

CprE 281: Digital Logic

Instructor: Alexander Stoytchev
http://www.ece.iastate.edu/~alexs/classes/

State Minimization

CprE 281: Digital Logic
lowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 11 is due on Monday Nov 13 @ 10pm
- Homework 12 is due on Monday Nov 27 @ 10pm

Equivalence of states

"Two states S_{i} and S_{j} are said to be equivalent if and only if for every possible input sequence, the same output sequence will be produced regardless of whether S_{i} or S_{j} is the initial state."

Partition Minimization Procedure

0-successor

Assuming that we have only one input signal w

S_{2} is a 0 -successor of S_{1}

0 -successor

Assuming that we have only one input signal w

S_{2} is a 0 -successor of S_{1}
 S_{2} is a 0 -successor of S_{5}

1-successor

Assuming that we have only one input signal w

S_{4} is a 1-successor of S_{3}

1-successor

Assuming that we have only one input signal w

S_{4} is a 1-successor of S_{3}

S_{4} is a 1-successor of S_{6}

1-successor

Assuming that we have only one input signal w

S_{4} is a 1-successor of S_{3}
S_{4} is a 1-successor of S_{6}
S_{7} is a 1-successor of S_{4}

k-successors of a State

Assuming that we have only one input signal w, then k can only be equal to 0 or 1.

k-successors of a State

Assuming that we have only one input signal w, then k can only be equal to 0 or 1 .

In other words, this is the familiar 0-successor or 1 -successor case.

S_{2} is a 0 -successor of S_{1}
S_{3} is a 1-successor of S_{1}

k-successors of a State

If we have two input signals, e.g., w_{0} and w_{1}, then k can only be equal to $\mathbf{0 , 1}, 2$, or 3 .

k-successors of a State

If we have two input signals, e.g., w_{0} and w_{1}, then k can only be equal to $\mathbf{0 , 1}, 2$, or 3 .

S_{1} is a 3-successor of S_{2}
S_{4} is a 3-successor of S_{2}

Equivalence of states

"If states S_{i} and S_{j} are equivalent, then their corresponding k -successors (for all k) are also equivalent."

Partition

"A partition consists of one or more blocks, where each block comprises a subset of states that may be equivalent, but the states in a given block are definitely not equivalent to the states in other blocks."

State Table for This Example

Present state	Next state		Output
	$w=0$	$w=1$	
A	B	C	1
B	D	F	1
C	F	E	0
D	B	G	1
E	F	C	0
F	E	D	0
G	F	G	0

State Diagram

(just the states)

State Diagram

State Diagram

Outputs

Partition \#1

(All states in the same partition)

Partition \#1 (ABCDEFG)

Partition \#2

(based on outputs)

Partition \#2 (ABD)(CEFG)

Partition \#3.1

(Examine the 0-successors of ABD)

Partition \#3.1

(Examine the 1-successors of ABD)

Partition \#3.2

(Examine the 0 -successors of CEFG)

Partition \#3.2

(Examine the 1-successors of CEFG)

Partition \#3.2

(Examine the 1-successors of CEFG)

Partition \#3 (ABD)(CEG)(F)

Partition \#3
 (ABD)(CEG)(F)

Partition \#4.1

(Examine the 0-successors of ABD)

Partition \#4.1

(Examine the 1-successors of ABD)

Partition \#4.1

(Examine the 1-successors of ABD)

This needs to be in a hew block

B

Partition \#4 (AD)(B)(CEG)(F)

Partition \#4
 (AD)(B)(CEG)(F)

Partition \#5.1

(Examine the 0 -successors of AD)

Partition \#5.1

(Examine the 1-successors of AD)

Partition \#5.2

(Examine the $\mathbf{0}$-successors of B)

Partition \#5.2

(Examine the 1-successors of B)

Partition \#5.3

(Examine the 0 -successors of CEG)

Partition \#5.3

(Examine the 1-successors of CEG)

Partition \#5.4

(Examine the 0 -successors of F)

Partition \#5.4

(Examine the 1 -successors of F)

Partition \#5 (AD)(B)(CEG)(F)

Partition \#4
 (AD)(B)(CEG)(F)

Partition \#5

(This is the same as \#4 so we can stop here)

Stop Here ...

