

## CprE 281: Digital Logic

## Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

## Multiplexers

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

## Administrative Stuff

- HW 6 is due on Monday Oct 9 @ 10pm
- Next week: Lab 6
- Midterm progress report grades are due next week


## 2-to-1 Multiplexer

## 2-to-1 Multiplexer (Definition)

- Has two inputs: $\mathrm{x}_{1}$ and $\mathrm{x}_{2}$
- Also has another input line s
- If $s=0$, then the output is equal to $x_{1}$
- If $\mathbf{s}=1$, then the output is equal to $\mathbf{x}_{\mathbf{2}}$


## Graphical Symbol for a 2-to-1 Multiplexer



## Analogy: Railroad Switch


http://en.wikipedia.org/wiki/Railroad_switch]

## Analogy: Railroad Switch


http://en.wikipedia.org/wiki/Railroad_switch]

## Analogy: Railroad Switch



This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.
http://en.wikipedia.org/wiki/Railroad_switch]

## Truth Table for a 2-to-1 Multiplexer

| $s$ | $x_{1}$ | $x_{2}$ | $f\left(s, x_{1}, x_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

[ Figure 2.33a from the textbook]

## Let's Derive the SOP form

| $s$ | $x_{1}$ | $x_{2}$ | $f\left(s, x_{1}, x_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

## Let's Derive the SOP form



## Let's Derive the SOP form



Where should we put the negation signs?

$$
\begin{aligned}
& s x_{1} x_{2} \\
& s x_{1} x_{2}
\end{aligned}
$$

$$
s x_{1} x_{2}
$$

$s x_{1} x_{2}$

## Let's Derive the SOP form



## Let's Derive the SOP form


$f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}$

## Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

## Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2}
$$

## Let's simplify this expression

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1} \bar{x}_{2}+\bar{s} x_{1} x_{2}+s \bar{x}_{1} x_{2}+s x_{1} x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}\left(\bar{x}_{2}+x_{2}\right)+s\left(\bar{x}_{1}+x_{1}\right) x_{2}
$$

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

## Circuit for 2-1 Multiplexer


(c) Graphical symbol

$$
f\left(s, x_{1}, x_{2}\right)=\bar{s} x_{1}+s x_{2}
$$

[ Figure 2.33b-c from the textbook ]

## Analysis of the 2-to-1 Multiplexer (when the input $\mathrm{s}=0$ )



## Analysis of the 2-to-1 Multiplexer (when the input $\mathrm{s}=1$ )



## Analysis of the 2-to-1 Multiplexer (when the input s=0)



## Analysis of the 2-to-1 Multiplexer (when the input $s=1$ )



## More Compact Truth-Table Representation

| $s$ | $x_{1}$ | $x_{2}$ | $f\left(s, x_{1}, x_{2}\right)$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |


(a)Truth table

## 4-to-1 Multiplexer

## 4-to-1 Multiplexer (Definition)

- Has four inputs: $w_{0}, w_{1}, w_{2}, w_{3}$
- Also has two select lines: $\mathbf{s}_{1}$ and $\mathbf{s}_{\mathbf{0}}$
- If $s_{1}=0$ and $s_{0}=0$, then the output $f$ is equal to $w_{0}$
- If $s_{1}=0$ and $s_{0}=1$, then the output $f$ is equal to $w_{1}$
- If $s_{1}=1$ and $s_{0}=0$, then the output $f$ is equal to $w_{2}$
- If $s_{1}=1$ and $s_{0}=1$, then the output $f$ is equal to $w_{3}$


## Graphical Symbol and Truth Table


(a) Graphic symbol
(b) Truth table
[ Figure 4.2a-b from the textbook]

