

CprE 281: Digital Logic

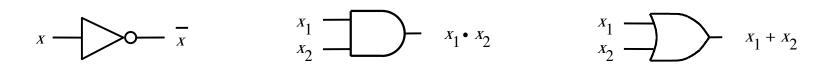
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Synthesis Using AND, OR, and NOT Gates

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff


- HW2 is due on Wednesday Sep 6 @ 10pm
- Please write clearly on the first page the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Submit on Canvas as *one* PDF file.
- Please orient your pages such that the text can be read without the need to rotate the page.

Administrative Stuff

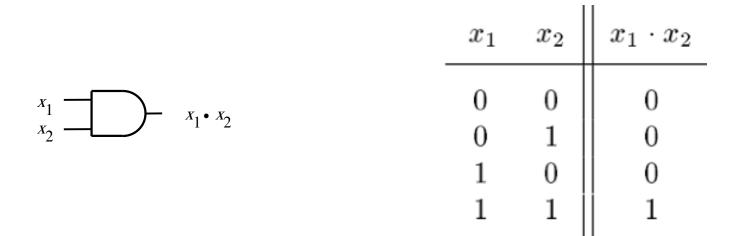
- Next week we will start with Lab2
- Read the lab assignment and do the prelab at home.
- Complete the prelab on paper before you go to the lab. Otherwise you'll lose 20% of your grade for that lab.

Quick Review

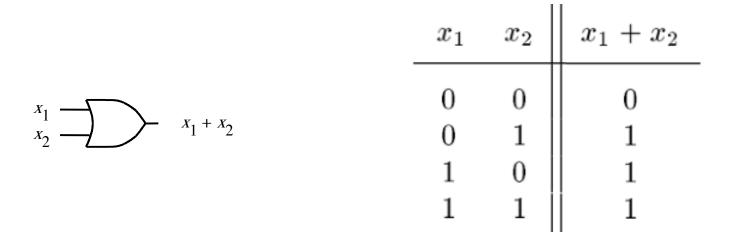
The Three Basic Logic Gates

NOT gate

AND gate

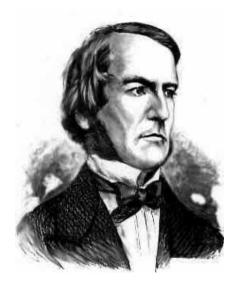

OR gate

[Figure 2.8 from the textbook]


Truth Table for NOT

Truth Table for AND

Truth Table for OR

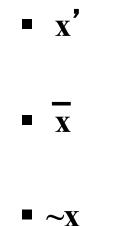


Truth Tables for AND and OR

x_1	x_2	$x_1 \cdot x_2$	$x_1 + x_2$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1
		AND	OR

[Figure 2.6b from the textbook]

Boolean Algebra


- An algebraic structure consists of
 - a set of elements {0, 1}
 - binary operators {+, •}
 - and a unary operator { ' } or { } or { ~ }
- Introduced by George Boole in 1854

George Boole 1815-1864

- An effective means of describing circuits built with switches
- A powerful tool that can be used for designing and analyzing logic circuits

Different Notations for Negation

• All three of these mean "negate x"

- In regular arithmetic and algebra, multiplication takes precedence over addition.
- This is also true in Boolean algebra.
- For example, x + y z means multiply y by z and add the product to x.
- In other words, x + y z is equal to x + (y z),
 not (x + y) z.

The multiplication dot is optional

- In regular algebra, the multiplication operator is often omitted to shorten the equations.
- This is also true in Boolean algebra.
- Both of these mean the same thing:

xy is equal to x • y

Operator Precedence (three different ways to write the same)

$x_1 \cdot x_2 + \overline{x}_1 \cdot \overline{x}_2$ $(x_1 \cdot x_2) + ((\overline{x}_1) \cdot (\overline{x}_2))$ $x_1 x_2 + \overline{x}_1 \overline{x}_2$

- Negation of a single variable takes precedence over multiplication of that variable with another variable.
- For example,

