

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Multiplication

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- No HW is due today
- HW 6 will be due on Monday Oct. 9.
- Posted on the class web page.

Administrative Stuff

- Labs this week
- Mini-Project
- This is worth 3% of your grade (x2 labs)
- https://www.ece.iastate.edu/~alexs/classes/ 2023_Fall_281/labs/Project-Mini/

Quick Review

A ripple-carry adder

How long does it take to compute all sum bits and all carry bits?

It takes 2 n gate delays using a ripple-carry adder?

Delays through the Full-Adder circuit

[Figure 3.3c from the textbook]

The Full-Adder Circuit

[Figure 3.3c from the textbook]

The Full-Adder Circuit

Another Way to Draw the Full-Adder Circuit

Decomposing the Carry Expression

$$
c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i}
$$

Decomposing the Carry Expression

$$
\begin{aligned}
c_{i+1} & =x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
c_{i+1} & =x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{aligned}
$$

Decomposing the Carry Expression

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{aligned}
$$

Another Way to Draw the Full-Adder Circuit

$$
\begin{aligned}
& c_{i+1}=x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
& c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
\end{aligned}
$$

Another Way to Draw the Full-Adder Circuit

$$
c_{i+1}=x_{i} y_{i}+\left(x_{i}+y_{i}\right) c_{i}
$$

Another Way to Draw the Full-Adder Circuit

$$
\boldsymbol{c}_{i+1}=\underbrace{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}}_{g_{i}}+\underbrace{\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}}\right.}_{p_{i}}) \boldsymbol{c}_{\boldsymbol{i}}
$$

Another Way to Draw the Full-Adder Circuit

$$
\boldsymbol{c}_{i+1}=\underbrace{\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}}_{g_{i}}+\underbrace{\left(\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{y}_{\boldsymbol{i}}\right.}_{p_{i}}) \boldsymbol{c}_{\boldsymbol{i}}
$$

Yet Another Way to Draw It (Just Rotate It)

Now we can Build a Ripple-Carry Adder

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

[Figure 3.14 from the textbook]

Now we can Build a Ripple-Carry Adder

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

[Figure 3.14 from the textbook]

The delay is 5 gates (1+2+2)

n-bit ripple-carry adder: $\mathbf{2 n + 1}$ gate delays

Decomposing the Carry Expression

$$
\begin{aligned}
c_{i+1} & =x_{i} y_{i}+x_{i} c_{i}+y_{i} c_{i} \\
c_{i+1} & =\underbrace{x_{i} y_{i}}_{g_{i}}+\underbrace{\left(x_{i}+y_{i}\right.}_{p_{i}}) c_{i} \\
c_{i+1} & =g_{i}+p_{i} c_{i} \\
c_{i+1} & =g_{i}+p_{i}\left(g_{i-1}+p_{i-1} c_{i-1}\right) \\
& =g_{i}+p_{i} g_{i-1}+p_{i} p_{i-1} c_{i-1}
\end{aligned}
$$

Carry for the first two stages

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}
\end{aligned}
$$

The first two stages of a carry-lookahead adder

[Figure 3.15 from the textbook]

It takes $\mathbf{3}$ gate delays to generate c_{1}

It takes $\mathbf{3}$ gate delays to generate $\mathbf{c}_{\mathbf{2}}$

The first two stages of a carry-lookahead adder

It takes $\mathbf{4}$ gate delays to generate \mathbf{s}_{1}

It takes $\mathbf{4}$ gate delays to generate $\mathbf{s}_{\mathbf{2}}$

N-bit Carry-Lookahead Adder

- It takes $\mathbf{3}$ gate delays to generate all carry signals
- It takes 1 more gate delay to generate all sum bits
- Thus, the total delay through an n-bit carry-lookahead adder is only 4 gate delays!

Expanding the Carry Expression

$$
\begin{aligned}
c_{i+1}= & g_{i}+p_{i} c_{i} \\
c_{1}= & g_{0}+p_{0} c_{0} \\
c_{2}= & g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
c_{3}= & g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0} \\
\cdots & \\
c_{8}= & g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
& +p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

Expanding the Carry Expression

$$
\begin{aligned}
& c_{i+1}=g_{i}+p_{i} c_{i} \\
& c_{1}=g_{0}+p_{0} c_{0} \\
& c_{2}=g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
& c_{3}=g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

$$
c_{8}=g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4}
$$

Even this takes $+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2}$ $\xrightarrow{\text { only } 3 \text { gate delays }}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0}$ $+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}$