## The long-form truth table

## The long-form truth table

| $\mathrm{S}_{1} \mathrm{~S}_{0}$ |  | 3 | $\mathrm{I}_{2} \mathrm{I}$ | 1 |  | F |  | $\mathrm{S}_{0}$ |  | I | 2 I | It |  | F |  | $\mathrm{S}_{0}$ |  |  | $\mathrm{I}_{2}$ | I | Io | F |  | $\mathrm{S}_{0}$ |  |  | 2 | I |  | F |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | 0 |  | 0 | 0 | 0 | 0 | 0 |  |  | O | 0 | 0 |  | 0 |  |  |  | 0 | 0 | 0 | 0 | 0 | 1 | 1 |  |  | ) | 0 |  | 0 |  |
|  |  |  | 0 | 0 | 1 | 1 |  |  |  | - | 0 | 1 |  | 0 |  |  |  |  | 0 | 0 | 1 | 0 |  |  |  |  | ) | 0 |  | 0 |  |
|  |  |  | 0 | 1 | - | 0 |  |  |  | - | 01 | 0 |  | 1 |  |  |  |  | 0 | 1 | 0 | 0 |  |  |  |  | - | 1 |  | 0 | , |
|  |  |  | 0 | 1 | - | 1 |  |  |  | - | 01 | 1 |  | 1 |  |  |  |  | 0 | 1 | 1 | 0 |  |  |  |  | ) | 1 |  | 0 | , |
|  | 0 |  | 1 | 0 | - | 0 |  |  |  | - | 10 | 0 |  | 0 |  |  |  | 0 | 1 | 0 | 0 | 1 |  |  |  | - | , | 0 |  | 0 | 1 |
|  |  |  | 1 | 0 | - | 1 |  |  |  | - | 10 | 1 |  | 0 |  |  |  | 0 | 1 | 0 | 1 | 1 |  |  |  | 0 | 1 | 0 |  | 0 | 0 |
|  |  |  | 1 | 1 | - | 0 |  |  |  | - | 1 | 0 |  | 1 |  |  |  | 0 | 1 | 1 | 0 | 1 |  |  |  | 0 | 1 | 1 |  | 0 | 0 |
|  |  |  | 1 | 1 | , | 1 |  |  |  | - | 1 | 1 |  | 1 |  |  |  |  | 1 | 1 | 1 | 1 |  |  |  | 0 | 1 | 1 |  | 0 |  |
|  |  |  | 0 | 0 | - | 0 |  |  |  | - | 0 | 0 |  | 0 |  |  |  | 1 | 0 | 0 | 0 | 0 |  |  |  | 1 | , | 0 |  | 1 |  |
|  |  |  | 0 | 0 | , | 1 |  |  |  | - | 0 | 1 |  | 0 |  |  |  |  | 0 | 0 | 1 | 0 |  |  |  | 1 | ) | 0 |  | 1 |  |
|  |  |  | 0 | 1 | , | 0 |  |  |  | - | 01 | 0 |  | 1 |  |  |  |  | 0 | 1 | 0 | 0 |  |  |  |  | ) | 1 |  | 1 | 1 |
|  |  |  | 0 | 1 | , | 1 |  |  |  | - | 01 | 1 |  | 1 |  |  |  |  | 0 | 1 | 1 | 0 |  |  |  |  | - | 1 |  | 1 |  |
|  |  |  | 1 | 0 | - | 0 |  |  |  | - | 10 | 0 |  | 0 |  |  |  |  | 1 | 0 | 0 | 1 |  |  |  |  | 1 | 0 |  | 1 |  |
|  |  |  | 1 | 0 | - | 1 |  |  |  | , | 10 | 1 |  | 0 |  |  |  |  | 1 | 0 | 1 | 1 |  |  |  |  | , | 0 |  | 1 |  |
|  |  |  | 1 | 1 | - | 0 |  |  |  |  | 1 | 0 |  | 1 |  |  |  |  | 1 | 1 | 0 | 1 |  |  |  |  | , | 1 |  | 1 |  |
|  |  |  |  |  |  | 1 |  |  |  |  |  |  |  | 1 |  |  |  |  | 1 | 1 | 1 | 1 |  |  |  |  | - | 1 |  |  |  |