A B means negate A first and then multiply A by B

- However, a horizontal bar over a product of two variables means that the negation is performed after the product is computed.
- For example,

A B means multiply **A** and **B** and then negate

• Note that these two expressions are different:

A B is not equal to A B

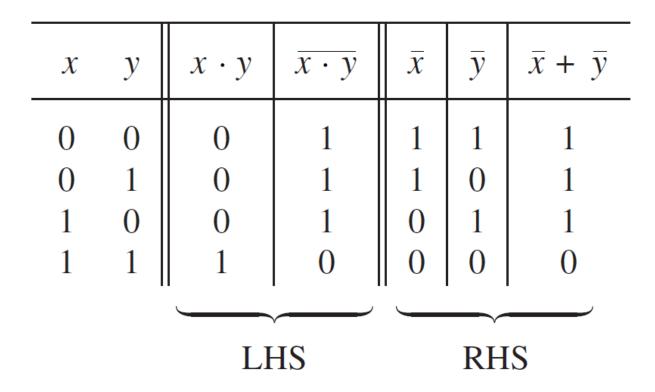
A B means multiply **A** and **B** and then negate

A B means negate A and B separately and then multiply

• Note that these two expressions are different:

A B is not equal to A B

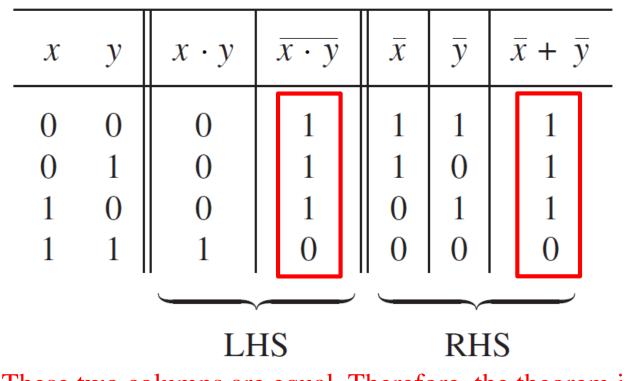
Α	В	AB
0	0	1
0	1	1
1	0	1
1	1	0


Α	В	AB
0	0	1
0	1	0
1	0	0
1	1	0

DeMorgan's Theorem

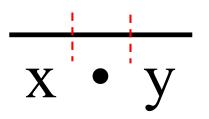
15a.
$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

15b. $\overline{x + y} = \overline{x} \cdot \overline{y}$


Proof of DeMorgan's theorem

15a. $x \cdot y = x + y$

Proof of DeMorgan's theorem


15a. $\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$

These two columns are equal. Therefore, the theorem is true.

