

CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

Signed Numbers

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Signed Integer Numbers

CprE 281: Digital Logic

lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Today's Lecture is About Addition and Subtraction of Signed Numbers

Quick Review

Signed v.s. Unsigned Numbers

Signed v.s. Unsigned Numbers

positive
and
negative
integers

Signed v.s. Unsigned Numbers
 positive
 and
 negative
 integers
 and zero

Two Different Types of Binary Numbers

Unsigned numbers

- All bits jointly represent a positive integer.
- Negative numbers cannot be represented this way.

Signed numbers

- The left-most bit represents the sign of the number.
- If that bit is 0 , then the number is positive.
- If that bit is 1 , then the number is negative.
- The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.

Two Different Types of Binary Numbers

Unsigned numbers

- All bits jointly represent a positive integer.
- Negative numbers cannot be represented this way.

There are 3 different ways to represent signed
Signed numbers numbers. They will be introduced today. But only the last method will be used later.

- The left-most bit represents the sign of the number.
- If that bit is 0 , then the number is positive.
- If that bit is 1 , then the number is negative.
- The magnitude of the largest number that can be represented in this way is twice smaller than the largest number in the unsigned representation.

Important Clarificaiton

Important Clarification: There are two types of addition

- Addition of Boolean variables, e.g.,

$$
x+y \quad \text { where } x, y \in\{0,1\}
$$

- Addition of n-bit Binary numbers, e.g.,

$$
x_{4} x_{3} x_{2} x_{1} x_{0}+y_{4} y_{3} y_{2} y_{1} y_{0} \quad \text { where each } x_{k}, y_{k} \in\{0,1\}
$$

Important Clarification: There are two types of addition

- Addition of Boolean variables, e.g.,

$$
1+0=1
$$

- Addition of n-bit Binary numbers, e.g.,

$$
00101+00110=01011
$$

Important Clarification: There are two types of addition

- Addition of Boolean variables, e.g.,

- Addition of n-bit Binary numbers, e.g.,

Important Clarification: There are two types of addition

- Addition of Boolean variables, e.g.,

- Addition of n-bit Binary numbers, e.g.,

we derived this
circuit last time

Important Clarification: There are two types of addition

- Addition of Boolean variables, e.g.,

$$
1+1=1 \quad \text { (according to the rules of Boolean algebra) }
$$

- Addition of n-bit Binary numbers, e.g.,

$$
1+1=10 \quad \text { (because in decimal } 1+1=2 \text {) }
$$

Addition of 1-bit Unsigned Numbers

Addition of two 1-bit numbers (there are four possible cases)

[Figure 3.1a from the textbook]

Addition of two 1-bit numbers (there are four possible cases)

[Figure 3.1a from the textbook]

Adding two bits (the truth table)

[Figure 3.1b from the textbook]

Adding two bits
 (the truth table)

	Carry	Sum
$x \quad y$	c	s
$0+0$	$=0$	$0=0_{10}$
$0+1$	$=0$	$1=1_{10}$
$1+0$	$=0$	$1=1_{10}$
$1+1$	$=1$	$0=2_{10}$

[Figure 3.1b from the textbook]

Adding two bits
 (the logic circuit)

[Figure 3.1c from the textbook]

The Half-Adder

(c) Circuit

(d) Graphical symbol
[Figure 3.1c-d from the textbook]

Addition of Multibit Unsigned Numbers

Addition of multibit numbers

Generated carries	1110				c_{i}	...
$X=x_{4} x_{3} x_{2} x_{1} x_{0}$	01111	(15) ${ }_{10}$	x_{i}	\ldots
$+Y=y_{4} y_{3} y_{2} y_{1} y_{0}$	+01010	$+(10)_{10}$	y_{i}	\ldots
$S=s_{4} s_{3} s_{2} s_{1} s_{0}$	11001	(25) ${ }_{10}$	s_{i}	\ldots

Bit position i
[Figure 3.2 from the textbook]

Analogy with addition in base 10

$$
\begin{array}{rlll}
+ & \mathrm{x}_{2} & \mathrm{x}_{1} & \mathrm{x}_{0} \\
\mathbf{Y} & \mathrm{Y}_{2} & \mathrm{Y}_{0} \\
\hline & \mathbf{S}_{2} & \mathbf{S}_{1} & \mathbf{S}_{0}
\end{array}
$$

Analogy with addition in base 10

Analogy with addition in base 10

Analogy with addition in base 10

$$
\begin{array}{rlll}
\mathrm{C}_{3} & \mathrm{C}_{2} & \mathrm{C}_{1} & \mathrm{C}_{0} \\
+\quad & \mathrm{x}_{2} & \mathrm{x}_{1} & \mathrm{x}_{0} \\
+ & \mathrm{Y}_{2} & \mathrm{Y}_{1} & \mathrm{Y}_{0} \\
\hline & \mathrm{~S}_{2} & \mathrm{~S}_{1} & \mathrm{~S}_{0}
\end{array}
$$

