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Administrative Stuff

• HW1 is due today @ 10 pm    

• Sample solutions will be posted on Canvas after the deadline.
 Look for the solutions under the “Files” tab.

• No late homeworks will be accepted.



Administrative Stuff

• HW2 is out

• It is due on Monday Sep 9 @ 10pm.

• Submit it on Canvas before the deadline.



Did you play with this toy?



AND Gate



OR Gate



NOT Gate 
(the switch is ON but the light is OFF)



NOT Gate 
(the switch is OFF but the light is ON)





Boolean Algebra

George Boole
1815-1864

• An algebraic structure consists of
§ a set of elements {0, 1}
§ binary operators {+, �}
§ and a unary operator { ’ } or {      }  or { ~ }

• Introduced by George Boole in 1854 
 

• An effective means of describing circuits 
built with switches

• A powerful tool that can be used for 
designing and analyzing logic circuits



Different Notations for Negation

• All three of these mean “negate x”

§  x’ 

§  x

§ ~x 



Axioms of Boolean Algebra

1a.   0 � 0 = 0
1b.   1 + 1 = 1

2a.   1 � 1 = 1
2b.   0 + 0 = 0

3a.   0 � 1 = 1 � 0 = 0
3b.   1 + 0 = 0 + 1 = 1

4a.   If x=0, then 

4b.   If x=1, then 

x = 1 

x = 0 



Single-Variable Theorems
5a.   x � 0 = 0
5b.   x + 1 = 1

6a.   x � 1 = x
6b.   x + 0 = x

7a.   x � x = x
7b.   x + x = x

8a.   x � 

8b.   x + 

9. 

x = 0 
x = 1 

x = x 



Two- and Three-Variable Properties

10a.   x � y = y � x
10b.   x + y = y + x

11a.   x � (y � z) = (x � y) � z
11b.   x + (y + z) = (x + y) + z

12a.   x � (y + z) = x�y + x�z  

12b.   x + y � z  = (x + y)�(x + z)

13a.   x + x � y = x 

13b.   x � (x + y) = x
 

Commutative

Associative

Distributive

Absorption

 



Two- and Three-Variable Properties

14a.   x � y + x � 
14b.   (x + y)�(x +

15a.   x � y = x + y

15b.   x + y = x � y

16a.   x + x�y = x + y  

16b.   x�(x + y) = x�y 

17a.   x�y + y�z + x�z = x�y + x�z

17b.   (x+y)�(y+z)�(x+z)=(x+y)�(x+z)

 

Combining

DeMorgan’s

theorem

Consensus

 

y = x 

y) = x 



Now, let’s prove all of these



The First Four are Axioms
(i.e., they don’t require a proof)

1a.   0 � 0 = 0
1b.   1 + 1 = 1

2a.   1 � 1 = 1
2b.   0 + 0 = 0

3a.   0 � 1 = 1 � 0 = 0
3b.   1 + 0 = 0 + 1 = 1

4a.   If x=0, then 

4b.   If x=1, then 

x = 1 

x = 0 



But here are some other ways 
to think about them



1 
1 1 0 

0 
0 

AND gate OR gate 



1 
1 1 0 

0 
0 

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

AND gate OR gate 



1 
1 1 0 

0 
0 

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

AND gate OR gate 



0 
0 0 1 

1 
1 

AND gate OR gate 



0 
0 0 1 

1 
1 

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

AND gate OR gate 



1 
0 1 

0 
1 

0 

1 
0 

0 
0 
1 1 



1 
0 1 

0 
1 

0 

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

AND gate 

1 
0 

0 
0 
1 1 

OR gate 



1 
0 1 

0 
1 

0 

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

AND gate 

1 
0 

0 
0 
1 1 

OR gate 



1 
0 1 

0 
1 

0 

x1 x2 f
0 0 0
0 1 0
1 0 0
1 1 1

x1 x2 f
0 0 0
0 1 1
1 0 1
1 1 1

AND gate 

1 
0 

0 
0 
1 1 

OR gate 



1 0 0 1 



NOT gate 

1 0 0 1 

x x

0
1

1
0

NOT gate 

x x

0
1

1
0



Single-Variable Theorems
5a.   x � 0 = 0
5b.   x + 1 = 1

6a.   x � 1 = x
6b.   x + 0 = x

7a.   x � x = x
7b.   x + x = x

8a.   x � 

8b.   x + 

9. 

x = 0 
x = 1 

x = x 



 



The Boolean variable x can have only two possible values: 
 0 or 1.  Let’s look at each case separately.