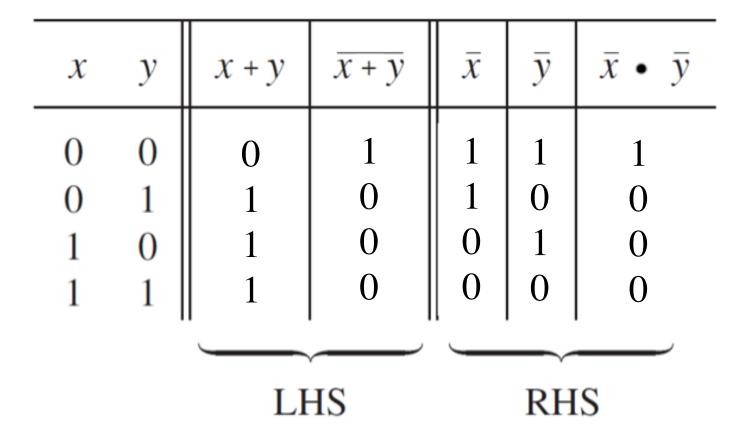
start with the left-hand side

divide the bar into 3 equal parts

erase the middle segment

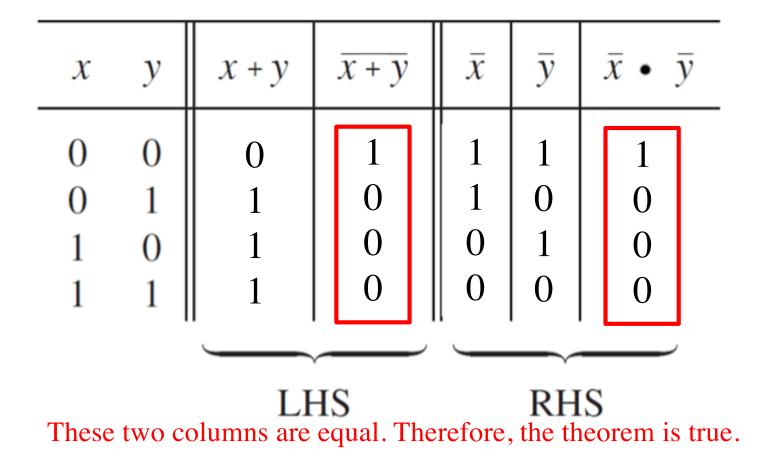
$$x + y$$

change the product to a sum

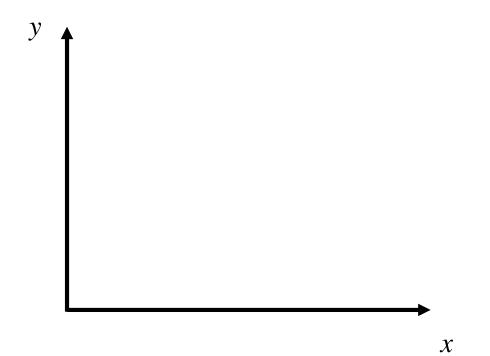

$$x + y$$

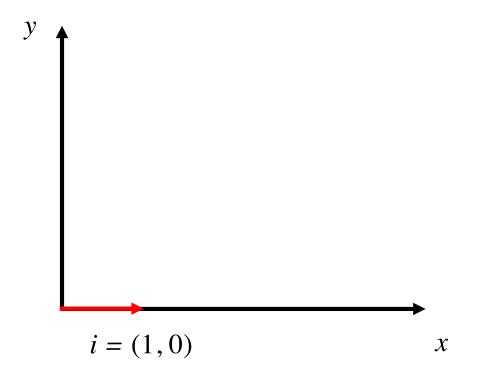
this is the right-hand side

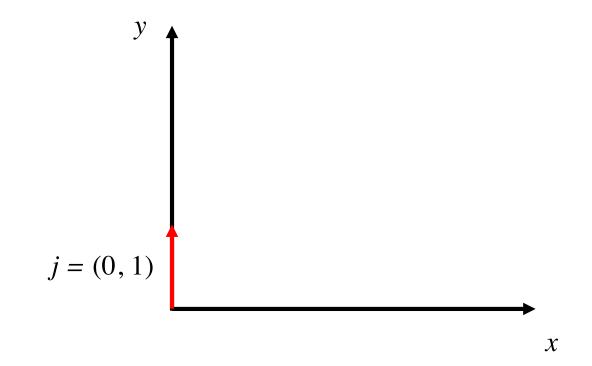
$\mathbf{x} \bullet \mathbf{y} = \mathbf{x} + \mathbf{y}$