Another example in base 10

Another example in base 10

Problem Statement and Truth Table

Problem Statement and Truth Table

		$\begin{array}{ccc}c_{i} & x_{i} & y_{i}\end{array}$	c_{i+1}	s_{i}	
... $c_{i+1} c_{i}$		$0+0+0$			$=0_{10}$
\ldots... ... x_{i}	\ldots	$0+0+1$	= 0		$=1_{10}$
... ... y_{i}	...	$0+1+0$	$=0$	1	$=1_{10}$
		$0+1+1$	= 1	0	$=2_{10}$
... ... s_{i}	...	$1+0+0$	$=0$		$=1_{10}$
		$1+0+1$	= 1		$=2_{10}$
		$1+1+0$	= 1		$=2_{10}$
		$1+1+1$	$=1$		$=3_{10}$

Let's fill-in the two K-maps

[Figure 3.3a-b from the textbook]

Let's fill-in the two K-maps

[Figure 3.3a-b from the textbook]

The circuit for the two expressions

[Figure 3.3c from the textbook]

This is called the Full-Adder

[Figure 3.3c from the textbook]

XOR Magic

(s_{i} can be implemented in two different ways)

These two circuits are equivalent

A decomposed implementation of the full-adder circuit

[Figure 3.4 from the textbook]

A decomposed implementation of the full-adder circuit

(a) Block diagram

(b) Detailed diagram
[Figure 3.4 from the textbook]

The Full-Adder Abstraction

We can place the arrows anywhere

n-bit ripple-carry adder

[Figure 3.5 from the textbook]

n-bit ripple-carry adder abstraction

n-bit ripple-carry adder abstraction

The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same

Example:

Computing 5+6 using a 5-bit adder

Example:

Computing 5+6 using a 5-bit adder

Math Review: Subtraction

$$
\begin{aligned}
& 39 \\
& 15 \\
& \hline ? ?
\end{aligned}
$$

Math Review: Subtraction

The problems in which row are easier to calculate?

The problems in which row are easier to calculate?

Why?

Another Way to Do Subtraction

$$
82-64=82+100-100-64
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100 \\
& =82+(99+1-64)-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+100-100-64 \\
& =82+(100-64)-100 \\
& =82+(99+1-64)-100 \\
& =82+(99-64)+1-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
82-64=82+100-100-64
$$

$$
=82+(100-64)-100
$$

$$
=82+(99+1-64)-100
$$

Does not require borrows

$$
=82+(99-64)+1-100
$$

9's Complement (subtract each digit from 9)

10's Complement

(subtract each digit from 9 and add 1 to the result)

Another Way to Do Subtraction

$$
82-64=82+(99-64)+1-100
$$

Another Way to Do Subtraction

9's complement
 $82-64=82+(99-64+1-100$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100
\end{aligned}
$$

Another Way to Do Subtraction

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1 \underbrace{\text { 10's scomplement }}-100 \\
& =82+36-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100 \\
& =82+36-100 \quad \text { // Add the first two. } \\
& =118-100
\end{aligned}
$$

Another Way to Do Subtraction

$$
\begin{aligned}
82-64 & =82+(99-64)+1-100 \\
& =82+35+1-100 \\
& =82+36-100 \quad \text { // Add the first two. } \\
& =(1) 18-100 \quad \text { // Just delete the leading } 1 . \\
& =18 \quad \text { // No need to subtract 100. }
\end{aligned}
$$

Formats for representation of integers

(a) Unsigned number

(b) Signed number
[Figure 3.7 from the textbook]

Unsigned Representation

This represents +44 .

Unsigned Representation

This represents +172 .

Three Different Ways to Represent Negative Integer Numbers

- Sign and magnitude
- 1's complement
- 2's complement

Three Different Ways to Represent Negative Integer Numbers

- Sign and magnitude
- 1's complement
- 2's complement

only this method is used
in modern computers

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

[Table 3.2 from the textbook]

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

The top half is the same in all three representations.
It corresponds to the positive integers.

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In all three representations the first bit represents the sign.
If that bit is 1, then the number is negative.

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Notice that in this representation there are two zeros!

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

There are two zeros in this representation as well!

Interpretation of four-bit signed integers

$b_{3} b_{2} b_{1} b_{0}$	Sign and magnitude	1's complement	2's complement
0111	+7	+7	+7
0110	+6	+6	+6
0101	+5	+5	+5
0100	+4	+4	+4
0011	+3	+3	+3
0010	+2	+2	+2
0001	+1	+1	+1
0000	+0	+0	+0
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

In this representation there is one more negative number.

Sign and Magnitude

Sign and Magnitude Representation (using the left-most bit as the sign)

This represents +44 .

Sign and Magnitude Representation (using the left-most bit as the sign)

This represents -44 .

Circuit for negating a number stored in sign and magnitude representation

y_{7}	y_{6}	y_{5}	y_{4}	y_{3}	y_{2}	y_{1}	y_{0}
			\dagger	\bigcirc			
$\overline{\mathrm{y}}_{7}$	y_{6}	Y_{5}	y_{4}	y_{3}	y_{2}	y_{1}	y_{0}

Circuit for negating a number stored in sign and magnitude representation

1's Complement

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an n -bit positive number P .

Then, in 1's complement representation K is obtained by subtracting P from $2^{\mathrm{n}}-1$, namely

$$
K=\left(2^{n}-1\right)-P
$$

This means that K can be obtained by inverting all bits of P .

1's complement (subtract each digit from 1)

Let K be the negative equivalent of an 8 -bit positive number P .