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder with ripple-carry between blocks

A hierarchical carry-lookahead adder

[Figure 3.17 from the textbook]

A hierarchical carry-lookahead adder

A hierarchical carry-lookahead adder

A hierarchical carry-lookahead adder

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8}= & g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
& +p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
& +p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8}= & \begin{array}{l}
g_{7}+p_{7} g_{6}+p_{7} p_{6} g_{5}+p_{7} p_{6} p_{5} g_{4} \\
+p_{7} p_{6} p_{5} p_{4} g_{3}+p_{7} p_{6} p_{5} p_{4} p_{3} g_{2} \\
\\
\\
\\
+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} g_{1}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} g_{0} \\
\end{array}+p_{7} p_{6} p_{5} p_{4} p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

The Hierarchical Carry Expression

The Hierarchical Carry Expression

$$
\begin{aligned}
\mathrm{c}_{8}= & \mathrm{g}_{7}+\mathrm{p}_{7} \mathrm{~g}_{6}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{~g}_{5}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{~g}_{4} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{~g}_{3}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{~g}_{2} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{~g}_{1}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{2} \mathrm{p}_{1} \mathrm{~g}_{0} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{~F}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{p}_{1} \mathrm{p}_{0} \mathrm{c}_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{c}_{16}=\mathrm{g}_{15}+\mathrm{p}_{15} \mathrm{~g}_{14}+\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{~g}_{13}+\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{p}_{13} \mathrm{~g}_{12} \\
& +p_{15} p_{14} p_{13} p_{12} g_{11}+p_{15} p_{14} p_{13} p_{12} p_{11} g_{10} \\
& +\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{p}_{13} \mathrm{p}_{12} \mathrm{p}_{11} \mathrm{p}_{10} \mathrm{~g}_{9}+\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{p}_{13} \mathrm{p}_{12} \mathrm{p}_{11} \mathrm{p}_{10} \mathrm{p}_{9} \mathrm{~g}_{8} \\
& +\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{p}_{13} \mathrm{p}_{12} \mathrm{p}_{11} \mathrm{p}_{10} \mathrm{p}_{9} \mathrm{p}_{8} \mathrm{c}_{8}
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
\mathrm{c}_{8}= & \mathrm{g}_{7}+\mathrm{p}_{7} \mathrm{~g}_{6}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{~g}_{5}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{~g}_{4} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{~g}_{3}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} p_{3} \mathrm{~g}_{2} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{~g}_{1}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{p}_{1} \mathrm{~g}_{0} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{p}_{1} \mathrm{p}_{0} \mathrm{c}_{0}
\end{aligned}
$$

The same expression, just add 8 to all subscripts

$$
\begin{aligned}
\mathrm{c}_{16}= & \mathrm{g}_{15}+\mathrm{p}_{15} \mathrm{~g}_{14}+\mathrm{p}_{15} \mathrm{p}_{14} \mathrm{~g}_{13}+\mathrm{p}_{15} p_{14} p_{13} \mathrm{~g}_{12} \\
& +p_{15} p_{14} p_{13} p_{12} g_{11}+\mathrm{p}_{15} p_{14} p_{13} p_{12} p_{11} g_{10} \\
& +p_{15} p_{14} p_{13} p_{12} p_{11} p_{10} g_{9}+p_{15} p_{14} p_{13} p_{12} p_{11} p_{10} p_{9} g_{8} \\
& +p_{15} p_{14} p_{13} p_{12} p_{11} p_{10} p_{9} p_{8} c_{8}
\end{aligned}
$$

The Hierarchical Carry Expression

3-gate delays

The Hierarchical Carry Expression

$$
\begin{aligned}
\mathrm{c}_{8}= & \mathrm{g}_{7}+\mathrm{p}_{7} \mathrm{~g}_{6}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{~g}_{5}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{~g}_{4} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{~g}_{3}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} p_{3} \mathrm{~g}_{2} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{~g}_{1}+\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} p_{1} \mathrm{~g}_{0} \\
& +\mathrm{p}_{7} \mathrm{p}_{6} \mathrm{p}_{5} \mathrm{p}_{4} \mathrm{p}_{3} \mathrm{p}_{2} \mathrm{p}_{1} \mathrm{p}_{0} \mathrm{c}_{0}
\end{aligned}
$$

3-gate delays

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8} & =G_{0}+P_{0} c_{0} \\
c_{16} & =G_{1}+P_{1} c_{8} \\
& =G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0} \\
c_{24} & =G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} c_{0} \\
c_{32} & =G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} c_{0}
\end{aligned}
$$

