

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

State Assignment Problem

CprE 281: Digital Logic

lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 10 is due on Nov 8 @ 10pm
- Homework 11 is due on Nov 11 @ 10pm

Quick Review

The general form of a synchronous sequential circuit

[Figure 6.1 from the textbook]

Moore Type

Mealy Type

Moore Machine

- The machine's current state and current inputs are used to decide which next state to transition into.
- The machine's current state decides the current output.
- Named after Edward Moore (1925-2003) who published the idea in 1956.
- Moore, E. (1956). "Gedanken-experiments on Sequential Machines". Automata Studies, Annals of Math. Studies. Princeton Univ. Press (34): 129-153.

Mealy Machine

- The machine's current state and current inputs are used to decide which next state to transition into.
- The machine's current state and current input values decide the current output.
- Named after George Mealy (1927-2010) who published the idea in 1955.
- Mealy, G. (1955). "A method for synthesizing sequential circuits" The Bell System Technical Journal, Volume: 34, Issue: 5, Sept. 1955.

Today's lecture is about the mapping from states to flip-flop outputs

Today's lecture is about the mapping from states to flip-flop outputs

It applies to both Mealy and Moore machines...

Today's lecture is about the mapping from states to flip-flop outputs

... but all examples will be for Moore machines.

Designing a Moore Machine

- Obtain the circuit specification.
- Derive a state diagram.
- Derive the state table.
- Decide on a state encoding.
- Encode the state table.
- Derive the output logic and next-state logic.
- Draw the circuit diagram
- Add a reset signal.

Example \#1

We need to find both the next state logic and the output logic implied by this machine.
[Figure 6.3 from the textbook]

Present state	Next state	
	$w=0 \quad w=1$	
A		
B		
C		

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

[Figure 6.4 from the textbook]

State Encoding for Example \#1: $A=00, B=01, C=10$

(Uses Two Flip-Flops)

How to represent the states?

One way is to encode each state with a 2-bit binary number

$$
\begin{aligned}
& A=00 \\
& B=01 \\
& C=10
\end{aligned}
$$

How to represent the states?

One way is to encode each state with a 2-bit binary number

$$
\begin{aligned}
& A=00 \\
& B=01 \\
& C=10
\end{aligned}
$$

How many flip-flops do we need?

Let's use two flip flops to hold the state of this machine

Let's pick D Flip-Flops.

Clock

We will call y_{1} and y_{2} the present state variables.
We will call Y_{1} and Y_{2} the next state variables.
[Figure 6.5 from the textbook]

State $=y_{2} y_{1}$

Two zeros on the output JOINTLY represent state A.

State $=y_{2} y_{1}$

This flip-flop output pattern represents state B.

State $=y_{2} y_{1}$

This flip-flop output pattern represents state C.

State $=y_{2} y_{1}$

What does this flip-flop output pattern represent?

State $=y_{2} y_{1}$

Clock

This would be state D, but we don't have one in this example. So this is an impossible state.

We will call y_{1} and y_{2} the present state variables.
We will call Y_{1} and Y_{2} the next state variables.
[Figure 6.5 from the textbook]

We will call y_{1} and y_{2} the present state variables.
We will call Y_{1} and Y_{2} the next state variables.
[Figure 6.5 from the textbook]

We need to find logic expressions for $Y_{1}\left(w, y_{1}, y_{2}\right), Y_{2}\left(w, y_{1}, y_{2}\right)$, and $z\left(y_{1}, y_{2}\right)$.
[Figure 6.5 from the textbook]

We need to find logic expressions for $Y_{1}\left(w, y_{1}, y_{2}\right), Y_{2}\left(w, y_{1}, y_{2}\right)$, and $z\left(y_{1}, y_{2}\right)$.
[Figure 6.5 from the textbook]

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

Suppose we encoded our states in the same order in which they were labeled:

$$
\begin{aligned}
& A \sim 00 \\
& B \sim 01 \\
& C \sim 10
\end{aligned}
$$

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

The finite state machine will never reach a state encoded as 11 .
[Figure 6.6 from the textbook]

