

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

D Flip-Flops

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 7 is due today
- Homework 8 is due on Monday Oct 23 @ 10pm.

Quick Review

A simple memory element with NOT Gates

The circuit will stay in this state indefinitely.

A simple memory element with NOT Gates

A simple memory element with NOT Gates

A simple memory element with NOT Gates

The circuit will stay in this state indefinitely.

A Strange Loop

This circuit can be in two possible states

This circuit can be in two possible states

used to store a 1
used to store a 0

This circuit can be in two possible states

A simple memory element with NAND Gates

A simple memory element with NOR Gates

Basic Latch

A simple memory element with NOR Gates

A simple memory element with NOR Gates

A simple memory element with NOR Gates

A memory element with NOR gates

[Figure 5.3 from the textbook]

Two Different Ways to Draw the Same Circuit

[Figure $5.3 \& 5.4$ from the textbook]

Circuit and Characteristic Table for the Basic Latch

Note that Q_{a} and Q_{b} are inverses of each other!

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

SR Latch: Circuit and Characteristic Table

S	R	$\mathrm{Q}_{a} \mathrm{Q}_{b}$		
0	0	$0 / 1$	$1 / 0$	(no change)
0	1	0	1	
1	0	1	0	
1	1	0	0	(Undesirable)

(a) Circuit
(b) Truth table
[Figure 5.4a,b from the textbook]

NOR Gate

NOR Gate Truth table

x_{1}	x_{2}	f
0	0	1
0	1	0
1	0	0
1	1	0

Oscillations and Undesirable States

- When $\mathrm{S}=1$ and $\mathrm{R}=1$ both outputs of the latch are equal to 0 , i.e., $Q_{a}=0$ and $Q_{b}=0$.
- Thus, the two outputs are no longer complements of each other.
- This is undesirable as many of the circuits that we will build later with these latches rely on the assumption that the two outputs are always complements of each other.
- (This is obviously not the case for the basic latch, but we will patch it later to eliminate this problem).

Oscillations and Undesirable States

- An even bigger problem occurs when we transition from $S=R=1$ to $S=R=0$.
- When $S=R=1$ we have $Q_{a}=Q_{b}=0$. After the transition to $S=R=0$, however, we get $Q_{a}=Q_{b}=1$, which would immediately cause $Q_{a}=Q_{b}=0$, and so on.
- If the gate delays and the wire lengths are identical, then this oscillation will continue forever.
- In practice, the oscillation dies down and the output settles into either $Q_{a}=1$ and $Q_{b}=0$ or $Q_{a}=0$ and $Q_{b}=1$.
- The problem is that we can't predict which one of these two it will settle into.

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram
[Figure 5.4 from the textbook]

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram
[Figure 5.4 from the textbook]

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	(no change)	
1	0	1	
1	1	0	0

(b) Characteristic table

(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0 0 $0 / 1$ $1 / 0$ (no change) 0 1 0			
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0		$0 / 1$
0	$1 / 0$		
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

(b) Characteristic table

(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

(b) Characteristic table

(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

For a brief moment the latch goes through the undesirable state $\mathrm{Q}_{\mathrm{a}}=0$ and $\mathrm{Q}_{\mathrm{b}}=0$.
(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

(c) Timing diagram

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

But these zeros loop around ...

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1 0 1 1	0 0

(b) Characteristic table

\ldots and set it to $\mathrm{Q}_{\mathrm{a}}=1$ and $\mathrm{Q}_{\mathrm{b}}=0$.
(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

(c) Timing diagram

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	(no change)	
1 0 1 1 1 1	1 0 0 0		

(b) Characteristic table

The new values also loop around ...

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	(no change)	
1	1	0	0

(b) Characteristic table

... but they leave the outputs the same.
(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram
[Figure 5.4 from the textbook]

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

For a brief moment the latch goes through the undesirable state $\mathrm{Q}_{\mathrm{a}}=0$ and $\mathrm{Q}_{\mathrm{b}}=0$.

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

But these zeros loop around ...

[^0]
Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	(no change)	
1	0	1	
1	1	0	0

(b) Characteristic table
\ldots and set it to $\mathrm{Q}_{\mathrm{a}}=0$ and $\mathrm{Q}_{\mathrm{b}}=1$.

[^1]
Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

(c) Timing diagram

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	(no change)	
1	0	1	
1	1	0	0

(b) Characteristic table

The new values also loop around ...