... and Relabel All Partitions

... and Relabel All Partitions

Merge the states in the same partition

Merge the transitions too

The Minimized Graph

Minimized state table

Present state	Nextstate		Output Z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	B	C	1
B	A	F	1
C	F	C	0
F	C	A	0

[Figure 6.52 from the textbook]

To Summarize

Original State Diagram

Minimized State Diagram

Present state	Nextstate		Output z
	$\mathrm{w}=1$	C	1
A	B	C	1
B	A	F	0
C	F	C	0
F	C	A	0

Minimized State Diagram

Present state	Nextstate		Output z
	$\mathrm{w}=1$	B	
A	1		
B	A	F	1
C	F	C	0
F	C	A	0

Minimized State Diagram

Present state	Nextstate		Output z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	B	C	1
B	A	F	1
C	F	C	0
F	C	A	0

Minimized state table

Present state	Nextstate		Output Z
	$\mathrm{w}=0$	$\mathrm{w}=1$	
A	B	C	1
B	A	F	1
C	F	C	0
F	C	A	0

[Figure 6.52 from the textbook]

Vending Machine Example (Moore-Type)

Vending Machine Example

- The machine accepts nickels and dimes
- It takes 15 cents for a piece of candy to be released from the machine
- If 20 cents is deposited, the machine will not return the change, but it will credit the buyer with 5 cents and wait for the buyer to make a second purchase.

Signals for the vending machine

(a) Timing diagram

Signals for the vending machine

The nickel sensor will be ON
for several clock cycles
while the coin is falling down.

Signals for the vending machine

But the FSM needs a nickel signal (N) that is ON for only one clock cycle.

Signals for the vending machine

Similarly, for the dime sensor and the dime signal (D).

Signals for the vending machine

(a) Timing diagram

(b) Circuit that generates N

Signals for the vending machine

(a) Timing diagram

(b) Circuit that generates N

Signals for the vending machine

(b) Circuit that generates N

Signals for the vending machine

(b) Circuit that generates N

Signals for the vending machine

(b) Circuit that generates N

Signals for the vending machine

(b) Circuit that generates N

Signals for the vending machine

(a) Timing diagram

(b) Circuit that generates N

Signals for the vending machine

(a) Timing diagram

(b) Circuit that generates N

State Diagram for the vending machine

[Figure 6.54 from the textbook]

State Diagram for the vending machine

[Figure 6.54 from the textbook]

State Table for the vending machine

Present state	Next state				Output z
	$D N=00$	01	10	11	
S1	S1	S3	S2	-	0
S2	S2	S4	S5	-	0
S3	S3	S6	S7	-	0
S4	S1	-	-	-	1
S5	S3	-	-	-	1
S6	S6	S8	S9	-	0
S7	S1	-	-	-	1
S8	S1	-	-	-	1
S9	S3	-	-	-	1

Incompletely
specified state table

State Table for the vending machine

Present state	Next state					Output
	$D N$	$=00$	01	10	11	
S1	S1	S3	S2	-	0	
S2	S2	S4	S5	-	0	
S3	S3	S6	S7	-	0	
S4	S1	-	-	-	1	
S5	S3	-	-	-	1	
S6	S6	S8	S9	-	0	
S7	S1	-	-	-	1	
S8	S1	-	-	-	1	
S9	S3	-	-	-	1	

Incompletely specified state table
We cannot insert both a nickel and a dime at the same time.