Then, in 1's complement representation K is obtained by subtracting P from $2^{8}-1$, namely

$$
\mathrm{K}=\left(2^{8}-1\right)-\mathrm{P}=255-\mathrm{P}
$$

This means that K can be obtained by inverting all bits of P .

Provided that P is between 0 and 127 , because the most significant bit must be zero to indicate that it is positive.

1's Complement Representation

1's Complement Representation

1's Complement Representation

+ 44 in 1's complement representation

1's Complement Representation (invert all the bits to negate the number)

sign	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	
0	0	1	0	1	1	0	0	

-44

1's Complement Representation (invert all the bits to negate the number)

1's Complement Representation (invert all the bits to negate the number)

sign	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	
0	0	1	0	1	1	0	0	

$$
2^{7}+2^{6}+2^{4}+2^{1}+2^{0}=211(\text { as unsigned })
$$

1's Complement Representation (invert all the bits to negate the number)

sign	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
0	0	1	0	1	1	0	0

sign	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
1	1	0	1	0	0	1	1

-44
$211=255-44$ (as unsigned)

1's Complement Representation (invert all the bits to negate the number)

| sign | 2^{6} | 2^{5} | 2^{4} | 2^{3} | 2^{2} | 2^{1} | 2^{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |

-44

- 44 in 1's complement representation

1's complement
 (subtract each digit from 1)

-	1	1	1	1	1	1	1	1
0	0	1	0	1	1	0	0	
1	1	0	1	0	0	1	1	

1's complement (subtract each digit from 1)

No need to borrow!

-	1	1	1	1	1	1	1	1
0	0	1	0	1	1	0	0	
1	1	0	1	0	0	1	1	

1's complement

 (subtract each digit from 1)

1's complement

(subtract each digit from 1)	-1 1 1 1 1	1	1	1				
0	0	1	0	1	1	0	0	
1	1	0	1	0	0	1	1	
$211=255-44$ (as unsigned)						211		

1's complement (subtract each digit from 1)

| -1 1 1 1 1 1 | 1 | 1 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| $211=255-44($ as unsigned) | | | | | | | |
| or | | | | | | | |
| -44 in 1's complement representation | | | | | | | |

Circuit for negating a number stored in 1's complement representation

Circuit for negating a number stored in 1's complement representation

This works in reverse too (from negative to positive)

1's Complement Representation

-44

1's Complement Representation (invert all the bits to negate the number)

sign	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
1	1	0	1	0	0	1	1

$+44$

1's Complement Representation (invert all the bits to negate the number)

211 (as unsigned)

sign	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
0	0	1	0	1	1	0	0

$+44$

$$
44=255-211(\text { as unsigned })
$$

1's Complement Representation (invert all the bits to negate the number)

- 44 in 1's complement representation

+44 in 1's complement representation

Negate these numbers stored in 1 's complement representation

0111

Negate these numbers stored in 1 's complement representation

0101
1011
1010
0100
1110
0111
0001
1000

Just flip 1's to 0's and vice versa.

Negate these numbers stored in 1 's complement representation

$$
\begin{aligned}
& 011 \\
& 0 \\
& 1
\end{aligned} 011=+5=-5
$$

$$
1011=-4
$$

$$
0100=+4
$$

$$
1110=-1
$$

$$
0111=+7
$$

$$
0001=+1
$$

$$
1000=-7
$$

Just flip 1's to 0's and vice versa.

Addition of two numbers stored in 1's complement representation

There are four cases to consider

- (+5) $+(+2)$
- (-5) $+(+2)$
- (+5) + (-2)
- (-5) $+(-2)$

There are four cases to consider

- (+5) $+(+2)$
- (-5) $+(+2)$ positive plus positive
negative plus positive
- (+5) + (-2)
positive plus negative
- (-5) $+(-2)$
negative plus negative

A) Example of 1's complement addition

$(+5)$
$+(+2)$
$(+7)$
---:
+0010
0111

$b_{3} b_{2} b_{1} b_{0}$	1 's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

[Figure 3.8 from the textbook]

A) Example of 1's complement addition

$(+5)$	
$+(+2)$	0101
$(+7)$	+0010
0111	

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

B) Example of 1's complement addition

$$
\begin{array}{rr}
(-5) & 1010 \\
+(+2) & +0010 \\
\hline(-3) & 1100
\end{array}
$$

$b_{3} b_{2} b_{1} b_{0}$	1 's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

[Figure 3.8 from the textbook]

B) Example of 1's complement addition

$$
\begin{array}{rr}
(-5) & 1010 \\
+(+2) & +0010 \\
\hline(-3) & 1100
\end{array}
$$

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

C) Example of 1's complement addition

[Figure 3.8 from the textbook]

C) Example of 1's complement addition

$(+5)$	0101
$+(-2)$	+1101
$(+3)$	10010

$b_{3} b_{2} b_{1} b_{0}$	1 's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

C) Example of 1's complement addition

$(+5)$	0101
$+(-2)$	+1101
$(+3)$	10010

But this is 2 !