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	(no change)	
1	0	1	
1	1	0	0

(b) Characteristic table

... but they leave the outputs the same.
(c) Timing diagram

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram
[Figure 5.4 from the textbook]

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram
[Figure 5.4 from the textbook]

Timing Diagram for the Basic Latch with NOR Gates

(a) Circuit

S	R	$\mathrm{Q}_{a} \mathrm{Q}_{b}$	
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	0	0

(b) Characteristic table

(c) Timing diagram
[Figure 5.4 from the textbook]

Basic Latch with NAND Gates

Circuit for the Basic Latch with NAND Gates

Basic Latch (with NOR Gates)

Basic Latch (with NAND Gates)

Notice that in the NAND case the two inputs are swapped and negated.
The labels of the outputs are the same in both cases.

Basic Latch (with NOR Gates)

SR Latch

Basic Latch (with NAND Gates)

$\bar{S} \bar{R}$ Latch

Circuit and Characteristic Table

(a) Circuit

(b) Characteristic table (version 1)

S	R	Q_{a}	Q_{b}
0	0	$0 / 1$	$1 / 0$
0	1	0	1
1	0	1	0
1	1	1	1

(c) Characteristic table (version 2)

NAND Gate

NAND Gate Truth table

x_{1}	x_{2}	f
0	0	1
0	1	1
1	0	1
1	1	0

Basic Latch (with NOR Gates)

Basic Latch (with NAND Gates)

$$
\begin{array}{cc|cc}
\mathrm{S} & \mathrm{R} & \mathrm{Q}_{a} & \mathrm{Q}_{b} \\
\hline 0 & 0 & 0 / 1 & 1 / 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}
$$

$$
\begin{array}{cc|cc}
\mathrm{S} & \mathrm{R} & \mathrm{Q}_{a} & \mathrm{Q}_{b} \\
\hline 0 & 0 & 0 / 1 & 1 / 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}
$$

Basic Latch (with NOR Gates)

S	R	Q_{a}	Q_{b}	
0	0	$0 / 1$	$1 / 0$	(no change)

0 \& 1

1 \& 0

1 \& 1

1 \& 1\end{array} \right\rvert\, $$
\begin{array}{lll}0 & \text { Set } \\
& & \text { Undesirable }\end{array}
$$\)

Basic Latch (with NAND Gates)

S	R	Q_{a}	Q_{b}					
0	0	$0 / 1$	$1 / 0$	(no change)	Latch 1 Reset	0	1	0
:---:	:---:	:---:						
1	Set							
1	0	1						
1	1	1						
1	Undesirable							

Basic Latch (with NOR Gates)

S	R	$\mathrm{Q}_{a} \mathrm{Q}^{\text {b }}$		
0	0	0/1 1/1	(no change)	Latch
0	1	0		Reset
1	0			Set
1	1	0		Undesirable

Basic Latch (with NAND Gates)

S	R	Q_{a}	Q_{b}					
0	0	$0 / 1$	$1 / 0$	(no change)	Latch 1 Reset	0	1	0
:---:	:---:	:---:						
1	Set							
1	0	1						
1	1	1						
	1							

The two characteristic tables are the same (except for the last row, which is the undesirable configuration).

Oscillations and Undesirable States

- The basic latch with NAND gates also suffers form oscillation problems, similar to the basic latch implemented with NOR gates.
- Try to do this analysis on your own.

Gated SR Latch

Motivation

- The basic latch changes its state when the input signals change
- It is hard to control when these input signals will change and thus it is hard to know when the latch may change its state.
- We want to have something like an Enable input.
- In this case it is called the "Clock" input because it is desirable for the state changes to be synchronized.

Circuit Diagram for the Gated SR Latch

[Figure 5.5a from the textbook]

Circuit Diagram for the Gated SR Latch

This is the "gate"
of the gated latch

Circuit Diagram for the Gated SR Latch

This is the "snake"
of the gated latch

Circuit Diagram for the Gated SR Latch

The outputs are complements of each other

Circuit Diagram and Characteristic Table for the Gated SR Latch

Clk	S	R	$\mathrm{Q}(t+1)$
0	x	x	$\mathrm{Q}(t)$ (no change)
1	0	0	$\mathrm{Q}(t)$ (no change)
1	0	1	0
1	1	0	1
1	1	1	x

[Figure 5.5a-b from the textbook]

Circuit Diagram and Characteristic Table for the Gated SR Latch

Clk	S	R	$\mathrm{Q}(t+1)$
0	x	x	$\mathrm{Q}(t)$ (no change)
1	0	0	$\mathrm{Q}(t)$ (no change)
1	0	1	0
1	1	0	1
1	1	1	x