State Table for the vending machine

Present state	Next state					Output
	$D N$	$=00$	01	10	11	
S1	S1	S3	S2	-	0	
S2	S2	S4	S5	-	0	
S3	S3	S6	S7	-	0	
S4	S1	-	-	-	1	
S5	S3	-	-	-	1	
S6	S6	S8	S9	-	0	
S7	S1	-	-	-	1	
S8	S1	-	-	-	1	
S9	S3	-	-	-	1	

> Incompletely specified state table

The machine is in S4 and S5 for only 1 clock cycle. Which is shorter than the time it takes for the coin to fall down. It is physically impossible for another coin to be inserted at that time.

State Diagram for the vending machine

[Figure 6.54 from the textbook]

State Table for the vending machine

Present state	Next state				Output	
	DN	$=00$	01	10		z
S1	S1	S3	S2	-	0	
S2	S 2	S4	S5	-	0	
S3	S3	S6	S7	-	0	
S4	S1	-	-	-	1	
S5	S3	-	-	-	1	
S6	S6	S8	S9	-	0	
S7	S1	-	-	-	1	
S8	S1	-	-	-	1	
S9	S3	-	-	-	1	

Incompletely specified state table

The machine is in states S7, S8, and S9 for only 1 clock cycle. Which is shorter than the time it takes for the coin to fall down.

State Diagram for the vending machine

[Figure 6.54 from the textbook]

Partition for Vending Machine FSM

Present state	Next state				Output z
	00	01	10	11	
S1	S1	S3	S2	-	0
S3	S3	S6	S7	-	0
S2	S2	S4	S5	-	0
S6	S6	S8	S9	-	0
S4	S1	-	-	-	1
S7	S1	-	-	-	1
S8	S1	-	-	-	1
S5	S3	-	-	-	1
S9	S3	-	-	-	1

P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9)

Partition for Vending Machine FSM

Present state	Next state				Output z
	00	01	10	11	
S1	S1	S3	S2	-	0
S3	S3	S6	S7	-	0
S2	S2	S4	S5	-	0
S6	S6	S8	S9	-	0
S4	S1	-	-	-	1
S7	S1	-	-	-	1
S8	S1	-	-	-	1
S5	S3	-	-	-	1
S9	S3	-	-	-	1

$$
\begin{aligned}
& \text { P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9) } \\
& \text { P2=(S1,S2,S3,S6) (S4,S5,S7,S8,S9) }
\end{aligned}
$$

Partition for Vending Machine FSM

Present	Next state						
state						\cline { 2 - 5 }	Output
:---:	:---:	:---:	:---:	:---:			
z							

$$
\begin{aligned}
& \mathrm{P} 1=(\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4, \mathrm{~S} 5, \mathrm{~S} 6, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9) \\
& \mathrm{P} 2=(\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 6)(\mathrm{S} 4, \mathrm{~S} 5, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9) \\
& \mathrm{P} 3=(\mathrm{S} 1)(\mathrm{S} 3)(\mathrm{S} 2, \mathrm{~S} 6)(\mathrm{S} 4, \mathrm{~S} 5, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9)
\end{aligned}
$$

Partition for Vending Machine FSM

Present	Next state						
state						\cline { 2 - 5 }	Output
:---:	:---:	:---:	:---:	:---:			
z							

$$
\begin{aligned}
& \mathrm{P} 1=(\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4, \mathrm{~S} 5, \mathrm{~S} 6, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9) \\
& \mathrm{P} 2=(\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 6)(\mathrm{S} 4, \mathrm{~S} 5, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9) \\
& \mathrm{P} 3=(\mathrm{S} 1)(\mathrm{S} 3)(\mathrm{S} 2, \mathrm{~S} 6)(\mathrm{S} 4, \mathrm{~S} 5, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9) \\
& \mathrm{P} 4=(\mathrm{S} 1)(\mathrm{S} 3)(\mathrm{S} 2, \mathrm{~S} 6)(\mathrm{S} 4, \mathrm{~S} 7, \mathrm{~S} 8)(\mathrm{S} 5, \mathrm{~S} 9)
\end{aligned}
$$