## The long-form truth table

| $\mathrm{S}_{1} \mathrm{~S}_{0}$ | $\mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0}$ | F | $\mathrm{S}_{1} \mathrm{~S}_{0}$ | $\begin{array}{lllll}\mathrm{I}_{3} & \mathrm{I}_{2} & \mathrm{I}_{1} & \mathrm{I}_{0}\end{array}$ | F | $\mathrm{S}_{1} \mathrm{~S}_{0}$ | $\mathrm{I}_{3} \mathrm{I}_{2} \quad \mathrm{I}_{1} \quad \mathrm{I}_{0}$ | F | $\mathrm{S}_{1} \mathrm{~S}_{0}$ |  | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 | $\begin{array}{llll}0 & 0 & 0 & 0\end{array}$ | 0 | 01 | $\begin{array}{llll}0 & 0 & 0 & 0\end{array}$ | 0 | 10 | $\begin{array}{llll}0 & 0 & 0 & 0\end{array}$ | 0 | 11 | $00_{0} 00000$ | 0 |
|  | $\begin{array}{llll}0 & 0 & 0 & 1\end{array}$ | 1 |  | $\begin{array}{lllll}0 & 0 & 0 & 1\end{array}$ | 0 |  | $\begin{array}{llll}0 & 0 & 0 & 1\end{array}$ | 0 |  | 000 | 0 |
|  | $\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$ | 0 |  | $\begin{array}{lllll}0 & 0 & 1 & 0\end{array}$ | 1 |  | $\begin{array}{llll}0 & 0 & 1 & 0\end{array}$ | 0 |  | $\begin{array}{llll}0 & 0 & 1 & 0\end{array}$ | 0 |
|  | $\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$ | 1 |  | $\begin{array}{lllll}0 & 0 & 1 & 1\end{array}$ | 1 |  | $\begin{array}{llll}0 & 0 & 1 & 1\end{array}$ | 0 |  | $\begin{array}{llll}0 & 0 & 1 & 1\end{array}$ | 0 |
|  | $\begin{array}{llll}0 & 1 & 0 & 0\end{array}$ | 0 |  | $\begin{array}{llll}0 & 1 & 0 & 0\end{array}$ | 0 |  | $\begin{array}{llll}0 & 1 & 0 & 0\end{array}$ | 1 |  | $\begin{array}{llll}0 & 1 & 0 & 0\end{array}$ | 0 |
|  | $\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$ | 1 |  | $\begin{array}{lllll}0 & 1 & 0 & 1\end{array}$ | 0 |  | $\begin{array}{llll}0 & 1 & 0 & 1\end{array}$ | 1 |  | $\begin{array}{llll}0 & 1 & 0 & 1\end{array}$ | 0 |
|  | $\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$ | 0 |  | $\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$ | 1 |  | $\begin{array}{lllll}0 & 1 & 1 & 0\end{array}$ | 1 |  | $\begin{array}{llll}0 & 1 & 1 & 0\end{array}$ | 0 |
|  | $\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$ | 1 |  | $\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$ | 1 |  | $\begin{array}{llll}0 & 1 & 1 & 1\end{array}$ | 1 |  | $\begin{array}{llll}0 & 1 & 1 & 1\end{array}$ | 0 |
|  | $\begin{array}{llll}1 & 0 & 0 & 0\end{array}$ | 0 |  | $1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}$ | 0 |  | 10000 | 0 |  | 10000 | 1 |
|  | $\begin{array}{llll}1 & 0 & 0 & 1\end{array}$ | 1 |  | $\begin{array}{llll}1 & 0 & 0 & 1\end{array}$ | 0 |  | $1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$ | 0 |  | $1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$ | 1 |
|  | $\begin{array}{llll}1 & 0 & 1 & 0\end{array}$ | 0 |  | $\begin{array}{lllll}1 & 0 & 1 & 0\end{array}$ | 1 |  | $\begin{array}{llll}1 & 0 & 1 & 0\end{array}$ | 0 |  | $\begin{array}{llll}1 & 0 & 1 & 0\end{array}$ | 1 |
|  | $\begin{array}{llll}1 & 0 & 1 & 1\end{array}$ | 1 |  | $\begin{array}{llll}1 & 0 & 1 & 1\end{array}$ | 1 |  | $\begin{array}{llll}1 & 0 & 1 & 1\end{array}$ | 0 |  | $\begin{array}{llll}1 & 0 & 1 & 1\end{array}$ | 1 |
|  | $\begin{array}{lllll}1 & 1 & 0 & 0\end{array}$ | 0 |  | 1100 | 0 |  | $\begin{array}{llll}1 & 1 & 0 & 0\end{array}$ | 1 |  | $\begin{array}{llll}1 & 1 & 0 & 0\end{array}$ | 1 |
|  | $\begin{array}{llll}1 & 1 & 0 & 1\end{array}$ | 1 |  | $\begin{array}{llll}1 & 1 & 0 & 1\end{array}$ | 0 |  | $\begin{array}{llll}1 & 1 & 0 & 1\end{array}$ | 1 |  | 11101 | 1 |
|  | $\begin{array}{llll}1 & 1 & 1 & 0\end{array}$ | 0 |  | $\begin{array}{llll}1 & 1 & 1 & 0\end{array}$ | 1 |  | $\begin{array}{llll}1 & 1 & 1 & 0\end{array}$ | 1 |  | 1110 | 1 |
|  | $\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$ | 1 |  | $\begin{array}{llll}1 & 1 & 1 & 1\end{array}$ | 1 |  | $\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$ | 1 |  | $\begin{array}{llll}1 & 1 & 1 & 1\end{array}$ |  |