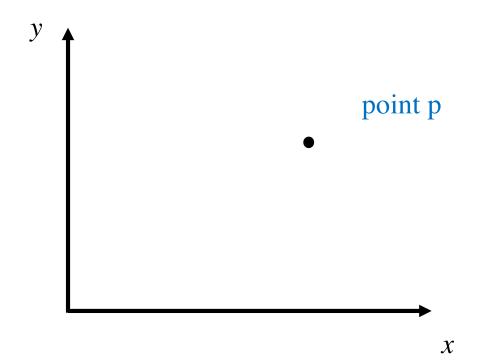

Proof of the other DeMorgan's theorem

15b.
$$x + y = x \cdot y$$

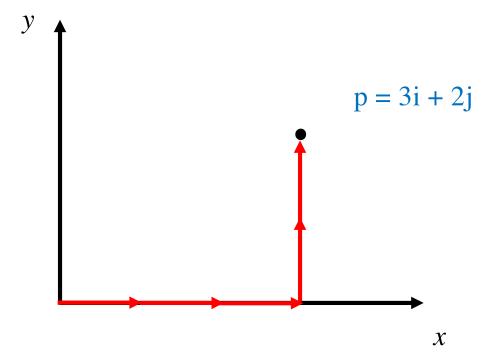



Proof of the other DeMorgan's theorem

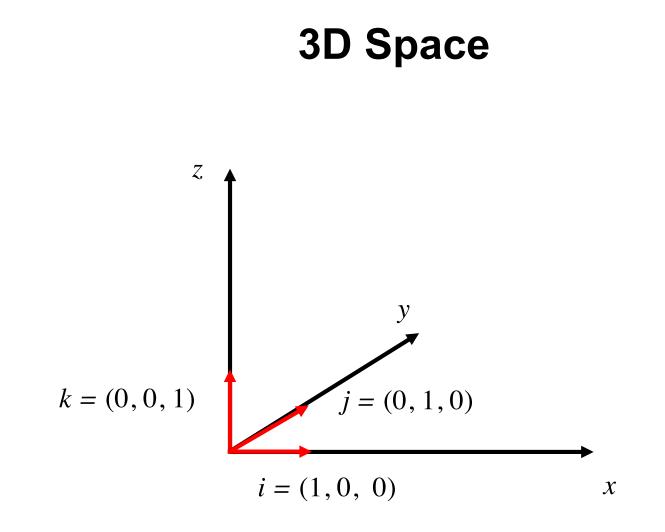

$$15b. \quad x + y = x \cdot y$$



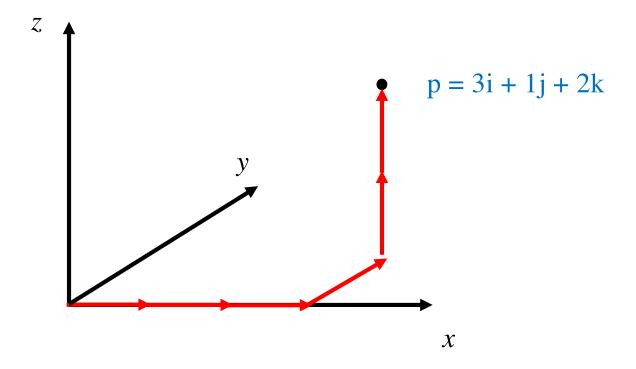
A Short Digression



The 2D Plane



The unit vectors i and j form a basis


• Any point in the 2D plane can be represented as a linear combination of these two vectors.

i=(1, 0) j=(0, 1)

Note that there is only one 1 in each.

The 3D Basis

In 3D we have i, j, and k

i=(1, 0, 0)j=(0, 1, 0)k=(0, 0, 1)

Note that there is only one 1 in each.

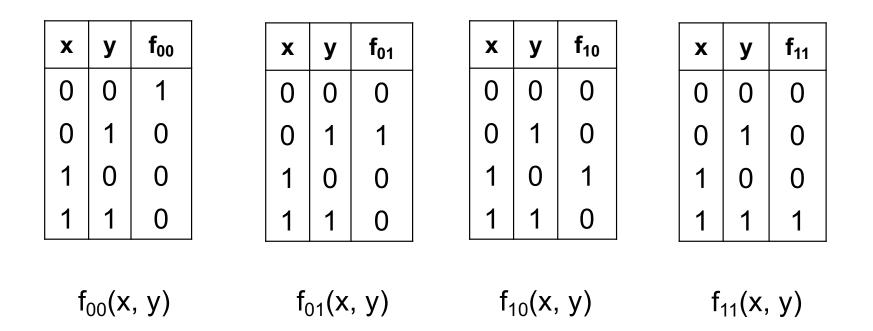
Any point in the 3D space can be represented as a linear combination of these three basis vectors.