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

[Figure 6.6 from the textbook]

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

Present state	Next state		Output
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
	$\|c\|$ 00	00	
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	
0	1	
1	0	
1	1	

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

Present state	Next state		Output
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
	$w=1$		
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

Present state	Next state		Output
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
	$\|c\|$ 00	00	
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

Present state	Next state		
	$w=0$	$w=1$	
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	z
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	d	
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

Present state	Next state		Output
	$w=0$	$w=1$	
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	d	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

Present state	Next state		
	$w=0$	$w=1$	
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	d	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

Present state	Next state		
	$w=0$	$w=1$	
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	z
00	00	01	0
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	d	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

Present state	Next state		Output
	$w=0$	$w=1$	
$y_{2}{ }_{1}$	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
00		01	0
01		10	0
10		10	1
11		dd	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

Present state	Next state		Output
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
	$\|c\|$ 00	00	
01	00	10	0
10	00	10	1
11	$d d$	$d d$	d

[Figure 6.6 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

Note that the textbook draws these K-Maps differently from all previous K-maps
(the most significant bit indexes the rows).

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	d	d
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	d	d

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	1
1	1	d

Don't care conditions simplify the combinatorial logic

Ignoring don't cares

$$
Y_{1}=w \bar{y}_{1} \bar{y}_{2}
$$

$$
Y_{2}=w y_{1} \bar{y}_{2}+\bar{w}_{1} y_{2}
$$

$$
z=\bar{y}_{1} y_{2}
$$

Using don't cares

$$
Y_{1}=w \bar{y}_{1} \bar{y}_{2}
$$

$$
\begin{aligned}
Y_{2} & =w y_{1}+w y_{2} \\
& =w\left(y_{1}+y_{2}\right)
\end{aligned}
$$

$z=y_{2}$

Draw the Circuit Diagram

[Figure 6.8 from the textbook]

Draw the Circuit Diagram

[Figure 6.8 from the textbook]

Draw the Circuit Diagram

[Figure 6.8 from the textbook]

Draw the Circuit Diagram

[Figure 6.8 from the textbook]

Moore Type

Don't Forget to Add the Reset Line

[Figure 6.8 from the textbook]

State $A=00$

When the reset signal is equal to zero it puts the machine back to its start state, which is state 00 (or A) in this case.

[Figure 6.8 from the textbook]

State $A=00$

When the reset signal is equal to zero it puts the machine back to its start state, which is state 00 (or A) in this case.

[Figure 6.8 from the textbook]

State $=y_{2} y_{1}$
State $A=00$

State $A=00$

State $A=00$

State $A=00$

State $A=00$

State $B=01$

State $B=01$

State $B=01$

State $A=00$

State $A=00$

State $A=00$

State $B=01$

State $B=01$

State $B=01$

State $C=10$

State $C=10$

State $C=10$

State $A=00$

Clockcycle:	t_{0}	t_{1}	t_{2}	t_{3}	t_{4}	t_{5}	t_{6}	t_{7}	t_{8}	t_{9}	t_{10}
$w:$	0	1	0	1	1	0	1	1	1	0	1
$z:$	0	0	0	0	0	1	0	0	1	1	0

[Figure 6.9 from the textbook]

Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ $w: \begin{array}{llllllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$ $z: 0$

Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ $w: ~ 0 \begin{array}{lllllllllll} & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$ $z: 0$

Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ $w: ~ 0 \begin{array}{lllllllllll} & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$ $z: 0$

Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ | $w:$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $z:$ | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |

Summary: Designing a Moore Machine

- Obtain the circuit specification.
- Derive a state diagram.
- Derive the state table.
- Decide on a state encoding.
- Encode the state table.
- Derive the output logic and next-state logic.
- Draw the circuit diagram
- Add a reset signal.