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

C) Example of 1's complement addition

C) Example of 1's complement addition

D) Example of 1's complement addition

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

[Figure 3.8 from the textbook]

D) Example of 1's complement addition

$b_{3} b_{2} b_{1} b_{0}$	1's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0

D) Example of 1's complement addition

			$b_{3} b_{2} b_{1} b_{0}$	1's complement
			0111	+7
			0110	+6
			0101	+5
			0100	+4
	+110		0011	+3
(-7)	10111	But this is +7 !	0010	+2
			0001	+1
			0000	+0
			1000	-7
			1001	-6
			1010	-5
			1011	-4
			1100	-3
			1101	-2
			1110	-1
			1111	-0

D) Example of 1's complement addition

D) Example of 1's complement addition

Implications for arithmetic operations in 1's complement representation

- We could do addition in 1's complement, but the circuit will need to handle these exceptions.
- In some cases it will run faster that others, thus creating uncertainties in the timing.
- Therefore, 1 's complement is not used in practice to do arithmetic operations.
- But it may show up as an intermediary step in doing 2's complement operations.

2's Complement

2' s complement (subtract each digit from 1 and add 1 to the result)

Let K be the negative equivalent of an n -bit positive number P .

Then, in 2' s complement representation K is obtained by subtracting P from 2^{n}, namely

$$
K=2^{n}-P
$$

2' s complement (subtract each digit from 1 and add 1 to the result)

Let K be the negative equivalent of an 8 -bit positive number P .

Then, in 2' s complement representation K is obtained by subtracting P from 2^{8}, namely

$$
\mathrm{K}=2^{8}-\mathrm{P}=256-\mathrm{P}
$$

2's Complement Representation

2's Complement Representation

| sign | 2^{6} | 2^{5} | 2^{4} | 2^{3} | 2^{2} | 2^{1} | 2^{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |$+44$

-44

2's Complement Representation

2's Complement Representation

| | 2^{6} | 2^{5} | 2^{4} | 2^{3} | 2^{2} | 2^{1} | 2^{0} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |$+44$

Deriving 2' s complement

For a positive n-bit number P , let K_{1} and K_{2} denote its 1's and 2's complements, respectively.

$$
\begin{aligned}
& \mathrm{K}_{1}=\left(2^{\mathrm{n}}-1\right)-\mathrm{P} \\
& \mathrm{~K}_{2}=2^{\mathrm{n}}-\mathrm{P}
\end{aligned}
$$

Since $K_{2}=K_{1}+1$, it is evident that in a logic circuit the 2 ' s complement can be computed by inverting all bits of P and then adding 1 to the resulting 1 ' s-complement number.

Deriving 2' s complement

For a positive 8-bit number P , let K_{1} and K_{2} denote its 1's and 2's complements, respectively.

$$
\begin{aligned}
& \mathrm{K}_{1}=\left(2^{\mathrm{n}}-1\right)-\mathrm{P}=255-\mathrm{P} \\
& \mathrm{~K}_{2}=2^{\mathrm{n}}-\mathrm{P}=256-\mathrm{P}
\end{aligned}
$$

Since $K_{2}=K_{1}+1$, it is evident that in a logic circuit the 2's complement can be computed by inverting all bits of P and then adding 1 to the resulting 1 ' s-complement number.

Negate these numbers stored in 2's complement representation

0101
 1110

1100

0111

Negate these numbers stored in 2's complement representation

0101
1110
1010
0001

1100
0111
0011
1000

Negate these numbers stored in 2's complement representation

.. then add 1.

Negate these numbers stored in 2's complement representation

$$
\begin{array}{r}
0101=+5 \\
1010 \\
+\quad 1 \\
\hline 1011
\end{array}=-5
$$

$$
1110=-2
$$

$$
0001
$$

$$
+\quad 1
$$

$$
0010=+2
$$

$$
1100=-4
$$

$$
0111=+7
$$

$$
0011
$$

$$
+
$$

$$
1000
$$

$$
\frac{1}{0100}=+4
$$

$$
\begin{array}{r}
1 \\
\hline
\end{array}
$$

$$
1001=-7
$$

Circuit \#1 for negating a number stored in 2's complement representation

Circuit \#1 for negating a number stored

 in 2's complement representation

Circuit \#1 for negating a number stored in 2's complement representation

Circuit \#1 for negating a number stored in 2's complement representation

$$
+1=\begin{array}{|llll}
0 & 0 & 0 & 1 \\
\hline
\end{array}
$$

(in 2's complement)

Circuit \#1 for negating a number stored in 2's complement representation

Alternative Circuit

Circuit \#2 for negating a number stored in 2's complement representation

Circuit \#2 for negating a number stored in 2's complement representation

$0=$

0

0
$0 \quad 1$
$0 \quad 1$
(in 2's complement)

Circuit \#2 for negating a number stored

 in 2's complement representation

Circuit \#2 for negating a number stored in 2's complement representation

Circuit \#2 for negating a number stored in 2's complement representation

Circuit \#2 for negating a number stored in 2's complement representation

This also works for negating a negative number, thus making it positive

Circuit \#2 for negating a number stored in 2's complement representation

Circuit \#2 for negating a number stored in 2's complement representation

$0=0$
(in 2's complement)

Circuit \#2 for negating a number stored

 in 2's complement representation

Circuit \#2 for negating a number stored in 2's complement representation

Circuit \#2 for negating a number stored in 2's complement representation

Circuit \#2 for negating a number stored in 2's complement representation

Quick way (for a human) negate a number stored in 2's complement

- Scan the binary number from right to left
- Copy all bits that are 0 from right to left
- Stop at the first 1
- Copy that 1 as well
- Invert all remaining bits

Negate these numbers stored in 2's complement representation

0101
1110

1100

0111

Negate these numbers stored in 2's complement representation

0101
1110
1100
0111

Copy all bits that are 0 from right to left.