The Hierarchical Carry Expression

$$
\begin{aligned}
c_{8} & =G_{0}+P_{0} c_{0} \quad \text { 4-gate delays } \\
c_{16} & =G_{1}+P_{1} c_{8} \\
& =G_{1}+P_{1} G_{0}+P_{1} P_{0} c_{0} \quad \text { 5-gate delays }
\end{aligned}
$$

$$
c_{24}=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} c_{0}
$$

5-gate delays

5-gate delays

$$
c_{32}=G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} c_{0}
$$

A hierarchical carry-lookahead adder

[Figure 3.17 from the textbook]

A hierarchical carry-lookahead adder

[Figure 3.17 from the textbook]

Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- The total delay is $\mathbf{8}$ gates:
- 3 to generate all Gi and Pi signals
- +2 to generate c8, c16, c24, and c32
- +2 to generate internal carries in the blocks
- +1 to generate the sum bits (one extra XOR)

Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- The total delay is $\mathbf{8}$ gates:
- 3 to generate all Gi and Pi signals
- +2 to generate c8, c16, c24, and c32
- +2 to generate internal carries in the blocks
- +1 to generate the sum bits (one extra XOR)
$\mathbf{2}$ more gate delays for the internal carries within a block

2 more gate delays for the internal carries within a block

Hierarchical CLA Adder Carry Logic

SECOND
LEVEL HIERARCHY

C8 - 4 gate delays
C16-5 gate delays
C24-5 Gate delays C32-5 Gate delays

Hierarchical CLA

Critical Path

C1 - 3 gate delays
C9 - 6 gate delays
C17-7 gate delays
C25-7 Gate delays

Total Gate Delay Through a Hierarchical Carry-Lookahead Adder

- The total delay is 8 gates:
- 3 to generate all Gi and Pi signals
- +2 to generate c8, c16, c24, and c32
- +2 to generate internal carries in the blocks
- +1 to generate the sum bits (one extra XOR)

Multiplication and division by 10 in the decimal system

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=?
$$

$542 \times 10=$?
$1245 \times 10=$?

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=40
$$

$542 \times 10=5420$
$1245 \times 10=12450$

Decimal Multiplication by 10

What happens when we multiply a number by $10 ?$

$$
4 \times 10=40
$$

$542 \times 10=5420$
$1245 \times 10=12450$

You simply add a zero as the rightmost number

Decimal Division by 10

What happens when we divide a number by $10 ?$

$$
14 / 10=?
$$

$540 / 10=?$
$1240 / 10=?$

Decimal Division by 10

What happens when we divide a number by $10 ?$

$$
14 / 10=1 \quad / / \text { integer division }
$$

$540 / 10=54$
$1240 / 10=124$

You simply delete the rightmost number

Multiplication and division by 2 in the binary system

Binary Multiplication by 2

What happens when we multiply a number by 2 ?
011 times $2=$?

101 times $2=$?

110011 times 2 = ?

Binary Multiplication by 2

What happens when we multiply a number by $\mathbf{2 ?}$
011 times $2=0110$

101 times $2=1010$

110011 times $2=1100110$

You simply add a zero as the rightmost number

Binary Multiplication by 4

What happens when we multiply a number by 4 ?
011 times $4=$?

101 times $4=$?

110011 times $4=$?

Binary Multiplication by 4

What happens when we multiply a number by $4 ?$

011 times $4=01100$

101 times $4=10100$

110011 times $4=11001100$
add two zeros in the last two bits and shift everything else to the left

Binary Multiplication by $\mathbf{2}^{\mathrm{N}}$

What happens when we multiply a number by $\mathbf{2}^{\mathrm{N}}$?
011 times $2^{\mathrm{N}}=01100 \ldots 0 \quad / /$ add N zeros

101 times 4 = 10100...0 // add N zeros

110011 times $4=11001100$... $0 \quad / /$ add N zeros

Binary Division by 2

What happens when we divide a number by 2 ?
0110 divided by $2=?$

1010 divides by $2=?$

110011 divides by $2=$?