The 4D Basis

In 4D we have four vectors

$$x^{1} = (1, 0, 0, 0)$$

$$x^{2} = (0, 1, 0, 0)$$

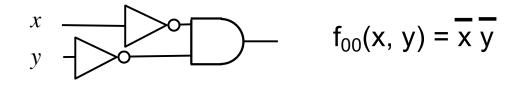

$$x^{3} = (0, 0, 1, 0)$$

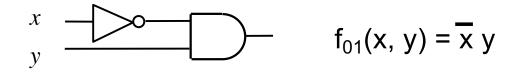
$$x^{4} = (0, 0, 0, 1)$$

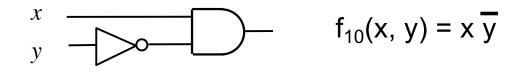
Note that there is only one 1 in each.

Any point in this 4D space can be represented as a linear combination of these four basis vectors.

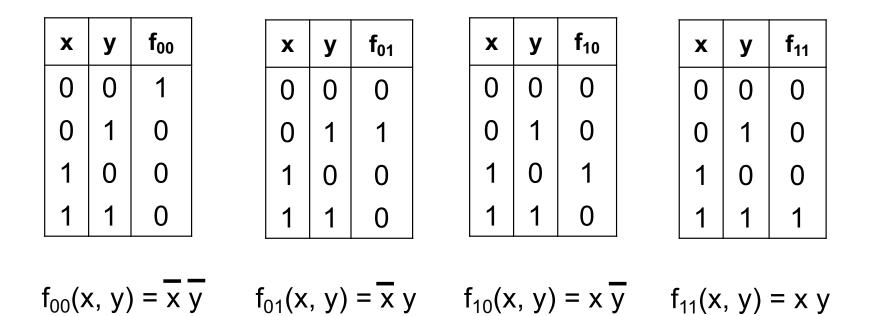
Basis Functions (for two variables)

