

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

T Flip-Flops

\&

JK Flip-Flops

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 8 is due on Monday Oct $23 @ 10 p m$.
- The second midterm exam is next week (Friday Oct 27).

Administrative Stuff

- Midterm Exam \#2
- When: Friday October 27 @ 4:20pm.
- Where: This room
- What: Chapters 1, 2, 3, 4 and 5
- The exam will be closed book but open notes (you can bring up to 3 pages of handwritten notes).

Midterm 2: Format

- The exam will be out of $\mathbf{1 3 0}$ points
- You need 95 points to get an A for this exam
- It will be great if you can score more than 100 points.
- but you can't roll over your extra points :

Midterm 2: Topics

- K-maps for 2, 3, and 4 variables
- Binary Numbers and Hexadecimal Numbers
- 1's complement and 2's complement representation
- Addition and subtraction of binary numbers
- Circuits for adders and fast adders, delay calculation
- Single and Double precision IEEE floating point formats
- Converting a real number to the IEEE format
- Converting a floating point number to base 10
- Multiplexers (circuits and function)
- Synthesis of logic functions using multiplexers
- Shannon's Expansion Theorem

Midterm 2: Topics

- Decoders (circuits and function)
- Demultiplexers
- Encoders (binary and priority)
- Code Converters and Comparison Circuits
- Synthesis of logic circuits using adders, multiplexers, encoders, decoders, and basic logic gates
- Synthesis of logic circuits given constraints on the available building blocks that you can use
- Latches (circuits, behavior, timing diagrams)
- Flip-Flops (circuits, behavior, timing diagrams)
- Registers and Register Files
- Counters
- Something from Star Wars

Quick Review

Gated D Latch

Circuit Diagram for the Gated D Latch

[Figure 5.7a from the textbook]

Circuit Diagram and Graphical Symbol for the Gated D Latch

[Figure 5.7a,c from the textbook]

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

Circuit Diagram for the Gated D Latch (with the latch implemented using NORs)

The NOT gate is now in a different place. Also, S and R are swapped.

Master-Slave D Flip-Flop

Constructing a Master-Slave D Flip-Flop From Two D Latches

Master

Slave

Constructing a Master-Slave D Flip-Flop From Two D Latches

Master

Slave

Constructing a Master-Slave D Flip-Flop From Two D Latches

Master
Slave

Constructing a Master-Slave D Flip-Flop From Two D Latches

[Figure 5.9a from the textbook]

Clock is used for the D Flip-Flop

[Figure 5.9a from the textbook]

Clock is used for the D Flip-Flop, but Clk is used for each D Latch

[Figure 5.9a from the textbook]

Constructing a Master-Slave D Flip-Flop From one D Latch and one Gated SR Latch

(This version uses one less NOT gate)

Master

Slave

Constructing a Master-Slave D Flip-Flop From one D Latch and one Gated SR Latch

(This version uses one less NOT gate)
Master
Slave

Edge-Triggered D Flip-Flops

Motivation

In some cases we need to use a memory storage device that can change its state no more than once during each clock cycle.

Graphical Symbol for the Master-Slave D Flip-Flop

Graphical Symbol for the Master-Slave D Flip-Flop

The $>$ means that this is edge-triggered
The small circle means that is is the negative edge

Negative-Edge-Triggered Master-Slave D Flip-Flop

Positive-Edge-Triggered Master-Slave D Flip-Flop

Negative-Edge-Triggered Master-Slave D Flip-Flop

Positive-Edge-Triggered Master-Slave D Flip-Flop

Flip-Flop Analogy

(Airlock)

Airlock on Earth

D Flip-Flop Analogy

D Flip-Flop Analogy

Master
Slave

D Flip-Flop: A Double Door Analogy

Positive-Edge-Triggered Master-Slave D Flip-Flop

D

Clock

Positive-Edge-Triggered Master-Slave D Flip-Flop

D

Clock

Positive-edge-triggered D flip-flop with Clear and Preset

Positive-edge-triggered D flip-flop with Clear_n and Preset_n

Positive-edge-triggered D flip-flop with Synchronous Clear

(c) Adding a synchronous clear

The output Q can be cleared only on the positive clock edge.
[Figure 5.13c from the textbook]

The Complete Wiring Diagram for a Positive-Edge-Triggered D Flip-Flop

Adding an Asynchronous Clear

Adding an Asynchronous Preset

preset_n

Positive-Edge-Triggered D Flip-Flop with Asynchronous Clear and Preset

How does clear work?

How does clear work?

How does clear work?

How does clear work?

How does clear work?

How does clear work?

At this point we need to consider two cases: Clock=1 v.s. Clock $=0$

How does clear work?

How does clear work?

How does clear work?

Clock=1

How does clear work?

Clock=1

How does clear work?

Clock=1

How does clear work?

Clock=0

How does clear work?

How does clear work?
Clock=0

How does clear work?

Positive-edge-triggered D flip-flop with asynchronous Clear and Preset

(b) Graphical symbol

For normal operation both must be set to 1

(b) Graphical symbol

A zero on clear_n drives the output \mathbf{Q} to zero

(b) Graphical symbol

A zero on preset_n drives the output \mathbf{Q} to one

(b) Graphical symbol

The output is indeterminate if both are zero

don't ever use this one

(b) Graphical symbol

Flip-Flop Timing Parameters

(a) D flip-flop with asynchronous clear

[Figure 5.14 from the textbook]
(b) Timing diagram

An alternative D Flip-Flop Design

A positive-edge-triggered D flip-flop

(a) Circuit

(b) Graphical symbol
[Figure 5.11 from the textbook]

A positive-edge-triggered D flip-flop

This circuit behaves like a positive-edge-triggered D flip-flop, but it uses only 6 NAND gates.

