

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

State Minimization

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 11 is due on Monday Nov 13 @ 10pm
- Homework 12 is due on Monday Nov 27 @ 10pm

Equivalence of states

"Two states S_i and S_j are said to be equivalent if and only if for every possible input sequence, the same output sequence will be produced regardless of whether S_i or S_j is the initial state."

Partition Minimization Procedure

Assuming that we have only one input signal w

S₂ is a 0-successor of S₁

Assuming that we have only one input signal w

S₂ is a 0-successor of S₁

S₂ is a 0-successor of S₅

Assuming that we have only one input signal w

 S_4 is a 1-successor of S_3

Assuming that we have only one input signal w

Assuming that we have only one input signal w

 S_4 is a 1-successor of S_3

S₄ is a 1-successor of S₆

 S_7 is a 1-successor of S_4

Assuming that we have only one input signal w, then k can only be equal to 0 or 1.

Assuming that we have only one input signal w, then k can only be equal to 0 or 1.

In other words, this is the familiar 0-successor or 1-successor case.

 S_2 is a 0-successor of S_1

 S_3 is a 1-successor of S_1

If we have two input signals, e.g., w_0 and w_1 , then k can only be equal to 0,1, 2, or 3.

If we have two input signals, e.g., w_0 and w_1 , then k can only be equal to 0,1, 2, or 3.

 S_1 is a 3-successor of S_2

 S_4 is a 3-successor of S_2

Equivalence of states

"If states S_i and S_j are equivalent, then their corresponding k-successors (for all k) are also equivalent."

Partition

"A partition consists of one or more blocks, where each block comprises a subset of states that may be equivalent, but the states in a given block are definitely not equivalent to the states in other blocks."

State Table for This Example

Present	Next	Output		
state	w = 0	w = 1	Z	
A	В	С	1	
В	D	F	1	
C	F	E	0	
D	В	G	1	
Е	F	C	0	
F	Е	D	0	
G	G F		0	

State Diagram (just the states)

Present	Next	Output z		
state	w = 0 $w = 1$			
A	В	C	1	
В	D	F	1	
C	C F		0	
D	В	G	1	
Е	F	C	0	
F	E	D	0	
G	F	G	0	

State Diagram

(transitions when w=0)

Present	Next	Output z		
state	w = 0 $w = 1$			
A	В	С	1	
B	D	F	1	
C	F	Е	0 1	
D	B F	G		
E		C	0 0	
F	Е	D		
G	F	G	0	

State Diagram

(transitions when w=1)

Outputs

				=		_				
Present state	Next $w = 0$	state $w = 1$	Output z		_					
A B C	B D F	C F E	1 1 0		\widehat{B}		\bigcap			
D E F	B F E	G C D	1 0 0		z=1		C $z=0$			
G	F	G	0		11				I	E)
					1					
			4 =1/)						
									G $z=0$	
				D		-+	+	<i>///</i>	z=0	
				$\sum_{z=1}^{D}$						
							F $z=0$			
							z= 0			

(All states in the same partition)

Partition #1 (ABCDEFG)

(based on outputs)

Partition #2 (ABD)(CEFG)

(Examine the 0-successors of ABD)

(Examine the 1-successors of ABD)

(Examine the 0-successors of CEFG)

(Examine the 1-successors of CEFG)

(Examine the 1-successors of CEFG)

Partition #3 (ABD)(CEG)(F)

Partition #3 (ABD)(CEG)(F)

(Examine the 0-successors of ABD)

(Examine the 1-successors of ABD)

(Examine the 1-successors of ABD)

Partition #4 (AD)(B)(CEG)(F)

Partition #4 (AD)(B)(CEG)(F)

(Examine the 0-successors of AD)

(Examine the 1-successors of AD)

(Examine the 0-successors of B)

(Examine the 1-successors of B)

(Examine the 0-successors of CEG)

(Examine the 1-successors of CEG)

(Examine the 0-successors of F)

(Examine the 1-successors of F)

Partition #5 (AD)(B)(CEG)(F)

Partition #4 (AD)(B)(CEG)(F)

(This is the same as #4 so we can stop here)

Stop Here ...