Alternative State Encoding for Example \#1: $A=00, B=01, C=11$

(Also Uses Two Flip-Flops)

A Better State Encoding

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

Suppose we encoded our states another way:

$$
\begin{aligned}
& \mathrm{A}=00 \\
& \mathrm{~B}=01 \\
& \mathrm{C}=11
\end{aligned}
$$

Let's pick D Flip-Flops.

Clock

We will call y_{1} and y_{2} the present state variables.
We will call Y_{1} and Y_{2} the next state variables.
[Figure 6.5 from the textbook]

Two zeros on the output JOINTLY represent state A.

This flip-flop output pattern represents state B.

This flip-flop output pattern represents state C.

What does this flip-flop output pattern represent?

This would be state D, but we don't have one in this example. So this is an impossible state.

A Better State Encoding

Present state	Next state		Output
	$w=0$	$w=1$	
A	A	B	0
B	A	C	0
C	A	C	1

Suppose we encoded our states another way:

$$
\begin{aligned}
& \mathrm{A}=00 \\
& \mathrm{~B}=01 \\
& \mathrm{C}=11
\end{aligned}
$$

A Better State Encoding

A Better State Encoding

Let's Derive the Logic Expressions

Present state	Next state		
	$w=0$	$w=1$	
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	z
A	00	00	01
B	01	00	0
C	11	00	11
10	$d d$	$d d$	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

Present state	Next state		Output
	$w=0$	$w=1$	
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	

[Figure 6.16 from the textbook]

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	
0	1	
1	0	
1	1	

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	,
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

Present state	Next state		
	$w=0$	$w=1$	Output
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	d	
0	1	1	0	
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	d	
0	1	1	0	
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	dd	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	d	
0	1	1	0	
1	0	0		
1	0	1		
1	1	0		
1	1	1		

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Outputz
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	d	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	d	
1	1	1	1	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	d	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	d	
1	1	1	1	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	dd	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	d	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	d	
1	1	1	1	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	
0	0	1	0	
0	1	0	d	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	d	
1	1	1	1	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	d	d
0	1	1	0	0
1	0	0	0	
1	0	1	1	
1	1	0	d	
1	1	1	1	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	d	d
0	1	1	0	0
1	0	0	0	
1	0	1	1	
1	1	0	d	
1	1	1	1	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	dd	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	d	d
0	1	1	0	0
1	0	0	0	
1	0	1	1	
1	1	0	d	
1	1	1	1	

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	d	d
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	d	d
1	1	1	1	1

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	$d d$	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	d	d
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	d	d
1	1	1	1	1

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

	Present state $y_{2} y_{1}$	Next state		Output z
		$w=0$	$w=1$	
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01	0
B	01	00	11	0
C	11	00	11	1
	10	$d d$	dd	d

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	d	d
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	d	d
1	1	1	1	1

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{l} \text { and } Q(t+l)=Y_{2} Y_{1}
$$

Present state	Next state		
	$w=0$	$w=1$	Output
	$y_{2} y_{1}$	$Y_{2} Y_{1}$	
A	00	00	01
B	01	00	11
C	11	00	11
10	$d d$	$d d$	1

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	d	d
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	d	d
1	1	1	1	1

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	d	d
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	d	d
1	1	1	1	1

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

Deriving the Logic Expressions

$$
Q(t)=y_{2} y_{1} \text { and } Q(t+1)=Y_{2} Y_{1}
$$

w	y_{2}	y_{1}	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	0
0	1	0	d	d
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	0	d	d
1	1	1	1	1

$$
z\left(y_{2}, y_{1}\right)=y_{2}
$$

y_{2}	y_{1}	z
0	0	0
0	1	0
1	0	d
1	1	1

New State
Encodings

The New and Improved Circuit Diagram

[Figure 6.17 from the textbook]

The New and Improved Circuit Diagram

[Figure 6.17 from the textbook]

The Previous Circuit Diagram

[Figure 6.8 from the textbook]