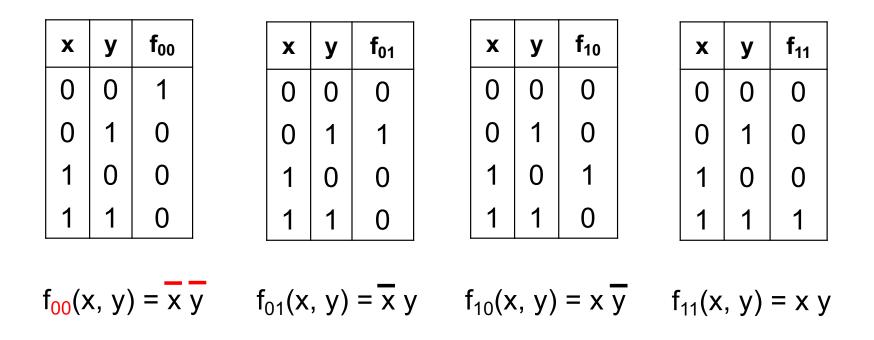


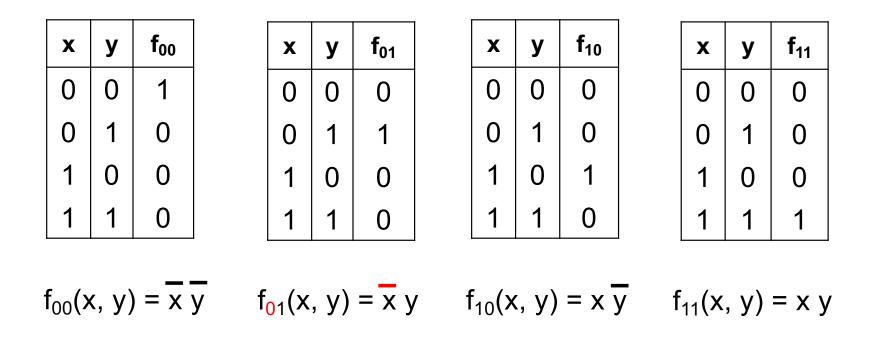


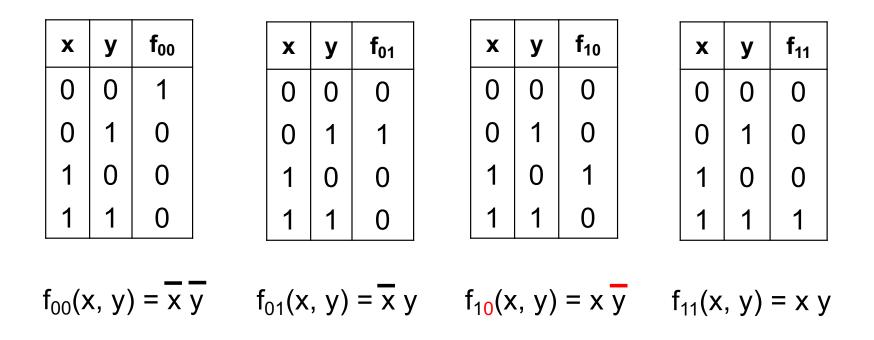

x	У	f ₀₀ (x, y)	f ₀₁ (x, y)	f ₁₀ (x, y)	f ₁₁ (x, y)
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

