

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

T Flip-Flops & JK Flip-Flops

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

Homework 8 is due on Monday Oct 23 @ 10pm.

• The second midterm exam is next week (Friday Oct 27).

Administrative Stuff

Midterm Exam #2

When: Friday October 27 @ 4:20pm.

Where: This room

What: Chapters 1, 2, 3, 4 and 5

 The exam will be closed book but open notes (you can bring up to 3 pages of handwritten notes).

Midterm 2: Format

- The exam will be out of 130 points
- You need 95 points to get an A for this exam
- It will be great if you can score more than 100 points.
 - but you can't roll over your extra points ⊗

Midterm 2: Topics

- K-maps for 2, 3, and 4 variables
- Binary Numbers and Hexadecimal Numbers
- 1's complement and 2's complement representation
- Addition and subtraction of binary numbers
- Circuits for adders and fast adders, delay calculation
- Single and Double precision IEEE floating point formats
- Converting a real number to the IEEE format
- Converting a floating point number to base 10
- Multiplexers (circuits and function)
- Synthesis of logic functions using multiplexers
- Shannon's Expansion Theorem

Midterm 2: Topics

- Decoders (circuits and function)
- Demultiplexers
- Encoders (binary and priority)
- Code Converters and Comparison Circuits
- Synthesis of logic circuits using adders, multiplexers, encoders, decoders, and basic logic gates
- Synthesis of logic circuits given constraints on the available building blocks that you can use
- Latches (circuits, behavior, timing diagrams)
- Flip-Flops (circuits, behavior, timing diagrams)
- Registers and Register Files
- Counters
- Something from Star Wars

Quick Review

Gated D Latch

Circuit Diagram for the Gated D Latch

Circuit Diagram and Graphical Symbol for the Gated D Latch

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

The NOT gate is now in a different place. Also, S and R are swapped.

Master-Slave D Flip-Flop

Master Slave

Master Slave (Data) (Data) Clk

Clock is used for the D Flip-Flop

Clock is used for the D Flip-Flop, but Clk is used for each D Latch

Constructing a Master-Slave D Flip-Flop From one D Latch and one Gated SR Latch

(This version uses one less NOT gate)

Slave

Master

Constructing a Master-Slave D Flip-Flop From one D Latch and one Gated SR Latch

(This version uses one less NOT gate)

Master Slave (Data) Clk Clk

Edge-Triggered D Flip-Flops

Motivation

In some cases we need to use a memory storage device that can change its state no more than once during each clock cycle.

Graphical Symbol for the Master-Slave D Flip-Flop

Graphical Symbol for the Master-Slave D Flip-Flop

The > means that this is edge-triggered

The small circle means that is is the negative edge

Negative-Edge-Triggered Master-Slave D Flip-Flop

Positive-Edge-Triggered Master-Slave D Flip-Flop

Negative-Edge-Triggered Master-Slave D Flip-Flop

Positive-Edge-Triggered Master-Slave D Flip-Flop

Flip-Flop Analogy (Airlock)

Airlock on Earth

D Flip-Flop Analogy

Outer Door Will Not Unlock When Inner Door is Open Inner Door Will Not Unlock When OuterDoor is Open

D Flip-Flop Analogy

D Flip-Flop: A Double Door Analogy

Positive-edge-triggered D flip-flop with Clear and Preset

Positive-edge-triggered D flip-flop with Clear_n and Preset_n

Positive-edge-triggered D flip-flop with Synchronous Clear

(c) Adding a synchronous clear

The output Q can be cleared only on the positive clock edge.

The Complete Wiring Diagram for a Positive-Edge-Triggered D Flip-Flop

Adding an Asynchronous Clear

Adding an Asynchronous Preset

Positive-Edge-Triggered D Flip-Flop with Asynchronous Clear and Preset

At this point we need to consider two cases: Clock=1 v.s. Clock =0

How does clear work?