## The long-form truth table



## The long-form truth table



## The long-form truth table

| $\mathrm{S}_{1} \mathrm{~S}_{0}$ |  |  | $\mathrm{I}_{2} \mathrm{I}$ | I 1 |  | F |  | $\mathrm{S}_{0}$ |  | $\mathrm{I}_{3}$ | 2 I | I 1 |  | F |  | $\mathrm{S}_{0}$ |  |  | $\mathrm{I}_{2}$ | I |  |  | F | $\mathrm{S}_{1}$ |  |  | $\mathrm{I}_{2}$ | $\mathrm{I}_{1}$ |  |  | F |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 |  | 0 | 0 | 0 | 0 | 0 | 0 | 1 |  | 0 | 0 | 00 |  | 0 |  |  |  |  | 0 | 0 | 0 |  |  | 1 |  |  | 0 |  |  |  | 0 |
|  |  | 0 | 0 | 0 | 1 | 1 |  |  |  | 0 | 1 | 01 |  | 0 |  |  |  |  | 0 | 0 | 1 |  | 0 |  |  | 0 | 0 | 0 |  |  | 0 |
|  |  | 0 | 0 | 1 | 0 | 0 |  |  |  | 0 | - | 10 |  | 1 |  |  |  |  | 0 | 1 | 0 |  | 0 |  |  | 0 | 0 | 1 | 0 |  | 0 |
|  |  | 0 | 0 | 1 | 1 | 1 |  |  |  | 0 | 1 | 11 |  | 1 |  |  |  |  | 0 | 1 | 1 |  | 0 |  |  | 0 | 0 | 1 | 1 |  | 0 |
|  |  | 0 | 1 | 0 | 0 | 0 |  |  |  | 0 | 1 | 00 |  | 0 |  |  |  |  | 1 | 0 | 0 |  | 1 |  |  | 0 | 1 | 0 | 0 |  |  |
|  |  | 0 | 1 | 0 | 1 | 1 |  |  |  | 0 | 1 | 01 |  | 0 |  |  |  |  | 1 | 0 | 1 |  | 1 |  |  | 0 | 1 | 0 | 1 |  | 0 |
|  |  | 0 | 1 | 1 | 0 | 0 |  |  |  | 0 | 1 | 10 |  | 1 |  |  |  | 0 | 1 | 1 | 0 |  | 1 |  |  | 0 | 1 | 1 | 0 |  | 0 |
|  |  | 0 | 1 | 1 | 1 | 1 |  |  |  | 0 |  | 11 |  | 1 |  |  |  | 0 | 1 | 1 | 1 |  | 1 |  |  | 0 | 1 | 1 |  |  | 0 |
|  |  | 1 | 0 | 0 | 0 | 0 |  |  |  | 1 | - | 00 |  | 0 |  |  |  | 1 | 0 | 0 | 0 |  | 0 |  |  | 1 | 0 | 0 | 0 |  | 1 |
|  |  | 1 | 0 | 0 | 1 | 1 |  |  |  | 1 | 0 | 01 |  | 0 |  |  |  | 1 | 0 | 0 | 1 |  | 0 |  |  | 1 | 0 | 0 |  |  | 1 |
|  |  | 1 | 0 | 1 | 0 | 0 |  |  |  | 1 | - | 10 |  | 1 |  |  |  |  | 0 | 1 | 0 |  | 0 |  |  | 1 | 0 | 1 | 0 |  | 1 |
|  |  | 1 | 0 | 1 | 1 | 1 |  |  |  | 1 | - | 11 |  | 1 |  |  |  | 1 | 0 | 1 | 1 |  | 0 |  |  | 1 | 0 | 1 | 1 |  | 1 |
|  |  | 1 | 1 | 0 | 0 | 0 |  |  |  | 1 | 1 | 0 |  | 0 |  |  |  | 1 | 1 | 0 | 0 |  | 1 |  |  | 1 | 1 | 0 | 0 |  | 1 |
|  |  |  | 1 | 0 | 1 | 1 |  |  |  | 1 | 1 | 01 |  | 0 |  |  |  |  | 1 | 0 | 1 |  | 1 |  |  | 1 | 1 | 0 | 1 |  | 1 |
|  |  | 1 | 1 | 1 | 0 | 0 |  |  |  | 1 | 1 | 10 |  | 1 |  |  |  |  | 1 | 1 | 0 |  | 1 |  |  | 1 | 1 | 1 | 0 |  | 1 |
|  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  | 1 |

[http://www.absoluteastronomy.com/topics/Multiplexer]

## Graphical Symbol and Truth Table


(a) Graphic symbol
(b) Truth table
[ Figure 4.2a-b from the textbook]

## 4-to-1 Multiplexer (SOP circuit)



$$
f=\overline{s_{1}} \overline{s_{0}} w_{0}+\overline{s_{1}} s_{0} w_{1}+s_{1} \overline{s_{0}} w_{2}+s_{1} s_{0} w_{3}
$$

[Figure 4.2c from the textbook]

Analysis of the 4-to-1 Multiplexer ( $s_{1}=0$ and $s_{0}=0$ )


Analysis of the 4-to-1 Multiplexer ( $s_{1}=0$ and $s_{0}=0$ )


Analysis of the 4-to-1 Multiplexer ( $s_{1}=0$ and $s_{0}=0$ )


Analysis of the 4-to-1 Multiplexer ( $s_{1}=0$ and $s_{0}=0$ )


Analysis of the 4-to-1 Multiplexer ( $s_{1}=0$ and $s_{0}=1$ )


Analysis of the 4-to-1 Multiplexer ( $s_{1}=1$ and $s_{0}=0$ )


Analysis of the 4-to-1 Multiplexer ( $s_{1}=1$ and $s_{0}=1$ )


Analysis of the 4-to-1 Multiplexer ( $s_{1}=0$ and $s_{0}=0$ )


Analysis of the 4-to-1 Multiplexer ( $s_{1}=0$ and $s_{0}=1$ )


Analysis of the 4-to-1 Multiplexer ( $s_{1}=1$ and $s_{0}=0$ )


Analysis of the 4-to-1 Multiplexer ( $s_{1}=1$ and $s_{0}=1$ )


## Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer


[ Figure 4.3 from the textbook]

## Analogy: Railroad Switches


http://en.wikipedia.org/wiki/Railroad_switch]

## Analogy: Railroad Switches


http://en.wikipedia.org/wiki/Railroad_switch]