Negate these numbers stored in 2's complement representation

0101
1110
. . . 1
. . 10
1100
0111
. 100
. . . 1

Stop at the first 1. Copy that 1 as well.

Negate these numbers stored in 2's complement representation

0101
1110
1011
0010

1100
0111
0100
1001

Invert all remaining bits.

Negate these numbers stored in 2's complement representation

$0101=+5$
$1110=-2$
$1011=-5$
$0010=+2$

$$
\begin{array}{llll}
1 & 10 & 0 & =-4 \\
0 & 1 & 0 & 0 \\
= & =+4
\end{array}
$$

$$
0111=+7
$$

$$
1001=-7
$$

The number circle for 2's complement

[Figure 3.11a from the textbook]

Addition of two numbers stored in 2's complement representation

There are four cases to consider

- (+5) $+(+2)$
- (-5) $+(+2)$
- (+5) + (-2)
- (-5) $+(-2)$

There are four cases to consider

- (+5) $+(+2)$
- (-5) $+(+2)$ positive plus positive
negative plus positive
- (+5) + (-2)
positive plus negative
- (-5) $+(-2)$
negative plus negative

A) Example of 2' s complement addition

$b_{3} b_{2} b_{1} b_{0}$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.9 from the textbook]

B) Example of 2' s complement addition

[Figure 3.9 from the textbook]

C) Example of 2' s complement addition

$b_{3} b_{2} b_{1} b_{0}$	2's complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.9 from the textbook]

D) Example of 2' s complement addition

[Figure 3.9 from the textbook]

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

- representation for signed integer numbers
- algorithm for computing the 2's complement (regardless of the representation of the number)

Naming Ambiguity: 2's Complement

2's complement has two different meanings:

- representation for signed integer numbers in 2's complement
- algorithm for computing the 2's complement (regardless of the representation of the number) take the 2's complement (or negate)

Subtraction of two numbers stored in 2's complement representation

There are four cases to consider

- (+5) - (+2)
- (-5) - (+2)
- (+5) - (-2)
- (-5) - (-2)

There are four cases to consider

- (+5) - (+2) positive minus positive
- (-5) - (+2) negative minus positive
- (+5) - (-2)
positive minus negative
- (-5) - (-2)
negative minus negative

There are four cases to consider

- (+5) - (+2)
- (-5) - (+2)
- (+5) - (-2)
- (-5) - (-2)

There are four cases to consider

- $(+5)-(+2)=(+5)+(-2)$
- $(-5)-(+2)=(-5)+(-2)$
- $(+5)-(-2)=(+5)+(+2)$
- (-5) - (-2) $=(-5)+(+2)$

There are four cases to consider

- $(+5)-(+2)=(+5)+(-2)$
- $(-5)-(+2)=(-5)+(-2)$
- $(+5)-(-2)=(+5)+(+2)$
- (-5) - (-2) $=(-5)+(+2)$

We can change subtraction into addition ...

There are four cases to consider

- $(+5)-(+2)=(+5)+(-2)$
- (-5) $-(+2)=(-5)+(-2)$
- $(+5)-(-2)=(+5)+(+2)$
- (-5) - (-2) $=(-5)+(+2)$
... if we negate the second number.

There are four cases to consider

- $(+5)-(+2)=(+5)+(-2)$
- $(-5)-(+2)=(-5)+(-2)$
- $(+5)-(-2)=(+5)+(+2)$
- (-5) - (-2) $=(-5)+(+2)$

These are the four addition cases
(arranged in a shuffled order)

Example of 2' s complement subtraction

\Rightarrow means take the 2 's complement (or negate)
[Figure 3.10 from the textbook]

Example of 2' s complement subtraction

Notice that the minus changes to a plus.
\Rightarrow means take the 2 's complement (or negate)
[Figure 3.10 from the textbook]

Example of 2' s complement subtraction

[Figure 3.10 from the textbook]

Example of 2' s complement subtraction

[Figure 3.10 from the textbook]

Graphical interpretation of four-bit 2's complement numbers

(a) The number circle
(b) Subtracting 2 by adding its 2's complement
[Figure 3.11 from the textbook]

Example of 2' s complement subtraction

[Figure 3.10 from the textbook]

Example of 2' s complement subtraction

$b_{3} b_{2} b_{1} b_{0}$	$2 '$'s complement
0111	+7
0110	+6
0101	+5
0100	+4
0011	+3
0010	+2
0001	+1
0000	+0
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

[Figure 3.10 from the textbook]

Example of 2' s complement subtraction

[Figure 3.10 from the textbook]