x	У	xy	ху	ху	ху
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

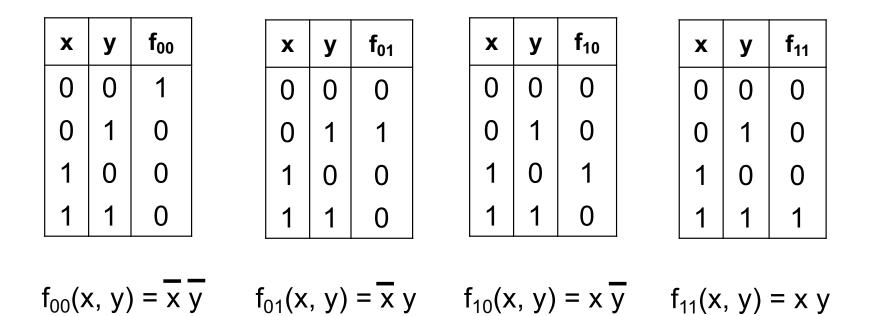

Circuits for the four basis functions



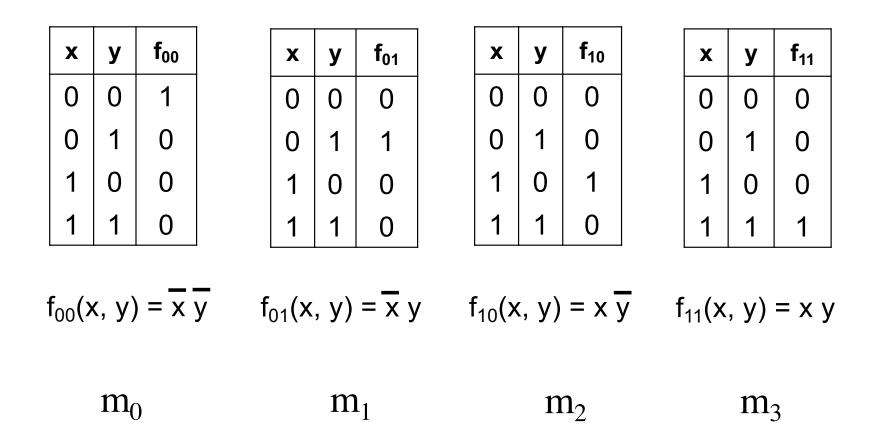




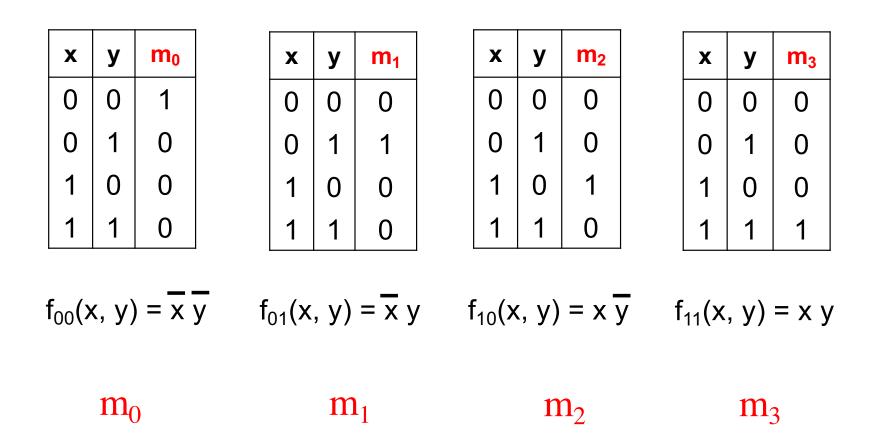
Negate the variable if the corresponding subscript of f is 0.



Negate the variable if the corresponding subscript of f is 0.



Negate the variable if the corresponding subscript of f is 0.


minterms (an alternative name for the set of basis functions)

The Four Basis Functions (alternative names)

The Four Basis Functions (minterms)

The Four Basis Functions (minterms)

x	У	xy	x y	ху	ху
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Expressions for the minterms

$$m_0 = \overline{x} \overline{y}$$
$$m_1 = \overline{x} y$$
$$m_2 = x \overline{y}$$
$$m_3 = x y$$

Expressions for the minterms

- $0 \ 0 \ m_0 = x \ y$
- **0** 1 $m_1 = \bar{x} y$
- 1 0 $m_2 = x \overline{y}$
- $1 \ 1 \ m_3 = x \ y$

The bars coincide				
with the 0's				
in the binary expansion				
of the minterm sub-index				

Expressions for the minterms

- **0 0** $m_0 = x y$
- **0** 1 $m_1 = \bar{x} y$
- 1 0 $m_2 = x \overline{y}$
- $1 \ 1 \ m_3 = x \ y$

The bars coincide with the 0's in the binary expansion of the minterm sub-index Function Synthesis Example (with two variables)

Synthesize the Following Function

x ₁	X ₂	f(x ₁ , x ₂)
0	0	1
0	1	1
1	0	0
1	1	1

1) Split the function into a sum of 4 functions

x ₁	X 2	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

1) Split the function into a sum of 4 functions

x ₁	X 2	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

 $f(x_1, x_2) = 1 \bullet f_{00} + 1 \bullet f_{01} + 0 \bullet f_{10} + 1 \bullet f_{11}$

2) Write the expressions for all four

X 1	X 2	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

$$f(x_1, x_2) = 1 \bullet f_{00} + 1 \bullet f_{01} + 0 \bullet f_{10} + 1 \bullet f_{11}$$

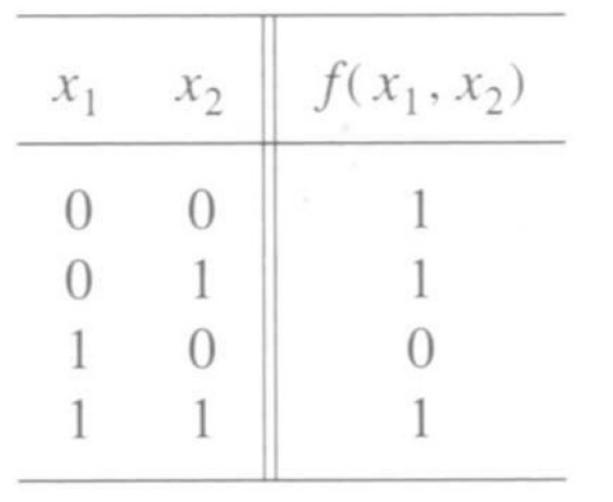
2) Write the expressions for all four

X ₁	X 2	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)	
0	0	1	1	0	0	0	
0	1	1	0	1	0	0	
1	0	0	0	0	1	0	
1	1	1	0	0	0	1	
$f(x_1, x_2) = 1 \bullet f_{00} + 1 \bullet f_{01} + 0 \bullet f_{10} + 1 \bullet f_{11}$							