(a) Circuit

(b) Graphical symbol
[Figure 5.11 from the textbook]

Positive-edge-triggered D flip-flop with asynchronous Clear and Preset

[Figure 5.13a from the textbook]

T Flip-Flop

Motivation

A slight modification of the D flip-flop that can be used for some nice applications (e.g., counters).

In this case, T stands for Toggle.

T Flip-Flop

[Figure 5.15a from the textbook]

T Flip-Flop

[Figure 5.15a from the textbook]

T Flip-Flop

What is this?
[Figure 5.15a from the textbook]

What is this?

It is a 2-to-1 Multiplexer

What is this?

It is a T Flip-Flop

It is a T Flip-Flop

Note that the two inputs to the multiplexer are inverses of each other.

Another Way to Draw This

Another Way to Draw This

What is this?

What is this?

What is this?

It is an XOR

It is an XOR

P $-\longrightarrow-$

$$
\mathrm{D}=\mathrm{Q} \oplus \mathrm{~T}
$$

What is this?

It is a T Flip-Flop too

It is a T Flip-Flop too

\mathbf{T}	\mathbf{Q}	\mathbf{D}
0	0	0
0	1	1
1	0	1
1	1	0

It is a T Flip-Flop too

$$
\left.\begin{array}{ll|l}
\mathbf{T} & \mathbf{Q} & \mathbf{D} \\
\hline 0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right] \quad \mathrm{Q}
$$

T Flip-Flop (how it works)

If $\mathrm{T}=\mathbf{0}$ then it stays in its current state

If $\mathrm{T}=1$ then it reverses its current state

In other words the circuit "toggles" its state when $\mathrm{T}=1$. This is why it is called T flip-flop.

T Flip-Flop
 (circuit and truth table)

T	$\mathrm{Q}(t+1)$
0	$\mathrm{Q}(t)$
1	$\mathrm{Q}(t)$

[Figure 5.15a,b from the textbook]

T Flip-Flop (circuit and graphical symbol)

[Figure 5.15a,c from the textbook]

T Flip-Flop (Timing Diagram)

Clock

T

Q \qquad
[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

[Figure 5.15d from the textbook]

T Flip-Flop (Timing Diagram)

T Flip-Flop (Timing Diagram)

Current state

T Flip-Flop (Timing Diagram)

JK Flip-Flop

JK Flip-Flop

[Figure 5.16a from the textbook]

JK Flip-Flop

(a) Circuit

J	K	$\mathrm{Q}(\mathrm{t}+1)$	
0	0	$\mathrm{Q}(\mathrm{t})$	Hold
0	1	0	Reset
1	0	1	Set
1	1	$\overline{\mathrm{Q}}(\mathrm{t})$	Toggle

(b) Truth table

(c) Graphical symbol
[Figure 5.16 from the textbook]

JK Flip-Flop (how it works)

A more versatile flip-flop

If $\mathrm{J}=0$ and $\mathrm{K}=\mathbf{0}$ it stays in the same state

If $\mathrm{J}=1$ and $\mathrm{K}=0$ it sets the output Q to 1
If $\mathrm{J}=0$ and $\mathrm{K}=1$ it resets the output Q to $\mathbf{0}$
If $\mathrm{J}=1$ and $\mathrm{K}=1$ it toggles the output Q

If $\mathrm{J}=\mathrm{K}$ then it behaves like a T flip-flop

JK Flip-Flop
 (timing diagram)

J	K	$\mathrm{Q}(\mathrm{t}+1)$
0	0	$\mathrm{Q}(\mathrm{t})$
0	1	0
1	0	1
1	1	$\bar{Q}(\mathrm{t})$

JK Flip-Flop
 (timing diagram)

J	K	$\mathrm{Q}(\mathrm{t}+1)$
0	0	$\mathrm{Q}(\mathrm{t})$
0	1	0
1	0	1
1	1	$\bar{Q}(\mathrm{t})$

JK Flip-Flop (timing diagram)

J	K	$Q(t+1)$
0	0	$Q(t)$
0	1	0
1	0	1
1	1	$\bar{Q}(t)$

JK Flip-Flop (timing diagram)

[https://en.wikipedia.org/wiki/Flip-flop_(electronics)]

Complete Wiring Diagrams

Positive-Edge-Triggered D Flip-Flop

Negative-Edge-Triggered D Flip-Flop

The Complete Wiring Diagram for a Positive-Edge-Triggered D Flip-Flop

The Complete Wiring Diagram for a Negative-Edge-Triggered D Flip-Flop

The Complete Wiring Diagram for a Negative-Edge-Triggered D Flip-Flop

Positive-Edge-Triggered T Flip-Flop

Negative-Edge-Triggered T Flip-Flop

The Complete Wiring Diagram for a Positive-Edge-Triggered T Flip-Flop

The Complete Wiring Diagram for a Negative-Edge-Triggered T Flip-Flop

Positive-Edge-Triggered JK Flip-Flop

Negative-Edge-Triggered JK Flip-Flop

The Complete Wiring Diagram for a Positive-Edge-Triggered JK Flip-Flop

The Complete Wiring Diagram for a Negative-Edge-Triggered JK Flip-Flop

Complete the Timing diagrams (for positive-edge-triggered F-F)

Q

Complete the Timing diagrams (for negative-edge-triggered F-F)

D
Clock
Q

T

Clock

Q

J
K

Clock

Q

Questions?

THE END