Taking the 2' s complement negates the number

decimal	$b_{3} b_{2} b_{1} b_{0}$	take the 2's complement	$b_{3} b_{2} b_{1} b_{0}$	decimal
+7	0111	\Longrightarrow	1001	-7
+6	0110	\Longrightarrow	1010	-6
+5	0101	\Longrightarrow	1011	-5
+4	0100	\Longrightarrow	1100	-4
+3	0011	\Longrightarrow	1101	-3
+2	0010	\Longrightarrow	1110	-2
+1	0001	\Longrightarrow	1111	-1
+0	0000	\Longrightarrow	0000	+0
-8	1000	\Longrightarrow	1000	-8
-7	1001	\Longrightarrow	0111	+7
-6	1010	\Longrightarrow	0110	+6
-5	1011	\Longrightarrow	0101	+5
-4	1100	\longrightarrow	0100	+4
-3	1101	\Longrightarrow	0011	+3
-2	1110	\Longrightarrow	0010	+2
-1	1111	\longrightarrow	0001	+1

Taking the 2' s complement negates the number

decimal	$b_{3} b_{2} b_{1} b_{0}$	take the 2's complement	$b_{3} b_{2} b_{1} b_{0}$	decimal	
+7	0111	\Longrightarrow	1001	-7	
+6	0110	\Rightarrow	1010	-6	
+5	0101	\Longrightarrow	1011	-5	
+4	0100	\Longrightarrow	1100	-4	
+3	0011	\rightarrow	1101	-3	
+2	0010	\Rightarrow	1110	-2	
+1	0001	\Longrightarrow	1111	-1	This is an
+0	0000	\rightarrow	0000	+0	exception
-8	1000	\Longrightarrow	1000	-8	
-7	1001	\Longrightarrow	0111	+7	
-6	1010	\Rightarrow	0110	+6	
-5	1011	\Longrightarrow	0101	+5	
-4	1100	\Longrightarrow	0100	+4	
-3	1101	\rightarrow	0011	+3	
-2	1110	\Longrightarrow	0010	+2	
-1	1111	\Longrightarrow	0001	+1	

Taking the 2' s complement negates the number

decimal	$b_{3} b_{2} b_{1} b_{0}$	take the 2's complement	$b_{3} b_{2} b_{1} b_{0}$	decimal	
+7	0111	\Longrightarrow	1001	-7	
+6	0110	\Rightarrow	1010	-6	
+5	0101	\Longrightarrow	1011	-5	
+4	0100	\rightarrow	1100	-4	
+3	0011	\Rightarrow	1101	-3	
+2	0010	\Longrightarrow	1110	-2	
+1	0001	\Rightarrow	1111	-1	
+0	0000	\Longrightarrow	0000	+0	And this
-8	1000	\Longrightarrow	1000	-8	
-7	1001	\Longrightarrow	0111	+7	
-6	1010	\Rightarrow	0110	+6	
-5	1011	\square	0101	+5	
-4	1100	\Longrightarrow	0100	+4	
-3	1101	\rightarrow	0011	+3	
-2	1110	\Longrightarrow	0010	+2	
-1	1111	\Longrightarrow	0001	+1	

But that exception does not matter

But that exception does not matter

But that exception does not matter

Take-Home Message

Take-Home Message

- Subtraction can be performed by simply negating the second number and adding it to the first, regardless of the signs of the two numbers.
- Thus, the same adder circuit can be used to perform both addition and subtraction !!!

Adder/subtractor unit

[Figure 3.12 from the textbook]

XOR Tricks

control

XOR as a repeater

0

XOR as a repeater

XOR as an inverter

XOR as an inverter

Addition: when control $=0$

[Figure 3.12 from the textbook]

Addition: when control $=0$

[Figure 3.12 from the textbook]

Addition: when control $=0$

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Subtraction: when control = 1

[Figure 3.12 from the textbook]

Addition Examples:

all inputs and outputs are given in 2 's complement representation

Addition: 5 + $6=11$

Addition: 4 + (-7) = -3

Addition: 4 + (-7) = -3

Addition: 4 + (-7) = -3

Subtraction Examples:

all inputs and outputs are given in 2's complement representation

Subtraction: 7-3=4

Subtraction: $(-2)-(-5)=3$

Subtraction: $(-2)-(-5)=3$

Subtraction: $(-2)-(-5)=3$

Subtraction: $(-2)-(-5)=3$

Detecting Overflow

Examples of determination of overflow

$(+7)$
$+(+2)$
$(+9)$
:---
0010
1001

$$
\begin{array}{r}
(+7) \\
+(-2) \\
\hline(+5)
\end{array} \quad+\begin{array}{r}
0111 \\
1110 \\
\hline 10101
\end{array}
$$

$$
\begin{array}{r}
(-7) \\
+\quad+\quad 1001 \\
\hline(-9)
\end{array}+\begin{array}{r}
1110 \\
\hline 10111
\end{array}
$$

[Figure 3.13 from the textbook]

Examples of determination of overflow

	01100		00000
(+7)	0111	(-7)	1001
+ (+2)	0010	+ (+2)	+ 0010
$(+9)$	1001	(-5)	1011
	11100		10000
(+7)	+ 0111	(-7)	+ 1001
+ (-2)	1110	+ (-2)	1110
$(+5)$	10101	(-9)	10111