Binary Division by 2

What happens when we divide a number by $2 ?$
0110 divided by $2=011$

1010 divides by $2=101$

110011 divides by $2=11001$

You simply delete the rightmost number

Multiplication of two unsigned binary numbers

Decimal Multiplication By Hand

5127
 x 4265 25635 307620 1025400 20508000
 21866655

Binary Multiplication By Hand

Multiplicand M
(14)
Multiplier Q
(11)
X 1011
1110
1110
0000
1110
Product P
(154)
10011010

[Figure 3.34a from the textbook]

Binary Multiplication By Hand

Multiplicand M
 (14)
 1110
 Multiplier Q
 (11)
 $\times 1011$
 Partial product 0
 Partial product 1
 Partial product 2

 Product P
 (154)
 10011010

Binary Multiplication By Hand

Figure 3.35. A 4×4 multiplier circuit.

Sign Extension

Sign extension for positive numbers

- If we want to represent the same positive number with more bits, we simply pad it on the left with zeros.
- For example:

0110	(+6 with 4-bits)
00110	$(+6$ with 5 -bits)
000110	(+6 with 6 -bits)

Sign extension for negative numbers

- If we want to represent the same negative number with more bits, we simply pad it on the left with ones.
- For example:

1011	(-5 with 4 -bits)
11011	(-5 with 5 -bits)
111011	(-5 with $6-$ bits $)$

Multiplication of two signed binary numbers

Positive Multiplicand Example

Multiplicand M	(+14)	01110
Multiplier Q	(+11)	x 01011
Partial product 0		0001110
		+ 001110
Partial product 1		0010101
		+ 000000
Partial product 2		0001010
		+ 001110
Partial product 3		0010011
		+ 000000
Product P	(+154)	0010011010

[Figure 3.36a in the textbook]

Positive Multiplicand Example

Multiplicand M
Multiplier Q
Partial product 0
Partial product 1
Partial product 2
Partial product 3

Product P
(+154)

Negative Multiplicand Example

Multiplicand M
Multiplier Q
Partial product 0

Partial product 1

Partial product 2

Partial product 3

Product P

10010
$\times 01011$
1110010
+110010
1101011
+000000
1110101
+110010
1101100
+000001
1101100110

Negative Multiplicand Example

Multiplicand M
Multiplier Q
Partial product 0

Partial product 1

Partial product 2

Partial product 3

Product P
(-14)
(+11)
add an extra bit to avoid overflow but now it is 1

1101011
+00000
1110101
+110010
1101100
+00000011
1101100110

[Figure 3.36b in the textbook]

What if the Multiplier is Negative?

- Negate both numbers.
- This will make the multiplier positive.
- Then proceed as normal.
- This will not affect the result.
- Example: $5^{*}(-4)=(-5)^{*}(4)=-20$

Arithmetic Comparison Circuits

Truth table for a one-bit digital comparator

Inputs		Outputs		
A	B	$A>B$	$A=B$	$A<B$
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

A one-bit digital comparator circuit

Inputs		Outputs		
A	B	$A>B$	$A=B$	$A<B$
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

Truth table for a two-bit digital comparator

Inputs				Outputs		
A_{1}	A_{0}	B_{1}	B_{0}	$A<B$	$A=B$	$A>B$
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

[http://en.wikipedia.org/wiki/Digital_comparator]

A two-bit digital comparator circuit

[http://forum.allaboutcircuits.com/showthread.php?t=10561]

A four-bit comparator circuit

[Figure 4.22 from the textbook]

Another four-bit comparator circuit

[Figure 3.45 from the textbook]

Another four-bit comparator circuit

Compare 6 with 5 by subtraction (6-5).

Another four-bit comparator circuit

Binary Coded Decimal (BCD)

Table of Binary-Coded Decimal Digits

Decimal digit	BCD code
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
9	1000

Addition of BCD digits

Addition of BCD digits

The result is greater than 9 , which is not a valid BCD number

Addition of BCD digits

[Figure 3.38a in the textbook]

Addition of BCD digits

[Figure 3.38b in the textbook]

Addition of BCD digits

The result is 1 , but it should be 7
[Figure 3.38b in the textbook]

Addition of BCD digits

[Figure 3.38 b in the textbook]

Why add $6 ?$

- Think of BCD addition as a mod 16 operation
- Decimal addition is mod 10 operation

BCD Arithmetic Rules

$Z=X+Y$

If $Z<=9$, then $S=Z$ and carry-out $=0$

If $Z>9$, then $S=Z+6$ and carry-out $=1$

Block diagram for a one-digit BCD adder

[Figure 3.39 in the textbook]

How to check if the number is $\boldsymbol{>} \mathbf{9}$?

$$
\begin{aligned}
& 7-0111 \\
& 8-1000 \\
& 9-1001 \\
& 10-1010 \\
& 11-1011 \\
& 12-1100 \\
& 13-1101 \\
& 14-1110 \\
& 15-1111
\end{aligned}
$$