Clock=0

Positive-edge-triggered D flip-flop with asynchronous Clear and Preset

For normal operation both must be set to 1

A zero on clear_n drives the output Q to zero

A zero on preset_n drives the output Q to one

The output is indeterminate if both are zero

don't ever use this one

Flip-Flop Timing Parameters

(a) D flip-flop with asynchronous clear

[Figure 5.14 from the textbook]

(b) Timing diagram

An alternative D Flip-Flop Design

A positive-edge-triggered D flip-flop

[Figure 5.11 from the textbook]

A positive-edge-triggered D flip-flop

[Figure 5.11 from the textbook]

Positive-edge-triggered D flip-flop with asynchronous Clear and Preset

Motivation

A slight modification of the D flip-flop that can be used for some nice applications (e.g., counters).

In this case, T stands for Toggle.

Positive-edge-triggered D Flip-Flop

[Figure 5.15a from the textbook]

It is a 2-to-1 Multiplexer

It is a T Flip-Flop

It is a T Flip-Flop

Note that the two inputs to the multiplexer are inverses of each other.

Another Way to Draw This

Another Way to Draw This

$$D = Q\overline{T} + \overline{Q}T$$

It is an XOR

$$D = Q \oplus T$$

It is an XOR

$$\frac{Q}{T}$$
 D

$$D = Q \oplus T$$

It is a T Flip-Flop too

It is a T Flip-Flop too

T	Q	D
0	0	0
0	1	1
1	0	1
1	1	0

It is a T Flip-Flop too

T	Q	D	
0	0	0	0
0	1	1	Q
1	0	1]	_
1	1	$0 \int$	Q

T Flip-Flop (how it works)

If T=0 then it stays in its current state

If T=1 then it reverses its current state

In other words the circuit "toggles" its state when T=1. This is why it is called T flip-flop.

T Flip-Flop (circuit and truth table)

T	Q(t+1)
0	Q(t)
1	$\overline{\mathbf{Q}}(t)$

T Flip-Flop (circuit and graphical symbol)

T Flip-Flop (Timing Diagram)

Clock

T

Q ___

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

JK Flip-Flop

JK Flip-Flop

$$D = J\overline{Q} + \overline{K}Q$$

JK Flip-Flop

J K	Q(t+1)	
0 0	Q(t) Hold	JO
0 1	0 Reset	
1 0	1 Set	
1 1	$\overline{\mathbf{Q}}\left(\mathbf{t}\right)$ Toggle	

(b) Truth table

(c) Graphical symbol

[Figure 5.16 from the textbook]

JK Flip-Flop (how it works)

A more versatile flip-flop

If J=0 and K=0 it stays in the same state

If J=1 and K=0 it sets the output Q to 1

If J=0 and K=1 it resets the output Q to 0

If J=1 and K=1 it toggles the output Q

If J=K then it behaves like a T flip-flop

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\overline{Q}(t)$

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\overline{Q}(t)$

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	$\overline{Q}(t)$

Complete Wiring Diagrams

Positive-Edge-Triggered D Flip-Flop

Negative-Edge-Triggered D Flip-Flop

The Complete Wiring Diagram for a Positive-Edge-Triggered D Flip-Flop

The Complete Wiring Diagram for a Negative-Edge-Triggered D Flip-Flop

The Complete Wiring Diagram for a Negative-Edge-Triggered D Flip-Flop

Positive-Edge-Triggered T Flip-Flop

Negative-Edge-Triggered T Flip-Flop

The Complete Wiring Diagram for a Positive-Edge-Triggered T Flip-Flop

The Complete Wiring Diagram for a Negative-Edge-Triggered T Flip-Flop

Positive-Edge-Triggered JK Flip-Flop

Negative-Edge-Triggered JK Flip-Flop

The Complete Wiring Diagram for a Positive-Edge-Triggered JK Flip-Flop

The Complete Wiring Diagram for a Negative-Edge-Triggered JK Flip-Flop

Complete the Timing diagrams (for positive-edge-triggered F-F)

Complete the Timing diagrams (for negative-edge-triggered F-F)

T Clock Q Q

Questions?

THE END