Moore Type

State $A=00$

State $B=01$

State $B=01$

State $B=01$

State $A=00$

State $A=00$

State $B=01$

State $B=01$

State $B=01$

State C=11

State C=11

State C=11

Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ $w: ~ 0.1 \begin{array}{llllllllll} & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1\end{array}$ $z: 0$

Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$
 $z: 0$

Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$
 $z: 0$

Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ $w: \begin{array}{llllllllllll}0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$ $z: 0$

Clockcycle: $\begin{array}{llllllllllll}\mathrm{t}_{0} & \mathrm{t}_{1} & \mathrm{t}_{2} & \mathrm{t}_{3} & \mathrm{t}_{4} & \mathrm{t}_{5} & \mathrm{t}_{6} & \mathrm{t}_{7} & \mathrm{t}_{8} & \mathrm{t}_{9} & \mathrm{t}_{10}\end{array}$ $w: ~ 0 \begin{array}{lllllllllll} & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1\end{array}$ $z: 0$

Main Idea

Different state assignments of the same Moore machine generally lead to different circuits.

Some may use fewer logic elements than others.

But they all do the same thing
(i.e., implement the same Moore machine).

Example \#2

Register Swap Controller

[Figure 6.10 from the textbook]

Register Swap Controller

Design a Moore machine control circuit for swapping the contents of registers R1 and R2 by using R3 as a temporary.

State Diagram

[Figure 6.11 from the textbook]

Animated Register Swap

Animated Register Swap

These are the original values of the 8-bit registers

Animated Register Swap

For clarity, only inputs that are equal to 1 will be shown.

Animated Register Swap

State Diagram

[Figure 6.11 from the textbook]

Some Questions

- How many flip-flops are we going to use?
- How many logic expressions do we need to find?

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2{ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A									
B									
C									
D									

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

As we saw before, we can expect that some state encodings will be better than others.

We will consider three encoding schemes.

Encoding \#1: $A=00, B=01, C=10, D=11$

(Uses Two Flip-Flops)

State Table

Present state	Next state		Outputs						
	$w=0$	$w=1$	R_{1} out	$\mathrm{R}_{1 \text { in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

[Figure $6.12 \& 6.13$ from the textbook]

State Table

Present state	Next state		Outputs						
	$w=0$	$w=1$	R_{1} out	R_{1} in	$\mathrm{R}_{\text {out }}$	$\mathrm{R}_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R}_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State Assigned Table

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	R1 ${ }_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00									
B	01									
C	10									
D	11									

[Figure $6.12 \& 6.13$ from the textbook]

State Table

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State Assigned Table

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1}$ out	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01							
B	01	10	10							
C	10	11	11							
D	11	00	00							

[Figure $6.12 \& 6.13$ from the textbook]

State Table

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R1}_{\text {out }}$	$\mathrm{R1}_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R}_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State Assigned Table

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1}$ out	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	,

[Figure $6.12 \& 6.13$ from the textbook]

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1} \mathrm{out}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	R2 ${ }_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	w	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Let's derive the next-state expressions.

y_{2}	y_{1}	w	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

Pay attention to the way the columns of the truth table are labeled.

$\checkmark \cap \infty>$

Present state $y_{2} y_{1}$	Next state		Outputs						
	$w=0$	$w=1$							
	$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R3}_{\text {in }}$	Done
00	00	01	0	0	0	0	0	0	0
01	10	10	0	0	1	0	0	1	0
10	11	11	1	0	0	1	0	0	0
11	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	w	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

$Y_{1} \quad y_{2} y_{1}$				
0	0	0	0	1
1	1)	0	0	(1)

${ }^{Y_{2}} \underbrace{y_{2} y_{1}}$

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	R2 ${ }_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	R1 ${ }_{\text {out }}$	$\mathrm{R1}_{\text {in }}$	R2 ${ }_{\text {out }}$	R2 ${ }_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions.
We need to derive only these 3 unique ones.