 



The Boolean variable x can have only two possible values: 
 0 or 1.  Let’s look at each case separately.

i)  If x = 0, then we have 

                         0 � 0  =  0   // axiom 1a



The Boolean variable x can have only two possible values: 
 0 or 1.  Let’s look at each case separately.

i)  If x = 0, then we have 

                         0 � 0  =  0   // axiom 1a

ii) If x = 1, then we have

                         1 � 0  =  0                       // axiom 3a

 







The Boolean variable x can have only two possible values: 
 0 or 1.  Let’s look at each case separately.

i)  If x = 0, then we have 

                         0 + 1  =  1   // axiom 3b

 



The Boolean variable x can have only two possible values: 
 0 or 1.  Let’s look at each case separately.

i)  If x = 0, then we have 

                         0 + 1  =  1   // axiom 3b

ii) If x = 1, then we have

                         1 + 1  =  1                       // axiom 1b

 





The Boolean variable x can have only two possible values: 
 0 or 1.  Let’s look at each case separately.

i)  If x = 0, then we have 

                         0 � 1  =  0   // axiom 3a

ii) If x = 1, then we have

                         1 � 1  =  1                       // axiom 2a

 



The Boolean variable x can have only two possible values: 
 0 or 1.  Let’s look at each case separately.

i)  If x = 0, then we have 

                         0 � 1  =  0   // axiom 3a

ii) If x = 1, then we have

                         1 � 1  =  1                       // axiom 2a

 





The Boolean variable x can have only two possible values: 
 0 or 1.  Let’s look at each case separately.

i)  If x = 0, then we have 

                         0 + 0  =  0   // axiom 2b

ii) If x = 1, then we have

                         1 + 0  =  1                       // axiom 3b

 



The Boolean variable x can have only two possible values: 
 0 or 1.  Let’s look at each case separately.

i)  If x = 0, then we have 

                         0 + 0  =  0   // axiom 2b

ii) If x = 1, then we have

                         1 + 0  =  1                       // axiom 3b

 





i)  If x = 0, then we have 

                         0 � 0  =  0   // axiom 1a

ii) If x = 1, then we have

                         1 � 1  =  1                       // axiom 2a

 



i)  If x = 0, then we have 

                         0 � 0  =  0   // axiom 1a

ii) If x = 1, then we have

                         1 � 1  =  1                       // axiom 2a

 





i)  If x = 0, then we have 

                         0 + 0  =  0   // axiom 2b

ii) If x = 1, then we have

                         1 + 1  =  1                       // axiom 1b

 



i)  If x = 0, then we have 

                         0 + 0  =  0   // axiom 2b

ii) If x = 1, then we have

                         1 + 1  =  1                       // axiom 1b

 





i)  If x = 0, then we have 

                         0 � 1  =  0   // axiom 3a

ii) If x = 1, then we have

                         1 � 0  =  0                       // axiom 3a

 



i)  If x = 0, then we have 

                         0 � 1  =  0   // axiom 3a

ii) If x = 1, then we have

                         1 � 0  =  0                       // axiom 3a

 





i)  If x = 0, then we have 

                         0 + 1  =  1   // axiom 3b

ii) If x = 1, then we have

                         1 + 0  =  1                       // axiom 3b

 



i)  If x = 0, then we have 

                         0 + 1  =  1   // axiom 3b

ii) If x = 1, then we have

                         1 + 0  =  1                       // axiom 3b

 





i)  If x = 0, then we have 

                         x  =  1   // axiom 4a

            let y = x = 1, then we have 

                         y = 0             // axiom 4b

Therefore,    
                       x  =  x           (when x =0)

 





ii)  If x = 1, then we have 

                         x  =  0   // axiom 4b

            let y = x = 0, then we have 

                         y = 1             // axiom 4a

Therefore,    
                       x  =  x           (when x =1)

 





x 
y 

x 
y 

y 
x 

y 
x 



x 
y 

x 
y 

x y f
0 0 0
0 1 0
1 0 0
1 1 1

x y f
0 0 0
0 1 1
1 0 1
1 1 1

AND gate OR gate 

y 
x 

y 
x 

The order of the inputs does not matter.