... and Relabel All Partitions

... and Relabel All Partitions

Merge the transitions too

The Minimized Graph

Minimized state table

Present	Nextstate		Output
state	w = 0	w = 1	Z
A	В	С	1
В	A	F	1
C	F	C	0
F	С	A	0

To Summarize

Original State Diagram

Minimized State Diagram

Minimized State Diagram

Minimized State Diagram

Present	Nextstate	Output	
state	w = 0 $w =$	I	
A	В С		(D)
В	A F	1	(D)
C F	F C A	0	
			w = 0 $w = 1$ $W = 0$ $w = 1$ $w = 0$ $w = 0$ $w = 0$ $w = 0$ F $z = 0$

Minimized state table

Present	Nextstate		Output	
state	w = 0	w = 1	Z	
A	В	С	1	
В	A	F	1	
C	F	C	0	
F	С	A	0	

Vending Machine Example (Moore-Type)

Vending Machine Example

- The machine accepts nickels and dimes
- It takes 15 cents for a piece of candy to be released from the machine
- If 20 cents is deposited, the machine will not return the change, but it will credit the buyer with 5 cents and wait for the buyer to make a second purchase.

Signals for the vending machine

Signals for the vending machine

The nickel sensor will be ON for several clock cycles while the coin is falling down.

But the FSM needs a nickel signal (N) that is ON for only one clock cycle.

Similarly, for the dime sensor and the dime signal (D).

(b) Circuit that generates N

(b) Circuit that generates N

State Diagram for the vending machine

State Diagram for the vending machine

[Figure 6.54 from the textbook]

Present	Ne	Output			
state	DN =00	01	10	11	Z
S1	S 1	S 3	S2	_	0
S2	S2	S 4	S 5	_	0
S 3	S 3	S 6	S 7	_	0
S4	S 1	_	_	_	1
S5	S3	_	_	_	1
S 6	S 6	S 8	S 9	_	0
S7	S 1	_	_	_	1
S 8	S 1	_	_	_	1
S9	S3	_	_	_	1

Incompletely specified state table

Present	Ne	Output			
state	DN =00	01	10	11	Z
S 1	S 1	S 3	S2	_	0
S2	S2	S 4	S 5	_	0
S 3	S 3	S 6	S 7	_	0
S4	S 1	_	_	_	1
S5	S3	_	_	_	1
S 6	S 6	S 8	S 9	_	0
S7	S 1	_	_	_	1
S 8	S 1	_	_	_	1
S9	S3	_	_	_	1

Incompletely specified state table

We cannot insert both a nickel and a dime at the same time.

Present	Ne	Next state					
state	DN =00	01	10	11	Z		
S 1	S 1	S 3	S2	_	0		
S2	S2	S 4	S 5	_	0		
S 3	S 3	S 6	S 7	_	0		
S4	S 1	_	_	_	1		
S5	S3	_	_	_	1		
S 6	S6	S 8	S 9	_	0		
S7	S 1	_	_	_	1		
S 8	S 1	_	_	_	1		
S 9	S3	_	_	_	1		

Incompletely specified state table

The machine is in S4 and S5 for only 1 clock cycle.

Which is shorter than the time it takes for the coin to fall down. It is physically impossible for another coin to be inserted at that time.

State Diagram for the vending machine

[Figure 6.54 from the textbook]

Present	Nε	Output			
state	<i>DN</i> =00	01	10	11	Z
S 1	S 1	S 3	S2	_	0
S2	S2	S 4	S 5	_	0
S 3	S 3	S 6	S 7	_	0
S4	S 1	_	_	_	1
S5	S3	_	_	_	1
S 6	S 6	S 8	S 9	_	0
S 7	S 1	_	_	_	1
S 8	S 1	_	_	_	1
S9	S3	_	_		1

Incompletely specified state table

The machine is in states S7, S8, and S9 for only 1 clock cycle. Which is shorter than the time it takes for the coin to fall down.