When $\mathrm{Clk}=0$ this circuit holds the previous output values, regardless of the current inputs S and R because S^{\prime} and R ' are 0 .
[Figure 5.5a-b from the textbook]

Circuit Diagram and Characteristic Table for the Gated SR Latch

Clk	S	R	$\mathrm{Q}(t+1)$
0	X	x	$\mathrm{Q}(t)$ (no change)
1 0 0 $\mathrm{Q}(t)$ (no change) 1 0 1 0 1 1 0 1 1 1 1 x.			

When $\mathrm{Clk}=1$ this circuit behaves like a basic latch.
[Figure 5.5a-b from the textbook]

Circuit Diagram and Characteristic Table for the Gated SR Latch

Clk	S	R	$\mathrm{Q}(t+1)$
0	x	X	$\mathrm{Q}(t)$ (no change)
1	0	0	$\mathrm{Q}(t)$ (no change)
1	0	1	0
1	1	0	1
1	1	1	x

When $\mathrm{Clk}=1$ this circuit behaves like a basic latch. As if this part in gray were not even there.

Circuit Diagram and Graphical Symbol for the Gated SR Latch

[Figure 5.5a,c from the textbook]

Timing Diagram for the Gated SR Latch

[Figure 5.5c from the textbook]

Gated SR latch with NAND gates

[Figure 5.6 from the textbook]

Gated SR latch with NAND gates

In this case, the "gate" is
constructed using NAND gates! Not AND gates.

Gated SR latch with NAND gates

The "snake" is also
constructed with NANDs.

Gated SR latch with NAND gates

Also, notice that the positions of S and R are now swapped.

Gated SR latch with NAND gates

Notice that when $\mathrm{Clk}=1$ this turns into the basic latch with NAND gates, i.e., the $\bar{S} \bar{R}$ Latch.

Gated SR latch with NAND gates

When $\mathrm{Clk}=0$ this circuit holds the previous output values.

Gated SR latch with NOR gates

Gated SR latch with NAND gates

Gated SR latch with NOR gates

Gated SR latch with NAND gates

Graphical symbols are the same

Gated SR latch with NOR gates

Clk	S	R	$\mathrm{Q}(t+1)$
0	x	X	$\mathrm{Q}(t)$ (no change)
1	0	0	$\mathrm{Q}(t)$ (no change)
1	0	1	0
1	1	0	1
1	1	1	x (undesirable)

Gated SR latch with NAND gates

Clk	S	R	$\mathrm{Q}(t+1)$
0	X	X	$\mathrm{Q}(t)$ (no change)
1	0	0	$\mathrm{Q}(t)$ (no change)
1	0	1	0
1	1	0	1
1	1	1	$\mathrm{x} \quad$ (undesirable)

Characteristic tables are the same

Gated D Latch

Motivation

- Dealing with two inputs (S and R) could be messy. For example, we may have to reset the latch before some operations in order to store a specific value but the reset may not be necessary depending on the current state of the latch.
- Why not have just one input and call it D.
- The D latch can be constructed using a simple modification of the SR latch.

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

This is the only new thing here.
[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

$\overline{\mathrm{S}}$	$\overline{\mathrm{R}}$	Q	$\overline{\mathrm{Q}}$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	$0 / 1$	$1 / 0 \quad$ (no change)

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

$\overline{\mathrm{S}}$	$\overline{\mathrm{R}}$	Q	$\overline{\mathrm{Q}}$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	$0 / 1$	$1 / 0$
		(no change)	

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

$\overline{\mathrm{S}}$	$\overline{\mathrm{R}}$	Q	$\overline{\mathrm{Q}}$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	$0 / 1$	$1 / 0 \quad$ (no change)

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

$\overline{\mathrm{S}}$	$\overline{\mathrm{R}}$	Q	$\overline{\mathrm{Q}}$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	$0 / 1$	$1 / 0 \quad$ (no change)

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

$\overline{\mathrm{S}}$	$\overline{\mathrm{R}}$	Q	$\overline{\mathrm{Q}}$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	$0 / 1$	$1 / 0 \quad$ (no change)

[Figure 5.7a from the textbook]

Circuit Diagram for the Gated D Latch

$\overline{\mathrm{S}}$	$\overline{\mathrm{R}}$	Q	$\overline{\mathrm{Q}}$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	$0 / 1$	$1 / 0 \quad$ (no change)

[Figure 5.7a from the textbook]

Circuit Diagram and Characteristic Table for the Gated D Latch

Note that it is now impossible to have $\mathrm{S}=\mathrm{R}=1$.