y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
0	0	0	0	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R 3 out	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

$$
Y_{1}=w \bar{y}_{1}+\bar{y}_{1} y_{2}
$$

$$
Y_{2}=y_{1} \bar{y}_{2}+\bar{y}_{1} y_{2}
$$

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R1} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	R2 ${ }_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R}_{3}{ }_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	10	10	0	0	1	0	0	1	0
C	10	11	11	1	0	0	1	0	0	0
D	11	00	00	0	1	0	0	1	0	1

Encoding \#2: $A=00, B=01, C=11, D=10$
 (Also Uses Two Flip-Flops)

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	R_{1} out	$\mathrm{R}_{1 \text { in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R_{3} out	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

[Figure $6.12 \& 6.18$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	R_{1} out	$\mathrm{R}_{1 \text { in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R_{3} out	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

[Figure $6.12 \& 6.18$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	R_{1} out	$\mathrm{R}_{1 \text { in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R_{3} out	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0 \quad w=1$								
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$R 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01							
B	01	11	11							
C	11	10	10							
D	10	00	00							

[Figure $6.12 \& 6.18$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R}_{1 \text { out }}$	$\mathrm{R}_{1 \text { in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R_{3} out	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

[Figure $6.12 \& 6.18$ from the textbook]

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	w	Y_{2}	Y_{1}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Let's derive the next-state expressions

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R1} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	w	Y_{2}	Y_{1}
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	0

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0 \quad w=1$								
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	R1 ${ }_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	R2 ${ }_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
0	0			
0	1			
1	0			
1	1			

Let's derive the output expressions
Once again, we only need to derive these three unique ones.

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	R1 ${ }_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

	y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
A	0	0	0		
B	0	1	0		
D	1	0	0		
	1	1	1		

Note that C and D are swapped in the truth table due to the new state encoding that was chosen.

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	R1 ${ }_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	R2 ${ }_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R3}_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

	y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
A	0	0	0	0	0
B	0	1	0	0	1
D	1	0	0	1	0
	1	1	1	0	0

	Present state $y_{2} y_{1}$	Next state		Outputs						
		$w=0$	$w=1$							
		$Y_{2} Y_{1}$	$Y_{2} Y_{1}$	R1 ${ }_{\text {out }}$	$\mathrm{R1} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	R2 ${ }_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	00	00	01	0	0	0	0	0	0	0
B	01	11	11	0	0	1	0	0	1	0
C	11	10	10	1	0	0	1	0	0	0
D	10	00	00	0	1	0	0	1	0	1

	y_{2}	y_{1}	$R 1_{\text {out }}$	$R 1_{\text {in }}$	$R 2_{\text {out }}$
A	0	0	0	0	0
B	0	1	0	0	1
D	1	0	0	1	0
	1	1	1	0	0

$$
\begin{aligned}
& R 1_{\text {out }}=R 2_{\text {in }}=y_{1} y_{2} \\
& R 1_{\text {in }}=R 3_{\text {out }}=\text { Done }=\overline{y_{1}} y_{2} \\
& R 2_{\text {out }}=R 3_{\text {in }}=y_{1} \bar{y}_{2}
\end{aligned}
$$

Let's Complete the Circuit Diagram

$$
\begin{aligned}
& \mathrm{Y}_{1}=\mathrm{w} \overline{\mathrm{y}}_{2}+\mathrm{y}_{1} \overline{\mathrm{y}}_{2} \\
& \mathrm{Y}_{2}=\mathrm{y}_{1}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{R} 1_{\text {out }} & =\mathrm{R} 2_{\text {in }}=\mathrm{y}_{1} \mathrm{y}_{2} \\
\mathrm{R} 1_{\text {in }} & =\mathrm{R} 3_{\text {out }}=\text { Done }=\overline{\mathrm{y}_{1}} \mathrm{y}_{2} \\
\mathrm{R} 2_{\text {out }} & =\mathrm{R} 3_{\text {in }}=\mathrm{y}_{1} \overline{\mathrm{y}}_{2}
\end{aligned}
$$