## Analogy: Railroad Switches


$\mathbf{S}_{\mathbf{0}}$
these two switches are controlled together

http://en.wikipedia.org/wiki/Railroad_switch]

## Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer



## Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer



# Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer 



## Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer



That is different from the SOP form of the 4-to-1 multiplexer shown below


## Analysis of the Hierarchical Implementation ( $\mathrm{s}_{1}=0$ and $\mathrm{s}_{0}=0$ )


[ Figure 4.3 from the textbook]

Analysis of the Hierarchical Implementation ( $s_{1}=0$ and $s_{0}=1$ )

[ Figure 4.3 from the textbook]

## Analysis of the Hierarchical Implementation ( $s_{1}=1$ and $s_{0}=0$ )


[ Figure 4.3 from the textbook ]

Analysis of the Hierarchical Implementation ( $s_{1}=1$ and $s_{0}=1$ )

[ Figure 4.3 from the textbook]

16-to-1 Multiplexer

## 16-1 Multiplexer


[ Figure 4.4 from the textbook ]

## 16-1 Multiplexer



[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

## Multiplexers Are Special

## The Three Basic Logic Gates



NOT gate


AND gate


OR gate

## Truth Table for NOT



| $x$ | $\bar{x}$ |
| :---: | :---: |
| 0 | 1 |
| 1 | 0 |

## Truth Table for AND



| $x_{1}$ | $x_{2}$ | $x_{1} \cdot x_{2}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

## Truth Table for OR



## Building an AND Gate with 4-to-1 Mux



| $x_{1}$ | $x_{2}$ | $x_{1} \cdot x_{2}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

## Building an AND Gate with 4-to-1 Mux



These two are the same.

## Building an AND Gate with 4-to-1 Mux



These two are the same. And so are these two.

## Building an OR Gate with 4-to-1 Mux

$$
\begin{array}{cc||c}
x_{1} & \sim & x_{1}+x_{2} \\
x_{2} & & x_{1}+x_{2} \\
x_{1} & x_{2} & x_{1} \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}
$$

## Building an OR Gate with 4-to-1 Mux



These two are the same.

## Building an OR Gate with 4-to-1 Mux



## Building a NOT Gate with 4-to-1 Mux



## Building a NOT Gate with 4-to-1 Mux



Introduce a dummy variable $y$.

## Building a NOT Gate with 4-to-1 Mux



## Building a NOT Gate with 4-to-1 Mux



Now set y to either 0 or 1 (both will work). Why?

## Building a NOT Gate with 4-to-1 Mux



Two alternative solutions.

## Implications

Any Boolean function can be implemented using only 4-to-1 multiplexers!

## Building an AND Gate with 2-to-1 Mux



## Building an AND Gate with 2-to-1 Mux



## Building an AND Gate with 2-to-1 Mux


$\left.\begin{array}{c|c||c}x_{1} & x_{2} & x_{1} \cdot x_{2} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] \quad 0$

## Building an OR Gate with 2-to-1 Mux

| $x_{1}$ |  |  |
| :---: | :---: | :---: |
| $x_{2}$ | $x_{2}+x_{2}$ |  |
| $x_{1}$ | $x_{2}$ | $x_{1}+x_{2}$ |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |



## Building an OR Gate with 2-to-1 Mux



| $x_{1}$ | $x_{2}$ | $x_{1}+x_{2}$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |



## Building an OR Gate with 2-to-1 Mux


$\left.\begin{array}{c|c||c}x_{1} & x_{2} & x_{1}+x_{2} \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1\end{array}\right\} \mathrm{x}_{2}$

## Building a NOT Gate with 2-to-1 Mux



## Building a NOT Gate with 2-to-1 Mux



## Implications

Any Boolean function can be implemented using only 2-to-1 multiplexers!

AND


OR


NOT


AND


NOT


AND


NOT


## Switch Circuit

## $2 \times 2$ Crossbar switch



## $2 \times 2$ Crossbar switch



## Implementation of a $2 \times 2$ crossbar switch with multiplexers


[ Figure 4.5b from the textbook ]

## Implementation of a $2 \times 2$ crossbar switch with multiplexers


[ Figure 4.5b from the textbook ]

## Implementation of a $2 \times 2$ crossbar switch with multiplexers


[ Figure 4.5b from the textbook ]

## Implementation of a $2 \times 2$ crossbar switch with multiplexers


[ Figure 4.5b from the textbook ]

## Implementation of a $2 \times 2$ crossbar switch with multiplexers


[ Figure 4.5b from the textbook ]

## Implementation of a $2 \times 2$ crossbar switch with multiplexers



## Implementation of a $2 \times 2$ crossbar switch with multiplexers



## Synthesis of Logic Circuits Using Multiplexers

## Synthesis of Logic Circuits Using Multiplexers

Note: This method is NOT the same as simply replacing each logic gate with a multiplexer! It is a lot more efficient.