x y z x y � z x�(y�z)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Truth table for the left-hand side



x y z x y � z x�(y�z)
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Truth table for the left-hand side



x y z x y � z x�(y�z)
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 1 1 0 1 0
1 0 0 1 0 0
1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 1 1 1

Truth table for the left-hand side



x y z x � y z (x�y)�z
0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 0
0 1 1 0 1 0
1 0 0 0 0 0
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 1 1 1

Truth table for the right-hand side



These two are identical, which concludes the proof.





x y z x y + z x+(y+z)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Truth table for the left-hand side



x y z x y + z x+(y+z)
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

Truth table for the left-hand side



x y z x y + z x+(y+z)
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 0 1 1
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 1 1 1

Truth table for the left-hand side



x y z x + y z (x+y)+z
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 1 0 1
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 1 1

Truth table for the right-hand side



These two are identical, which concludes the proof.



x y 

z 

x y z + 

The Venn Diagram Representation



x 

x 

Venn Diagram Basics

x x 

(b) Constant 0

(c) Variable x (d) 

(a) Constant 1

x 

[ Figure 2.14 from the textbook ]



Venn Diagram Basics

x y 

z 

x 

x y x y 

(e) (f) 

(g) (h) 

x y x y + 

x y z + x y 

y 

[ Figure 2.14 from the textbook ]



Let’s Prove the Distributive Properties



x y 

z 

x y 

z 

x y 

z 

x y 

z 

x y 

z 

x y 

z 

x x y 

x y x + z x y z + ( ) 

(a) (d) 

(c) (f) 

x z y z + (b) (e) 

[ Figure 2.15 from the textbook ]



[ Figure 2.17 from the textbook ]



Try to prove these ones at home



DeMorgan’s Theorem



Proof of DeMorgan’s theorem

[ Figure 2.13 from the textbook ]



Proof of DeMorgan’s theorem



Proof of DeMorgan’s theorem



Proof of DeMorgan’s theorem



Proof of DeMorgan’s theorem



Proof of DeMorgan’s theorem



Proof of DeMorgan’s theorem



Proof of DeMorgan’s theorem

These two columns are equal. Therefore, the theorem is true.



[ Figure 2.18 from the textbook ]

Alternative proof using Venn Diagrams





Let’s prove the other DeMorgan’s theorem



Let’s prove the other DeMorgan’s theorem



0
1
1
1

Let’s prove the other DeMorgan’s theorem



0
1
1
1

1
0
0
0

Let’s prove the other DeMorgan’s theorem



0
1
1
1

1
0
0
0

1
1
0
0

Let’s prove the other DeMorgan’s theorem



0
1
1
1

1
0
0
0

1
1
0
0

1
0
1
0

Let’s prove the other DeMorgan’s theorem



0
1
1
1

1
0
0
0

1
1
0
0

1
0
1
0

1
0
0
0

Let’s prove the other DeMorgan’s theorem



0
1
1
1

1
0
0
0

1
1
0
0

1
0
1
0

1
0
0
0

These two columns are equal, so the theorem is true.

Let’s prove the other DeMorgan’s theorem



DeMorgan’s Theorem 
Generalizes to more than 2 variables



DeMorgan’s Theorem 
Generalizes to more than 2 variables



Try to prove these ones at home



Venn Diagram Example
Proof of Property 17a



Left-Hand Side

x y 

z 

x y 

x y 

z 

x z 

y x 

z 

y z x y x z + y z + 

y 

z 

x 

[ Figure 2.16 from the textbook ]



Left-Hand Side

x y 

z 

x y 

x y 

z 

x z 

y x 

z 

y z x y x z + y z + 

y 

z 

x 

[ Figure 2.16 from the textbook ]

Right-Hand Side

x y 

z 

x y 

x y 

z 

x z x y x + z 

y 

z 

x 



Left-Hand Side

x y 

z 

x y 

x y 

z 

x z 

y x 

z 

y z x y x z + y z + 

y 

z 

x 

[ Figure 2.16 from the textbook ]

Right-Hand Side

x y 

z 

x y 

x y 

z 

x z x y x + z 

y 

z 

x 

These two are equal



Questions?



THE  END