Let's Complete the Circuit Diagram

$$
\begin{aligned}
\mathrm{R} 1_{\text {out }} & =\mathrm{R} 2_{\text {in }}=y_{1} y_{2} \\
R 1_{\text {in }} & =\mathrm{R} 3_{\text {out }}=\text { Done }=\overline{y_{1}} y_{2} \\
R 2_{\text {out }} & =R 3_{\text {in }}=y_{1} \bar{y}_{2}
\end{aligned}
$$

Let's Complete the Circuit Diagram

$$
\begin{aligned}
\mathrm{R} 1_{\text {out }} & =\mathrm{R} 2_{\text {in }}=\mathrm{y}_{1} \mathrm{y}_{2} \\
\mathrm{R} 1_{\text {in }} & =\mathrm{R} 3_{\text {out }}=\text { Done }=\overline{y_{1}} \mathrm{y}_{2} \\
\mathrm{R} 2_{\text {out }} & =\mathrm{R} 3_{\text {in }}=\mathrm{y}_{1} \overline{\mathrm{y}}_{2}
\end{aligned}
$$

Let's Complete the Circuit Diagram

$$
\begin{aligned}
\mathrm{R} 1_{\text {out }} & =\mathrm{R} 2_{\text {in }}=\mathrm{y}_{1} \mathrm{y}_{2} \\
\mathrm{R} 1_{\text {in }} & =\mathrm{R} 3_{\text {out }}=\text { Done }=\overline{y_{1}} \mathrm{y}_{2} \\
\mathrm{R} 2_{\text {out }} & =\mathrm{R} 3_{\text {in }}=y_{1} \bar{y}_{2}
\end{aligned}
$$

Encoding \#3:
 $A=0001, B=0010, C=0100, D=1000$
 (One-Hot Encoding - Uses Four Flip-Flops)

One-Hot State Encoding

- So far, we have been encoding states in a way that minimizes the number of flip-flops.
- But sometimes we can decrease the complexity of our logic if we encode states more sparsely.

Encoding for State A

Encoding for State B

Encoding for State C

Encoding for State D

Register Swap Controller

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

Register Swap Controller

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

Let's use four flip-flops and the following one-hot state encoding scheme:

$$
\begin{aligned}
& A=0001 \\
& B=0010 \\
& C=0100 \\
& D=1000
\end{aligned}
$$

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R}_{1 \text { in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R}_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	$\begin{gathered} \text { Present } \\ \text { State } \\ y_{4} y_{3} y_{2} y_{1} \end{gathered}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A B C D										

[Figure $6.12 \& 6.21$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	R_{1} out	$\mathrm{R}_{1 \text { in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R1}_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R}^{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	0001									
B	0010									
C	0100									
D	1000									

[Figure $6.12 \& 6.21$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R}_{1 \text { in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R}_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0 \quad w=1$								
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$R 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R3}_{\text {in }}$	Done
A	0001	0001	0010							
B	0010	0100	0100							
C	0100	1000	1000							
D	1000	0001	0001							

[Figure $6.12 \& 6.21$ from the textbook]

State Table (same as before)

Present state	Next state		Outputs						
	$w=0$	$w=1$	R_{1} out	$\mathrm{R}_{1 \text { in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R}_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	A	B	0	0	0	0	0	0	0
B	C	C	0	0	1	0	0	1	0
C	D	D	1	0	0	1	0	0	0
D	A	A	0	1	0	0	1	0	1

State-Assigned Table

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	$\mathrm{R} 3_{\text {out }}$	$\mathrm{R3} 3_{\text {in }}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

[Figure $6.12 \& 6.21$ from the textbook]

Let's Derive the Next-State Expressions

	$\begin{gathered} \text { Present } \\ \text { State } \\ y_{4} y_{3} y_{2} y_{1} \end{gathered}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R}_{3}{ }_{\text {in }}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Let's Derive the Next-State Expressions

$$
\begin{aligned}
& Y_{1}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& Y_{2}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& Y_{3}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& Y_{4}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)
\end{aligned}
$$

We need to do four 5-variable K-maps!