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

$$
\begin{aligned}
& c_{4}=0 \\
& c_{3}=1 \\
& \begin{array}{r}
+\quad 01100 \\
+(+2) \\
\hline(+9) \\
\hline \quad 0111 \\
\hline 1001
\end{array} \\
& \begin{array}{l}
c_{4}=1 \\
c_{3}=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
c_{4}=1 \\
c_{3}=0
\end{array}
\end{aligned}
$$

Include the carry bits: $\mathrm{c}_{4} \mathrm{c}_{3} \mathrm{c}_{2} \mathrm{c}_{1} \mathrm{c}_{0}$

Examples of determination of overflow

$$
\begin{aligned}
& c_{4}=0 \\
& c_{3}=1
\end{aligned}
$$

$$
\begin{array}{r}
(-7) \\
+\quad 0000 \\
+(+2) \\
\hline(-5) \\
\hline 0010 \\
\hline 1011
\end{array}
$$

$$
\begin{aligned}
& c_{4}=0 \\
& c_{3}=0
\end{aligned}
$$

$c_{4}=1$
$c_{3}=1$

$(+7)$
$+(-2)$
$(+5)$
$+\quad 1111$
+10101

(-7)
$+\quad 10000$
$+(-2)$
(-9)
+101
10111

Overflow occurs only in these two cases.

Examples of determination of overflow

Overflow $=\mathrm{c}_{3} \overline{\mathrm{c}}_{4}+\overline{\mathrm{c}}_{3} \mathrm{c}_{4}$

Examples of determination of overflow

Overflow $=\underbrace{\mathrm{c}_{3} \overline{\mathrm{c}}_{4}+\overline{\mathrm{c}}_{3} \mathrm{c}_{4}}_{\text {XOR }}$

Calculating overflow for 4-bit numbers with only three significant bits

$$
\begin{aligned}
\text { Overflow } & =c_{3} \bar{c}_{4}+\bar{c}_{3} c_{4} \\
& =c_{3} \oplus c_{4}
\end{aligned}
$$

Calculating overflow for n-bit numbers with only $\mathrm{n}-1$ significant bits

$$
\text { Overflow }=c_{n-1} \oplus c_{n}
$$

Detecting Overflow

Detecting Overflow (with one extra XOR)

Detecting Overflow (with one extra XOR)

This method detects overflow
for both addition and subtraction.

Detecting Overflow
 (alternative method)

Detecting Overflow (alternative method)

Used if you don't have access to the internal carries of the adder.

Detecting Overflow (with one extra XOR)

If the adder is implemented on a chip, then this line is not available. So the first method can't be used.

Another way to look at the overflow issue

$$
+\begin{array}{rllll}
\mathrm{X}= & \mathrm{x}_{3} & \mathrm{x}_{2} & \mathrm{x}_{1} & \mathrm{x}_{0} \\
\mathrm{Y}= & \mathrm{Y}_{3} & \mathrm{Y}_{2} & \mathrm{y}_{1} & \mathrm{Y}_{0}
\end{array}
$$

Another way to look at the overflow issue

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

Examples of determination of overflow

$(+7)$
$+(+2)$
$(+9)$
:---
0010
1001

$$
\begin{array}{r}
(+7) \\
+(-2) \\
\hline(+5)
\end{array} \quad \begin{array}{r}
0111 \\
1110 \\
\hline 10101
\end{array}
$$

$$
\begin{array}{r}
(-7) \\
+\quad+\quad 1001 \\
\hline(-9) \\
\hline 10111
\end{array}
$$

Examples of determination of overflow

$$
\begin{aligned}
& \begin{array}{r}
(+7) \\
+(+2) \\
\hline(+9)
\end{array}+\begin{array}{ll|lll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0
\end{array} \\
& \left.\begin{array}{r}
(+7) \\
+(-2) \\
\hline(+5)
\end{array}+\begin{array}{l|lll}
0 & 1 & 1 & 1 \\
\hline
\end{array} \quad \begin{array}{l}
1
\end{array} \right\rvert\, \begin{array}{l}
1 \\
\hline
\end{array} \\
& \begin{array}{r}
(-7) \\
+\quad(-2) \\
\hline(-9)
\end{array}+\begin{array}{ll|lll}
1 & 0 & 0 & 1 \\
\hline
\end{array}
\end{aligned}
$$

Examples of determination of overflow

$$
\begin{aligned}
& x_{3}=0 \\
& \begin{array}{l}
y_{3}=0 \\
s_{3}=1
\end{array} \\
& \begin{array}{l}
y_{3}=0 \\
s_{3}=1
\end{array} \\
& \begin{array}{r}
(+7) \\
+(+2) \\
\hline(+9)
\end{array}+\begin{array}{l|lll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
\hline & 1 & 0 & 0
\end{array} \\
& \begin{array}{r}
(-7) \\
+(+2) \\
\hline(-5)
\end{array}+\begin{array}{ll|lll}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\hline & 1 & 0 & 1 & 1
\end{array} \\
& x_{3}=1 \\
& x_{3}=0 \\
& \begin{array}{lll|l|ll}
y_{3}=1 \\
s_{3}=0
\end{array} \quad \begin{array}{r}
(+7) \\
+(-2)
\end{array} \quad+\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 1
\end{array} \quad \begin{array}{l}
1 \\
\hline
\end{array} \\
& \begin{array}{r}
(-7) \\
+\begin{array}{l}
(-2)
\end{array}+\begin{array}{ll|ll}
1 & 0 & 0 & 1 \\
\hline(-9)
\end{array}+1 \begin{array}{ll}
1 & 1
\end{array} \\
\hline 1
\end{array} \\
& x_{3}=1
\end{aligned}
$$