## The XOR Logic Gate


(a) Two switches that control a light

(b) Truth table
[ Figure 2.11 from the textbook ]

## The XOR Logic Gate


[ Figure 2.11 from the textbook]

## Implementation of a logic function with a 4-to-1 multiplexer

| $W_{1}$ | $W_{2}$ | $f$ |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |


[ Figure 4.6a from the textbook]

# Implementation of the same logic function with a 2-to-1 multiplexer 


(b) Modified truth table

(c) Circuit

## Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT



## Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT



## Implementation of the XOR Logic Gate with a 2-to-1 multiplexer and one NOT



These two circuits are equivalent (the wires of the bottom AND gate are flipped)


## In other words, all four of these are equivalent!



## Implementation of another logic function

| $W_{1}$ | $W_{2}$ | $W_{3}$ | $f$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

## Implementation of another logic function

| $w_{1}$ | $w_{2}$ | $W_{3}$ | $f$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

## Implementation of another logic function



## Implementation of another logic function



[ Figure 4.7 from the textbook ]

# Another Example (3-input XOR) 

## Implementation of 3-input XOR with 2-to-1 Multiplexers

| $W_{1}$ | $W_{2}$ | $W_{3}$ | $f$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

## Implementation of 3-input XOR with 2-to-1 Multiplexers

$\left.\begin{array}{l|ll|l}W_{1} & W_{2} & W_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right\} \quad W_{2} \oplus W_{3}$

## Implementation of 3-input XOR with 2-to-1 Multiplexers


(a) Truth table

(b) Circuit

## Implementation of 3-input XOR with 2-to-1 Multiplexers

$\left.\begin{array}{l|l|l|l}W_{1} & W_{2} & W_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right] \quad \mathbf{W}_{\mathbf{3}}$
(a) Truth table

(b) Circuit

## Implementation of 3-input XOR with a 4-to-1 Multiplexer

| $W_{1}$ | $W_{2}$ | $W_{3}$ | $f$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

## Implementation of 3-input XOR with a 4-to-1 Multiplexer

| $W_{1}$ | $W_{2}$ | $W_{3}$ | $f$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

## Implementation of 3-input XOR with a 4-to-1 Multiplexer

$\left.\begin{array}{ll|l|l}w_{1} & w_{2} & w_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right\} W_{3}$

## Implementation of 3-input XOR with a 4-to-1 Multiplexer

$\left.\begin{array}{ll|l|l}W_{1} & W_{2} & W_{3} & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right\} W_{3}$
(a) Truth table (b) Circuit


## Multiplexor Synthesis Using Shannon's Expansion

## Three-input majority function

| $w_{1}$ | $w_{2}$ | $w_{3}$ | $f$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

## Three-input majority function



## Three-input majority function



## Three-input majority function


(b) Truth table

(b) Circuit
[ Figure 4.10a from the textbook]

## Three-input majority function

$$
\begin{aligned}
f & =\bar{w}_{1} w_{2} w_{3}+w_{1} \bar{w}_{2} w_{3}+w_{1} w_{2} \bar{w}_{3}+w_{1} w_{2} w_{3} \\
f & =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(\bar{w}_{2} w_{3}+w_{2} \bar{w}_{3}+w_{2} w_{3}\right) \\
& =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$



## Shannon's Expansion Theorem

Any Boolean function $f\left(w_{1}, \ldots, w_{n}\right)$ can be rewritten in the form:

$$
f\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\bar{w}_{1} \cdot f\left(0, w_{2}, \ldots, w_{n}\right)+w_{1} \cdot f\left(1, w_{2}, \ldots, w_{n}\right)
$$

## Shannon's Expansion Theorem

Any Boolean function $f\left(w_{1}, \ldots, w_{n}\right)$ can be rewritten in the form:

$$
f\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\bar{w}_{1} \cdot f\left(0, w_{2}, \ldots, w_{n}\right)+w_{1} \cdot f\left(1, w_{2}, \ldots, w_{n}\right)
$$

$$
f=\bar{w}_{1} f_{\bar{w}_{1}}+w_{1} f_{w_{1}}
$$

## Shannon's Expansion Theorem

Any Boolean function $f\left(w_{1}, \ldots, w_{n}\right)$ can be rewritten in the form:

$$
f\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\bar{w}_{1} \cdot f\left(0, w_{2}, \ldots, w_{n}\right)+w_{1} \cdot f\left(1, w_{2}, \ldots, w_{n}\right)
$$



## Shannon's Expansion Theorem (Example)

$f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}$

## Shannon's Expansion Theorem (Example)

$$
\begin{aligned}
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3} \\
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}\left(w_{1}+w_{1}\right)
\end{aligned}
$$

## Shannon's Expansion Theorem (Example)

$$
\begin{aligned}
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3} \\
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}\left(w_{1}+w_{1}\right) \\
& f=\bar{w}_{1}\left(0 \cdot w_{2}+0 \cdot w_{3}+w_{2} w_{3}\right)+w_{1}\left(1 \cdot w_{2}+1 \cdot w_{3}+w_{2} w_{3}\right) \\
& \quad=\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