Partition for Vending Machine FSM

Present state	Next state				Output
	00	01	10	11	z
S1	S1	S3	S2	-	0
S3	S3	S6	S7	-	0
S2	S2	S4	S5	-	0
S6	S6	S8	S9	-	0
S4	S1	-	-	-	1
S7	S1	-	-	-	1
S8	S1	-	-	-	1
S5	S3	-	-	-	1
S9	S3	-	-	-	1

$$
\begin{aligned}
& \mathrm{P} 1=(\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4, \mathrm{~S} 5, \mathrm{~S} 6, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9) \\
& \mathrm{P} 2=(\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 6)(\mathrm{S} 4, \mathrm{~S} 5, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9) \\
& \mathrm{P} 3=(\mathrm{S} 1)(\mathrm{S} 3)(\mathrm{S} 2, \mathrm{~S} 6)(\mathrm{S} 4, \mathrm{~S} 5, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9) \\
& \mathrm{P} 4=(\mathrm{S} 1)(\mathrm{S} 3)(\mathrm{S} 2, \mathrm{~S} 6)(\mathrm{S} 4, \mathrm{~S} 7, \mathrm{~S} 8)(\mathrm{S} 5, \mathrm{~S} 9) \\
& \mathrm{P} 5=(\mathrm{S} 1) \text { (S3) (S2,S6) (S4,S7,S8) (S5,S9) }
\end{aligned}
$$

Partition for Vending Machine FSM

Present state	Next state				
	00	Output			
z	01	10	11	-	0
S1	S1	S3	S2	-	0
S3	S3	S6	S7	-	0
S2	S2	S4	S5	-	0
S6	S6	S8	S9	-	0
S4	S1	-	-	-	1
S7	S1	-	-	-	1
S8	S1	-	-	-	1
S5	S3	-	-	-	1
S9	S3	-	-	-	1

$$
\begin{aligned}
& \mathrm{P} 1=(\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 4, \mathrm{~S} 5, \mathrm{~S} 6, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9) \\
& \mathrm{P} 2=(\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3, \mathrm{~S} 6)(\mathrm{S} 4, \mathrm{~S} 5, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9) \\
& \mathrm{P} 3=(\mathrm{S} 1)(\mathrm{S} 3)(\mathrm{S} 2, \mathrm{~S} 6)(\mathrm{S} 4, \mathrm{~S} 5, \mathrm{~S} 7, \mathrm{~S} 8, \mathrm{~S} 9) \\
& \mathrm{P} 4=(\mathrm{S} 1)(\mathrm{S} 3)(\mathrm{S} 2, \mathrm{~S} 6)(\mathrm{S} 4, \mathrm{~S} 7, \mathrm{~S} 8)(\mathrm{S} 5, \mathrm{~S} 9) \\
& \mathrm{P} 5=(\mathrm{S} 1) \text { (S3) (S2,S6) (S4,S7,S8) (S5,S9) }
\end{aligned}
$$

Minimized State Table for the vending machine

Present state	Next state				Output	
	$D N$	$=00$	01	10		
S1	S 1	S 3	S 2	-	0	
S2	S 2	S 4	S 5	-	0	
S3	S 3	S 2	S 4	-	0	
S4	S 1	-	-	-	1	
S5	S 3	-	-	-	1	

[Figure 6.56 from the textbook]

Minimized State Table for the vending machine

[Figure 6.57 from the textbook]
[Figure 6.56 from the textbook]

Minimized State Diagram for the vending machine

[Figure 6.57 from the textbook]

Minimized State Diagram for the vending machine

[Figure 6.57 from the textbook]

Vending Machine Example (Mealy-Type)

Mealy-type FSM for the vending machine

[Figure 6.58 from the textbook]

Mealy-type FSM for the vending machine

[Figure 6.58 from the textbook]

Another Example of Incompletely specified state table

Present state	Next state		Output z	
	$w=0$	$w=1$	$w=0$	$w=1$
A	B	C	0	0
B	D	-	0	-
C	F	E	0	1
D	B	G	0	0
E	F	C	0	1
F	E	D	0	1
G	F	-	0	-

Questions?

THE END

