end{array}$$

$$\begin{array}{c}
(+7) \\
+ (-2) \\
(+5)
\end{array}
+ \begin{array}{c}
11100 \\
0111 \\
1110 \\
10101
\end{array}$$

$$\begin{array}{c|c}
(-7) \\
+ & (-2) \\
\hline
 & (-9) \\
\end{array}
+ \begin{array}{c|c}
1 & 0 & 0 & 0 \\
\hline
 & 1 & 0 & 0 & 1 \\
\hline
 & 1 & 1 & 1 & 0 \\
\hline
 & 1 & 0 & 1 & 1 & 1
\end{array}$$

Include the carry bits:
$$c_4 c_3 c_2 c_1 c_0$$

$$c_{4} = 0$$

$$c_{3} = 1$$

$$(+7)$$

$$+ (+2)$$

$$(+9)$$

$$0 1 1 0 0$$

$$0 1 1 1$$

$$0 0 1 0$$

$$c_4 = 0$$

$$c_3 = 0$$

$$c_4 = 1$$

 $c_3 = 1$
 $(+7)$
 $+(-2)$
 $(+5)$
 11100
 0111
 1110

$$c_4 = 1$$

$$c_3 = 0$$

Include the carry bits: $c_4 c_3 c_2 c_1 c_0$

$$\begin{pmatrix}
c_4 = 0 \\
c_3 = 1
\end{pmatrix}$$

$$\begin{array}{c}
(+7) \\
+(+2) \\
(+9)
\end{array}
+
\begin{array}{c}
0 \ 1 \ 1 \ 0 \ 0 \\
0 \ 1 \ 1 \ 1 \\
0 \ 0 \ 1 \ 0 \\
1 \ 0 \ 0 \ 1
\end{array}$$

$$c_4 = 0$$

$$c_3 = 0$$

$$c_4 = 1$$

$$c_3 = 1$$

$$\begin{array}{c}
(+7) \\
+ (-2) \\
(+5)
\end{array}
+ \begin{array}{c}
11100 \\
0111 \\
1110 \\
10101
\end{array}$$

$$\begin{aligned}
c_4 &= 1 \\
c_3 &= 0
\end{aligned}$$

$$c_4 = 0$$

$$c_3 = 1$$

$$\begin{array}{c}
(+7) \\
+(+2) \\
(+9)
\end{array}
+
\begin{array}{c}
0 \ 1 \ 1 \ 0 \ 0 \\
0 \ 1 \ 1 \ 1 \\
0 \ 0 \ 1 \ 0 \\
1 \ 0 \ 0 \ 1
\end{array}$$

$$c_4 = 0$$

$$c_3 = 0$$

$$c_4 = 1$$

$$c_3 = 1$$

Overflow =
$$c_3\overline{c}_4 + \overline{c}_3c_4$$

$$c_4 = 0$$

$$c_3 = 1$$

$$\begin{array}{c}
(+7) \\
+(+2) \\
(+9)
\end{array}
+
\begin{array}{c}
0 \ 1 \ 1 \ 0 \ 0 \\
0 \ 1 \ 1 \ 1 \\
0 \ 0 \ 1 \ 0 \\
1 \ 0 \ 0 \ 1
\end{array}$$

$$c_4 = 0$$

$$c_3 = 0$$

$$c_4 = 1$$

$$c_3 = 1$$

$$\begin{array}{c}
(+7) \\
+ (-2) \\
(+5)
\end{array}
+ \begin{array}{c}
11100 \\
0111 \\
1110 \\
10101
\end{array}$$

$$\begin{array}{c|c}
 & 10000 \\
 + (-2) \\
\hline
 & 1001 \\
\hline
 & 1110
\end{array}$$

$$\begin{aligned}
c_4 &= 1 \\
c_3 &= 0
\end{aligned}$$

Overflow =
$$c_3\overline{c}_4 + \overline{c}_3c_4$$
XOR

Calculating overflow for 4-bit numbers with only three significant bits

Overflow =
$$c_3\bar{c}_4 + \bar{c}_3c_4$$

= $c_3 \oplus c_4$

Calculating overflow for n-bit numbers with only n-1 significant bits

Overflow =
$$c_{n-1} \oplus c_n$$

Detecting Overflow

Detecting Overflow (with one extra XOR)

Detecting Overflow (with one extra XOR)

Detecting Overflow (alternative method)

Detecting Overflow (alternative method)

Used if you don't have access to the internal carries of the adder.

Detecting Overflow (with one extra XOR)

Another way to look at the overflow issue

Another way to look at the overflow issue

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

$$\begin{array}{ccc}
(+7) \\
+ (+2) \\
\hline
(+9) & & 1001
\end{array}$$

$$\frac{(-7)}{+(+2)} + \frac{1001}{0010}$$

$$\frac{(-5)}{1011}$$

$$\begin{array}{ccc} (+7) & + & 0 & 1 & 1 & 1 \\ + & (-2) & & & 1 & 1 & 1 & 0 \\ \hline (+5) & & & 1 & 0 & 1 & 0 & 1 \end{array}$$

$$\begin{array}{ccc} (-7) & + & 1001 \\ + & (-2) & & 1110 \\ \hline & & & & 10111 \end{array}$$

$$\begin{array}{c|cccc}
 & (-7) \\
 & + (+2) \\
\hline
 & (-5) \\
\end{array}
+ \begin{array}{c|ccccc}
 & 1 & 0 & 0 & 1 \\
 & 0 & 0 & 1 & 0 \\
\hline
 & 1 & 0 & 1 & 1 \\
\end{array}$$

$$x_3 = 0$$

 $y_3 = 0$
 $s_3 = 1$
 $(+7)$
 $+(+2)$
 $(+9)$
 $+ 0$
 0
 1
 0
 1
 0
 1
 0
 1

$$x_3 = 1$$

$$y_3 = 1$$

$$s_3 = 0$$

 $x_3 = 1$

 $y_3 = 0$
 $s_3 = 1$

$$x_3 = 0$$

 $y_3 = 0$
 $s_3 = 1$
 $(+7)$
 $+(+2)$
 $(+9)$
 $+(+9)$
 $+(+9)$
 $+(+9)$
 $+(+9)$

In 2's complement, both +9 and -9 are not representable with 4 bits.

Overflow =
$$\overline{x}_3 \overline{y}_3 s_3 + x_3 y_3 \overline{s}_3$$

Another way to look at the overflow issue

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

Overflow =
$$\overline{x}_3 \overline{y}_3 s_3 + x_3 y_3 \overline{s}_3$$

Questions?

THE END