A four-variable Karnaugh map

x 1	x 2	x 3	x 4		
0	0	0	0	m 0	0
0	0	0	1	m 1	0
0	0	1	0	m 2	0
0	0	1	1	m 3	0
0	1	0	0	m 4	0
0	1	0	1	m 5	0
0	1	1	0	m 6	0
0	1	1	1	m 7	0
1	0	0	0	m 8	0
1	0	0	1	m 9	0
1	0	1	0	m 10	1
1	0	1	1	m 11	1
1	1	0	0	m 12	1
1	1	0	1	m 13	1
1	1	1	0	m 14	1
1	1	1	1	m 15	1

How to check if the number is $\boldsymbol{>} \mathbf{9}$?

$z 3$	$z 2$	$z 1$	$z 0$		
0	0	0	0	m 0	0
0	0	0	1	m 1	0
0	0	1	0	m 2	0
0	0	1	1	m 3	0
0	1	0	0	m 4	0
0	1	0	1	m 5	0
0	1	1	0	m 6	0
0	1	1	1	m 7	0
1	0	0	0	m 8	0
1	0	0	1	m 9	0
1	0	1	0	m 10	1
1	0	1	1	m 11	1
1	1	0	0	m 12	1
1	1	0	1	m 13	1
1	1	1	0	m 14	1
1	1	1	1	m 15	1

How to check if the number is $\boldsymbol{>} \mathbf{9}$?

$z 3$	$z 2$	$z 1$	$z 0$		
0	0	0	0	m 0	0
0	0	0	1	m 1	0
0	0	1	0	m 2	0
0	0	1	1	m 3	0
0	1	0	0	m 4	0
0	1	0	1	m 5	0
0	1	1	0	m 6	0
0	1	1	1	m 7	0
1	0	0	0	m 8	0
1	0	0	1	m 9	0
1	0	1	0	m 10	1
1	0	1	1	m 11	1
1	1	0	0	m 12	1
1	1	0	1	m 13	1
1	1	1	0	m 14	1
1	1	1	1	m 15	1

$z_{1} z_{0} z^{z_{3} z}$	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	1
10	0	0	1	1
$f=Z_{3} Z_{2}+Z_{3} Z_{1}$				

How to check if the number is $\boldsymbol{>} \mathbf{9}$?

$z 3$	$z 2$	$z 1$	$z 0$		
0	0	0	0	m 0	0
0	0	0	1	m 1	0
0	0	1	0	m 2	0
0	0	1	1	m 3	0
	1	0	0	m 4	0
0	1	0	1	m 5	0
0	1	1	0	m 6	0
0	1	1	1	m 7	0
1	0	0	0	m 8	0
1	0	0	1	m 9	0
1	0	1	0	m 10	1
1	0	1	1	m 11	1
1	1	0	0	m 12	1
1	1	0	1	m 13	1
1	1	1	0	m 14	1
1	1	1	1	m 15	1

In addition, also check if there was a carry

$$
\mathrm{f}=\text { carry-out }+\mathrm{Z}_{3} \mathrm{Z}_{2}+\mathrm{Z}_{3} \mathrm{Z}_{1}
$$

Verilog code for a one-digit BCD adder

```
module bcdadd(Cin, X, Y, S, Cout);
    input Cin;
    input [3:0] \(\mathrm{X}, \mathrm{Y}\);
    output reg [3:0] S ;
    output reg Cout;
    reg [4:0] Z ;
    always@ (X, Y, Cin)
    begin
        \(Z=X+Y+C i n ;\)
        if \((Z<10)\)
            \(\{\) Cout, \(S\}=Z\);
        else
            \(\{\) Cout, \(S\}=Z+6 ;\)
    end
endmodule
```


Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Simplification of the Full-Adder circuit when $\mathrm{x}_{\mathrm{i}}=\mathbf{0}$

[Figure 3.4b from the textbook]

Simplification of the Full-Adder circuit when $\mathrm{X}_{\mathrm{i}}=0$

It reduces to a half-adder.

Simplification of the Full-Adder circuit when $\mathrm{X}_{\mathrm{i}}=0$

But if we only need the sum bit ...

Simplification of the Full-Adder circuit when $\mathrm{X}_{\mathrm{i}}=0$

... it reduces to an XOR.

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Circuit for a one-digit BCD adder

[Figure 3.41 in the textbook]

Questions?

THE END