Circuit Diagram and Characteristic Table for the Gated D Latch

When $\mathrm{Clk}=1$ the output follows the D input.
When $\mathrm{Clk}=0$ the output cannot be changed.
[Figure 5.7a,b from the textbook]

Circuit Diagram and Graphical Symbol for the Gated D Latch

[Figure 5.7a,c from the textbook]

Timing Diagram for the Gated D Latch

[Figure 5.7d from the textbook]

Timing Diagram for the Gated D Latch

Clk=0

[Figure 5.7d from the textbook]

Timing Diagram for the Gated D Latch

[Figure 5.7d from the textbook]

Timing Diagram for the Gated D Latch

[Figure 5.7d from the textbook]

Timing Diagram for the Gated D Latch

$\mathrm{Clk}=1$

[Figure 5.7d from the textbook]

Setup and hold times

Setup time $\left(\mathrm{t}_{\mathrm{su}}\right)$ - the minimum time that the D signal must be stable prior to the the negative edge of the Clock signal.

Hold time $\left(\mathrm{t}_{\mathrm{h}}\right)$ - the minimum time that the D signal must remain stable after the the negative edge of the Clock signal.

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

The NOT gate is now in a different place. Also, S and R are swapped.

Alternative Design for the Gated D Latch

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Gated D Latch: Alternative Design

Master-Slave D Flip-Flop

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

This is the
first "gate"

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

This is the
first "snake"

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

This is the
second "gate"

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

This is the
second "snake"

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

This imposes mutual exclusivity: only one gate is open at a time.

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

We need all of this
to store only one bit here.

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

This also has the capacity to store one bit, but it is used to update the main output.

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

Only this bit is visible
to the user of this circuit.

Constructing a Master-Slave D Flip-Flop From Two D Latches

Latch \#1
Latch \#2

Constructing a Master-Slave D Flip-Flop From Two D Latches

Master Latch
Slave Latch

Constructing a Master-Slave D Flip-Flop From Two D Latches

Master Latch
Slave Latch

Constructing a Master-Slave D Flip-Flop From Two D Latches

[Figure 5.9a from the textbook]

Clock is used for the D Flip-Flop

[Figure 5.9a from the textbook]

Clock is used for the D Flip-Flop, but Clk is used for each D Latch

[Figure 5.9a from the textbook]

Constructing a Master-Slave D Flip-Flop From one D Latch and one Gated SR Latch

(This version uses one less NOT gate)

Master Latch

Slave Latch

Constructing a Master-Slave D Flip-Flop From one D Latch and one Gated SR Latch

(This version uses one less NOT gate)

Master Latch
Slave Latch

Constructing a Master-Slave D Flip-Flop From one D Latch and one Gated SR Latch

(This version uses one less NOT gate)

Master Latch
Slave Latch

Constructing a Master-Slave D Flip-Flop From one D Latch and one Gated SR Latch

(This version uses one less NOT gate)

Master Latch
Slave Latch

This uses the fact that Q and $\overline{\mathrm{Q}}$ are inverses of each other.

Flip-Flop

Latch

You need 2 latches to make a flip-flop

You need 2 latches to make a flip-flop

Master Latch
Slave Latch

You need 2 latches to make a flip-flop

Master Latch
Slave Latch

You need 2 latches to make a flip-flop

Edge-Triggered D Flip-Flops

Motivation

In some cases we need to use a memory storage device that can change its state no more than once during each clock cycle.

Master-Slave D Flip-Flop

[Figure 5.9a from the textbook]

Timing Diagram for the Master-Slave D Flip-Flop

$\mathrm{Q}=\mathrm{Q}_{\mathrm{s}}$

[Figure 5.9a,b from the textbook]

Graphical Symbol for the Master-Slave D Flip-Flop

Graphical Symbol for the Master-Slave D Flip-Flop

The $>$ means that this is edge-triggered
The small circle means that is is the negative edge