## Shannon's Expansion Theorem (Example)

$$
\begin{aligned}
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3} \\
& f\left(w_{1}, w_{2}, w_{3}\right)=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}\left(w_{1}+w_{1}\right) \\
& f=\bar{w}_{1}\left(0 \cdot w_{2}+0 \cdot w_{3}+w_{2} w_{3}\right)+w_{1}\left(1 \cdot w_{2}+1 \cdot w_{3}+w_{2} w_{3}\right) \\
& \quad=\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$



## Another Example

# Factor and implement the following function with a 2-to-1 multiplexer 

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

# Factor and implement the following function with a 2-to-1 multiplexer 

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

$$
\begin{aligned}
f & =\bar{w}_{1} f_{\bar{w}_{1}}+w_{1} f_{w_{1}} \\
& =\bar{w}_{1}\left(\bar{w}_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

## Factor and implement the following function with a 2-to-1 multiplexer

$f=\bar{w}_{1} f_{\bar{w}_{1}}+w_{1} f_{w_{1}}$

$$
=\bar{w}_{1}\left(\bar{w}_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
$$

[ Figure 4.11a from the textbook]

# Shannon's Expansion Theorem (In terms of more than one variable) 

$$
\begin{aligned}
f\left(w_{1}, \ldots, w_{n}\right)= & \bar{w}_{1} \bar{w}_{2} \cdot f\left(0,0, w_{3}, \ldots, w_{n}\right)+\bar{w}_{1} w_{2} \cdot f\left(0,1, w_{3}, \ldots, w_{n}\right) \\
& +w_{1} \bar{w}_{2} \cdot f\left(1,0, w_{3}, \ldots, w_{n}\right)+w_{1} w_{2} \cdot f\left(1,1, w_{3}, \ldots, w_{n}\right)
\end{aligned}
$$

This form is suitable for implementation with a $4 \times 1$ multiplexer.

# Factor and implement the following function with a 4-to-1 multiplexer 

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

## Factor and implement the following function with a 4-to-1 multiplexer

$$
\begin{gathered}
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3} \\
=\bar{w}_{1}\left(\overline{w_{2}}+w_{2}\right) \bar{w}_{3}+w_{1} w_{2}+w_{1}\left(\overline{w_{2}}+w_{2}\right) w_{3}
\end{gathered}
$$

## Factor and implement the following function with a 4-to-1 multiplexer

$$
\begin{gathered}
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3} \\
=\overline{\mathrm{w}}_{1}\left(\overline{\mathrm{w}_{2}}+\mathrm{w}_{2}\right) \overline{\mathrm{w}}_{3}+\mathrm{w}_{1} \mathrm{w}_{2}+\mathrm{w}_{1}\left(\overline{\mathrm{w}_{2}}+\mathrm{w}_{2}\right) \mathrm{w}_{3} \\
=\overline{\mathrm{w}_{1}} \overline{\mathrm{w}_{2}} \overline{\mathrm{w}_{3}}+\overline{\mathrm{w}}_{1} \mathrm{w}_{2} \overline{\mathrm{w}}_{3}+\mathrm{w}_{1} \mathrm{w}_{2}+\mathrm{w}_{1} \overline{\mathrm{w}}_{2} \mathrm{w}_{3}+\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \\
=\overline{\mathrm{w}_{1}} \overline{\mathrm{w}_{2}} \overline{\mathrm{w}_{3}}+\overline{\mathrm{w}_{1} \mathrm{w}_{2} \overline{\mathrm{w}}_{3}+\mathrm{w}_{1} \overline{\mathrm{w}_{2}} \mathrm{w}_{3}+\mathrm{w}_{1} \mathrm{w}_{2}\left(1+\mathrm{w}_{3}\right)} \\
=\overline{\mathrm{w}_{1}} \overline{\mathrm{w}_{2}}\left(\overline{\mathrm{w}_{3}}\right)+\overline{\mathrm{w}_{1}} \mathrm{w}_{2}\left(\overline{\mathrm{w}_{3}}\right)+\mathrm{w}_{1} \overline{\mathrm{w}}_{2}\left(\mathrm{w}_{3}\right)+\mathrm{w}_{1} \mathrm{w}_{2}(1)
\end{gathered}
$$