State Diagram for the vending machine

Present		Next state					
state	00	01	10	11	z		
S1	S1	S3	S2	-	0		
S3	S3	S 6	S 7	-	0		
S2	S2	S4	S5	-	0		
S6	S6	S8	S9	-	0		
S4	S1	_	-	-	1		
S7	S1	_	-	-	1		
S8	S1	_	-	-	1		
S5	S3	-	-	-	1		
S9	S3	-	-	-	1		

P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9)

Present		Next state					
state	00	01	10	11	Z		
S1	S1	S3	S2	-	0		
S3	S3	S 6	S7	-	0		
S2	S2	S4	S 5	-	0		
S6	S6	S8	S9	-	0		
S4	S1	-	-	-	1		
S7	S1	-	-	-	1		
S8	S1	-	-	-	1		
S5	S3	-	-	-	1 1		
S9	S3	-	-	-	1		

P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9) P2=(S1,S2,S3,S6) (S4,S5,S7,S8,S9)

partition based on common output

Present		Next state					
state	00	01	10	11	z		
S1	S1	S3	S2	-	0		
S 3	S3	S 6	S7	-	0		
S2	S2	S4	S 5	-	0		
S6	S 6	S8	S9	-	0		
S4	S1	-	-	-	1		
S7	S1	-	-	-	1		
S8	S1	-	-	-	1		
S5	S3	-	-	-	1		
S9	S3				1		

```
P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9)
P2=(S1,S2,S3,S6) (S4,S5,S7,S8,S9)
P3=(S1) (S3) (S2,S6) (S4,S5,S7,S8,S9)
```

Present		Next state					
state	00	01	10	11	z		
S1	S1	S3	S2	-	0		
S 3	S3	S 6	S7	-	0		
S2	S2	S4	S5	-	0		
S6	S 6	S8	S 9	-	0		
S4	S1	-	-	-	1		
S7	S1	_	-	-	1		
S8	S1	_	-	-	1		
S5	S3	-	-	-	1		
S 9	S 3	-	-	-	1		

```
P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9)
P2=(S1,S2,S3,S6) (S4,S5,S7,S8,S9)
P3=(S1) (S3) (S2,S6) (S4,S5,S7,S8,S9)
P4=(S1) (S3) (S2,S6) (S4,S7,S8) (S5,S9)
```

Present		Next state					
state	00	01	10	11	z		
S1	S1	S3	S2	-	0		
S 3	S3	S 6	S7	-	0		
S2	S2	S4	S5	-	0		
S6	S 6	S8	S 9	-	0		
S4	S1	-	-	-	1		
S7	S1	_	-	-	1		
S8	S1	_	-	-	1		
S5	S3	-	-	-	1		
S 9	S 3	-	-	-	1		

```
P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9)

P2=(S1,S2,S3,S6) (S4,S5,S7,S8,S9)

P3=(S1) (S3) (S2,S6) (S4,S5,S7,S8,S9)

P4=(S1) (S3) (S2,S6) (S4,S7,S8) (S5,S9)

P5=(S1) (S3) (S2,S6) (S4,S7,S8) (S5,S9)
```

Present		Output			
state	00	01	10	11	Z
S1	S1	S 3	S2	-	0
S3	S 3	S 6	S7	-	0
S2	S2	S4	S5	-	0
S6	S 6	S8	S 9	-	0
S4	S1	-	-	-	1
S7	S1	-	-	-	1
S8	S1	-	-	-	1
S5	S 3	-	-	-	1
S 9	S3				1

```
P1=(S1,S2,S3,S4,S5,S6,S7,S8,S9)

P2=(S1,S2,S3,S6) (S4,S5,S7,S8,S9)

P3=(S1) (S3) (S2,S6) (S4,S5,S7,S8,S9)

P4=(S1) (S3) (S2,S6) (S4,S7,S8) (S5,S9)

P5=(S1) (S3) (S2,S6) (S4,S7,S8) (S5,S9)
```

Minimized State Table for the vending machine

Present	Nε	Output			
state	DN =00	01	10	11	Z
S1	S 1	S 3	S 2	_	0
S 2	S 2	S 4	S5	_	0
S 3	S 3	S 2	S 4	_	0
S 4	S 1	_	_	_	1
S5	S 3	_	_	_	1

Minimized State Table for the vending machine

Minimized State Diagram for the vending machine

Minimized State Diagram for the vending machine

Vending Machine Example (Mealy-Type)

Mealy-type FSM for the vending machine

[Figure 6.58 from the textbook]

Mealy-type FSM for the vending machine

[Figure 6.58 from the textbook]

Another Example of Incompletely specified state table

Present state	Next state		Output z	
	w = 0	w = 1	w = 0	w = 1
A	В	C	0	0
В	D	_	0	_
C	F	E	0	1
D	В	G	0	0
Е	F	C	0	1
F	E	D	0	1
G	F	_	0	-

Questions?

THE END