Examples of determination of overflow

$$
\begin{aligned}
& x_{3}=0 \\
& y_{3}=0 \\
& \begin{array}{r}
\begin{array}{l}
(+7) \\
+(+2)
\end{array}+\begin{array}{l|lll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
\hline(+9)
\end{array} \\
\hline 1
\end{array} \\
& \left.\begin{aligned}
(-7) \\
+(+2) \\
\hline(-5)
\end{aligned}+\begin{array}{lllll}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array} \quad \begin{array}{l}
x_{3}=1 \\
y_{3}=0 \\
1
\end{array} \right\rvert\, \begin{array}{ll}
0 & 1
\end{array} \\
& x_{3}=1 \\
& s_{3}=1 \\
& x_{3}=0 \\
& \begin{array}{ll}
x_{3}=0 \\
y_{3}=1 \\
s_{3}=0
\end{array} \quad \begin{array}{l}
(+7) \\
+(+5)
\end{array} \quad+\begin{array}{lllll}
0 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 0
\end{array} \\
& \begin{array}{ll}
x_{3}=0 \\
y_{3}=1 \\
s_{3}=0
\end{array} \quad \begin{array}{l}
(+7) \\
+(+5)
\end{array} \quad+\begin{array}{lllll}
0 & 1 & 1 & 1 \\
\hline & 1 & 1 & 1 & 0 \\
\hline
\end{array} \\
& \begin{array}{r}
(-7) \\
+(-2) \\
\hline(-9) \\
\hline
\end{array}+\begin{array}{rl|lll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\hline & 0 & 1 & 1 & 1
\end{array} \\
& x_{3}=1 \\
& \begin{array}{l}
y_{3}=1 \\
s_{3}=0
\end{array}
\end{aligned}
$$

In 2's complement, both +9 and -9 are not representable with 4 bits.

Examples of determination of overflow

$$
\begin{aligned}
& x_{3}=0 \\
& y_{3}=1 \\
& s_{3}=0
\end{aligned} \quad \begin{array}{r}
(+7) \\
+(-2)
\end{array}+\begin{array}{lllll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 \\
\hline 1 & 0 & 1 & 0 & 1
\end{array}
$$

$$
\begin{array}{r}
(-7) \\
+(-2) \\
\hline(-9)
\end{array}+\begin{array}{l|lll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}
$$

Overflow occurs only in these two cases.

Examples of determination of overflow

$$
\begin{aligned}
& x_{3}=0 \\
& \begin{array}{l}
x_{3}=0 \\
y_{3}=0 \\
s_{3}=1
\end{array} \\
& \begin{array}{l}
x_{3}=0 \\
y_{3}=0 \\
s_{3}=1
\end{array} \\
& \begin{array}{r}
(+7) \\
+(+2) \\
\hline(+9)
\end{array}+\begin{array}{ll|lll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
\hline & 1 & 0 & 0 & 1
\end{array} \\
& \begin{array}{r}
(-7) \\
+(+2) \\
\hline(-5)
\end{array}+\begin{array}{l}
x_{3}=1 \\
\left.\begin{array}{l}
1
\end{array}\right) \\
0
\end{array} \begin{array}{llll}
y_{3} & =0 \\
0 & 0 & 1 & 0 \\
s_{3} & =1
\end{array} \\
& \begin{array}{r}
(-7) \\
+(+2) \\
\hline(-5)
\end{array}+\begin{array}{l}
x_{3}=1 \\
y_{3}=0 \\
0
\end{array} \quad \begin{array}{lllll}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\hline
\end{array} \\
& 1 \\
& x_{3}=0 \\
& \begin{array}{ll}
y_{3}=1 \\
s_{3}=0
\end{array} \quad \begin{array}{r}
(+7) \\
+(-2)
\end{array} \quad+\begin{array}{ll|ll}
0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
\hline & & 0 & 1
\end{array} \\
& \begin{array}{r}
(-7) \\
+\begin{array}{l}
(-2)
\end{array}+\begin{array}{rl|lll}
1 & 0 & 0 & 1 \\
(-9)
\end{array}+1 \\
\hline
\end{array} \\
& \begin{array}{l}
x_{3}=1 \\
y_{3}=1 \\
s_{3}=0
\end{array}
\end{aligned}
$$

Overflow $=\bar{x}_{3} \bar{y}_{3} \mathrm{~s}_{3}+\mathrm{x}_{3} \mathrm{y}_{3} \overline{\mathrm{~s}}_{3}$

Another way to look at the overflow issue

If both numbers that we are adding have the same sign but the sum does not, then we have an overflow.

Overflow $=\bar{x}_{3} \bar{y}_{3} \mathrm{~s}_{3}+\mathrm{x}_{3} \mathrm{y}_{3} \overline{\mathrm{~s}}_{3}$

Overflow Detection

Overflow Detection

Overflow Detection

This must be taken after the XOR!

Overflow Detection

Questions?

THE END