Let's Derive the Next-State Expressions

$$
\begin{aligned}
& Y_{1}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=\bar{w} y_{1}+y_{4} \\
& Y_{2}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=w y_{1} \\
& Y_{3}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{2} \\
& Y_{4}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{3}
\end{aligned}
$$

Or we can be smarter than that ()

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R1} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Let's Derive the Next-State Expressions

$$
\begin{array}{ll}
Y_{1}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=\bar{w} y_{1}+y_{4} & \text { (why?) } \\
Y_{2}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=w y_{1} & \text { (why?) } \\
Y_{3}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{2} & =1 \text { only in } B \\
Y_{4}\left(w, y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{3} & =1 \text { only in } C
\end{array}
$$

Or we can be smarter than that ()

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Let's Derive the Output Expressions

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R1} 1_{\text {in }}$	$\mathrm{R} 2_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R3} 3_{\text {in }}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Let's Derive the Output Expressions

$$
\begin{aligned}
& \mathrm{R} 1_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \mathrm{R} 1_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \mathrm{R} 2_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \mathrm{R} 2_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \mathrm{R}_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \mathrm{R}_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right) \\
& \operatorname{Done}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)
\end{aligned}
$$

We need to do seven 4-variable K-maps!

Let's Derive the Output Expressions

$$
\begin{array}{ll}
\mathrm{R} 1_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{3} & \text { equal to } 1 \text { only in State } C \\
\mathrm{R} 1_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{4} & \text { equal to } 1 \text { only in State } D \\
\mathrm{R} 2_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{2} & \text { equal to } 1 \text { only in State } B \\
\mathrm{R} 2_{\text {in }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{3} & \text { equal to } 1 \text { only in State } C \\
\mathrm{R} 3_{\text {out }}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{4} & \text { equal to } 1 \text { only in State } D \\
\mathrm{R} 3_{\text {in }\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{2}} & \text { equal to } 1 \text { only in State } B \\
\operatorname{Done}\left(y_{4}, y_{3}, y_{2}, y_{1}\right)=y_{4} & \text { equal to } 1 \text { only in State } D
\end{array}
$$

Or we can be smarter than that by exploiting the one-hot encoded property

	Present State $y_{4} y_{3} y_{2} y_{1}$	Next State		Outputs						
		$w=0$	$w=1$							
		$Y_{4} Y_{3} Y_{2} Y_{1}$	$Y_{4} Y_{3} Y_{2} Y_{1}$	$\mathrm{R} 1_{\text {out }}$	$\mathrm{R} 1_{\text {in }}$	R2 ${ }_{\text {out }}$	$\mathrm{R} 2_{\text {in }}$	R3 ${ }_{\text {out }}$	$\mathrm{R} 3_{\text {in }}$	Done
A	0001	0001	0010	0	0	0	0	0	0	0
B	0010	0100	0100	0	0	1	0	0	1	0
C	0100	1000	1000	1	0	0	1	0	0	0
D	1000	0001	0001	0	1	0	0	1	0	1

Let's Complete the Circuit Diagram

Encoding \#4:
 $A=0001, B=0010, C=0100, D=1000$

(same as before, but shows an alternative implementation with a 4-bit ring counter)

Exploit the Structure of the FSM

[Figure 6.11 from the textbook]

Alternative version of a 4-bit ring counter

[Figure 5.28b from the textbook]

Alternative version of a 4-bit ring counter

Alternative version of a 4-bit ring counter

Alternative version of a 4-bit ring counter

2-to-4 Decoder with Enable Input

[Figure 4.14c from the textbook]

2-to-4 Decoder with Enable Input

Switch to 1-based indexing of the outputs
(this is done to be consistent with the previous example)

2-to-4 Decoder with Enable Input

(always enabled in this example)

Alternative version of a 4-bit ring counter

2-Bit Synchronous Up-Counter (with synchronous clear)

This counter can be cleared only on the positive clock edge.

Let's Complete the Circuit Diagram

The Solution for Encoding \#3

How Does It Work?

Questions?

THE END