Negative-Edge-Triggered Master-Slave D Flip-Flop

Positive-Edge-Triggered Master-Slave D Flip-Flop

Negative-Edge-Triggered Master-Slave D Flip-Flop

Positive-Edge-Triggered Master-Slave D Flip-Flop

D Flip-Flop: A Double Door Analogy

Negative-Edge-Triggered Master-Slave D Flip-Flop

Clock

Positive-Edge-Triggered Master-Slave D Flip-Flop

Clock

Adding the Data Line

Positive-Edge-Triggered Master-Slave D Flip-Flop

D

Clock

Positive-Edge-Triggered Master-Slave D Flip-Flop

D

Clock

Level-Sensitive v.s. Edge-Triggered

Comparison of level-sensitive and edge-triggered D storage elements

Comparison of level-sensitive and edge-triggered D storage elements

Positive-edge-triggered D Flip-Flop (the output is equal to the value of D right at the positive edge of the clock signal)

Comparison of level-sensitive and edge-triggered D storage elements

Negative-edge-triggered D Flip-Flop (the output is equal to the value of D right at the negative edge of the clock signal)

Positive-edge-triggered D flip-flop with Clear and Preset

Positive-edge-triggered D flip-flop with Clear_n and Preset_n

Positive-edge-triggered D flip-flop with Synchronous Clear

(c) Adding a synchronous clear

The output Q can be cleared only on the positive clock edge.
[Figure 5.13c from the textbook]

The Complete Wiring Diagram for a Positive-Edge-Triggered D Flip-Flop

Adding an Asynchronous Clear

Adding an Asynchronous Preset

preset_n

Positive-Edge-Triggered D Flip-Flop with Asynchronous Clear and Preset

Positive-edge-triggered D flip-flop with asynchronous Clear and Preset

(b) Graphical symbol

For normal operation both must be set to 1

(b) Graphical symbol

A zero on clear_n drives the output \mathbf{Q} to zero

(b) Graphical symbol

A zero on preset_n drives the output \mathbf{Q} to one

(b) Graphical symbol

The output is indeterminate if both are zero

don't ever use this one

(b) Graphical symbol

The Complete Wiring Diagram for a Positive-Edge-Triggered D Flip-Flop

The Complete Wiring Diagram for a Negative-Edge-Triggered D Flip-Flop

The Complete Wiring Diagram for a Negative-Edge-Triggered D Flip-Flop

Negative-Edge-Triggered D flip-flop with asynchronous Clear and Preset

(a) Circuit

(b) Graphical symbol
[Figure 5.12 from the textbook]

Flip-Flop Timing Parameters

(a) D flip-flop with asynchronous clear

[Figure 5.14 from the textbook]
(b) Timing diagram

An alternative D Flip-Flop Design

A positive-edge-triggered D flip-flop

(a) Circuit

(b) Graphical symbol
[Figure 5.11 from the textbook]

A positive-edge-triggered D flip-flop

This circuit behaves like a positive-edge-triggered D flip-flop, but it uses only 6 NAND gates.

(a) Circuit

(b) Graphical symbol
[Figure 5.11 from the textbook]

Positive-edge-triggered D flip-flop with asynchronous Clear and Preset

[Figure 5.13a from the textbook]

Terminology

- Basic Latch - is a feedback connection of two NOR gates or two NAND gates, which can store one bit of information (it has two outputs but they are inverses of each other). The primary output can be set to 1 using the S input and reset to 0 using the R input.
- Gated Latch - is a basic latch that includes input gating with a control input signal. The latch retains its existing state when the control input is equal to 0 . Its state may be changed through the S and R inputs when the control signal is equal to 1 .

Terminology

- Two types of gated latches (the control input is the clock):
- Gated SR Latch - uses the S and R inputs to set the latch to 1 or reset it to 0 .
- Gated D Latch - uses the D input to force the latch into a state that has the same logic value as the D input.

Terminology

- Flip-Flop - is a storage element that can have its output state changed only on the edge of the controlling clock signal.
- Positive-edge triggered - if the state changes when the clock signal goes from 0 to 1.
- Negative-edge triggered - if the state changes when the clock signal goes from 1 to 0 .

Terminology

Both latches and flip-flops are storage elements. Each of them can store only one bit of information. However, they use different mechanisms to change the value of that bit.

A latch is level-sensitive, whereas a flip-flop is edgesensitive. When a latch is enabled it becomes transparent, meaning that its output can be changed immediately given appropriate values of the inputs. And the output can change multiple times while the latch is enabled.

On the other hand, the output of a flip-flop changes only on a single type of clock edge (either positive going or negative going edge). The new output depends on the input values at the time of the clock edge.

Questions?

THE END

[^0]: (c) Timing diagram

[^1]: (c) Timing diagram