## Factor and implement the following function with a 4-to-1 multiplexer

$$
\begin{gathered}
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3} \\
=\bar{w}_{1}\left(\overline{\mathrm{w}_{2}}+\mathrm{w}_{2}\right) \overline{\mathrm{w}}_{3}+\mathrm{w}_{1} \mathrm{w}_{2}+\mathrm{w}_{1}\left(\overline{\mathrm{w}_{2}}+\mathrm{w}_{2}\right) \mathrm{w}_{3} \\
=\overline{\mathrm{w}_{1}} \overline{\mathrm{w}_{2}} \overline{\mathrm{w}_{3}}+\overline{\mathrm{w}}_{1} \mathrm{w}_{2} \overline{\mathrm{w}}_{3}+\mathrm{w}_{1} \mathrm{w}_{2}+\mathrm{w}_{1} \overline{\mathrm{w}}_{2} \mathrm{w}_{3}+\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \\
=\overline{\mathrm{w}_{1}} \overline{\mathrm{w}_{2}} \overline{\mathrm{w}_{3}}+\overline{\mathrm{w}}_{1} \mathrm{w}_{2} \overline{\mathrm{w}_{3}}+\mathrm{w}_{1} \overline{\mathrm{w}_{2}} \mathrm{w}_{3}+\mathrm{w}_{1} \mathrm{w}_{2}\left(1+\mathrm{w}_{3}\right) \\
=\overline{\mathrm{w}_{1}} \overline{\mathrm{w}_{2}}\left(\overline{\mathrm{w}_{3}}\right)+\overline{\mathrm{w}}_{1} \mathrm{w}_{2}\left(\overline{\mathrm{w}_{3}}\right)+\mathrm{w}_{1} \overline{\mathrm{w}_{2}}\left(\mathrm{w}_{3}\right)+\mathrm{w}_{1} \mathrm{w}_{2}(1) \\
\text { these are the } 4 \text { cofactors }
\end{gathered}
$$

## Factor and implement the following function with a 4-to-1 multiplexer

$$
f=\bar{w}_{1} \bar{w}_{3}+w_{1} w_{2}+w_{1} w_{3}
$$

$$
\begin{aligned}
f & =\bar{w}_{1} \bar{w}_{2} f_{\bar{w}_{1} \bar{w}_{2}}+\bar{w}_{1} w_{2} f_{\bar{w}_{1}}+w_{1} \bar{w}_{2} f_{w_{1} \bar{w}_{2}}+w_{1} w_{2} f_{w_{1} w_{2}} \\
& =\bar{w}_{1} \bar{w}_{2}\left(\bar{w}_{3}\right)+\bar{w}_{1} w_{2}\left(\bar{w}_{3}\right)+w_{1} \bar{w}_{2}\left(w_{3}\right)+w_{1} w_{2}(1)
\end{aligned}
$$

## Factor and implement the following function with a 4-to-1 multiplexer

$$
\begin{aligned}
& f=\bar{w}_{1} \bar{w}_{2} f_{\bar{w}_{1} \bar{w}_{2}}+\bar{w}_{1} w_{2} f_{\bar{w}_{w_{2}}}+w_{1} \bar{w}_{2} f_{w_{1} \bar{w}_{2}}+w_{1} w_{2} f_{w_{1} w_{2}} \\
& =\bar{w}_{1} \bar{w}_{2}\left(\bar{w}_{3}\right)+\bar{w}_{1} w_{2}\left(\bar{w}_{3}\right)+w_{1} \bar{w}_{2}\left(w_{3}\right)+w_{1} w_{2}(1)
\end{aligned}
$$

[ Figure 4.11b from the textbook]

## Yet Another Example

# Factor and implement the following function using only 2-to-1 multiplexers 

$$
f=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}
$$

# Factor and implement the following function using only 2-to-1 multiplexers 

$$
f=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}
$$

$$
\begin{aligned}
f & =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}+w_{2} w_{3}\right) \\
& =\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}\right)
\end{aligned}
$$

# Factor and implement the following function using only 2-to-1 multiplexers 

$$
f=w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}
$$

$$
\begin{gathered}
f=\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}+w_{2} w_{3}\right) \\
=\bar{w}_{1}(\underbrace{w_{2} w_{3}})+w_{1}(\underbrace{w_{2}+w_{3}}) \\
\quad g=w_{2} w_{3} \quad h=w_{2}+w_{3}
\end{gathered}
$$

# Factor and implement the following function using only 2-to-1 multiplexers 

$$
\begin{aligned}
& f=\bar{w}_{1}\left(w_{2} w_{3}\right)+w_{1}\left(w_{2}+w_{3}+w_{2} w_{3}\right) \\
& =\bar{w}_{1}(\underbrace{w_{2} w_{3}})+w_{1}(\underbrace{w_{2}+w_{3}}) \\
& g=w_{2} w_{3} \quad h=w_{2}+w_{3}
\end{aligned}
$$

# Factor and implement the following function using only 2-to-1 multiplexers 

$$
g=w_{2} w_{3}
$$

$$
h=w_{2}+w_{3}
$$

## Factor and implement the following function using only 2-to-1 multiplexers

$$
\begin{array}{cc}
g=w_{2} w_{3} & h=w_{2}+w_{3} \\
\downarrow & \\
g=\bar{w}_{2}(0)+w_{2}\left(w_{3}\right) & h=\bar{w}_{2}\left(w_{3}\right)+w_{2}(1)
\end{array}
$$

## Factor and implement the following function using only 2-to-1 multiplexers



$g=\bar{w}_{2}(0)+w_{2}\left(w_{3}\right)$
$h=\bar{w}_{2}\left(w_{3}\right)+w_{2}(1)$

## Finally, we are ready to draw the circuit



## Finally, we are ready to draw the circuit



## Finally, we are ready to draw the circuit


[ Figure 4.12 from the textbook]

## Questions?

## THE END