 $\overline{x}_1\overline{x}_2$ \overline{x}_1x_2 0 x_1x_2

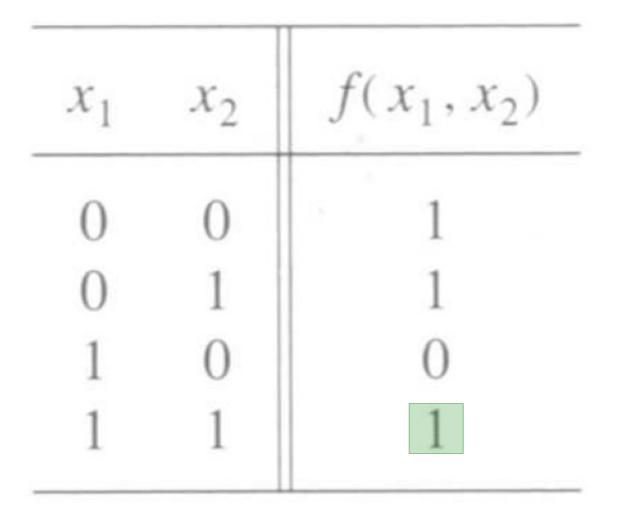
3) Then just add them together

x ₁	X 2	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1
$f(x_1, x_2) = 1 \bullet f_{00} + 1 \bullet f_{01} + 0 \bullet f_{10} + 1 \bullet f_{11}$						

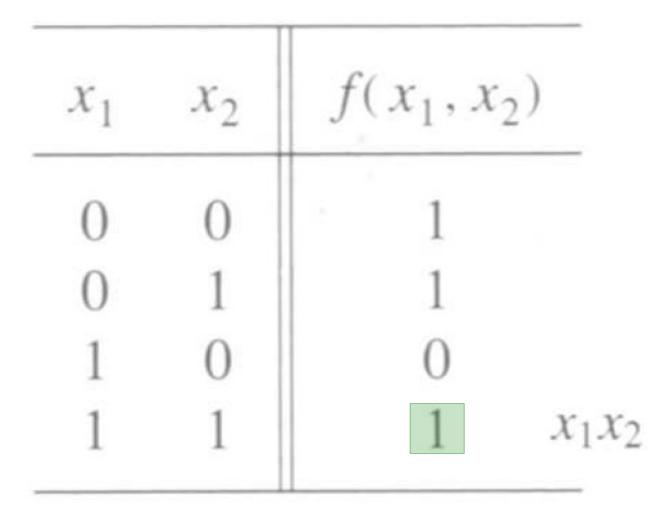

 $f(x_1, x_2) = \bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + 0 + x_1 x_2$

3) Then just add them together

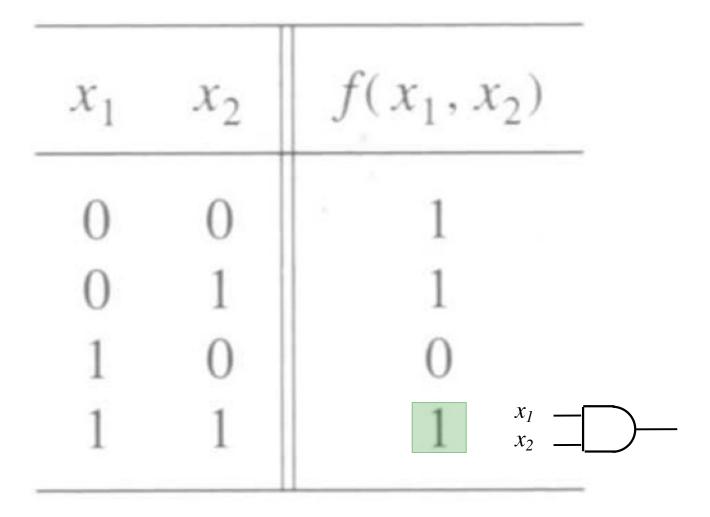
x ₁	X 2	f(x ₁ , x ₂)	f ₀₀ (x ₁ , x ₂)	f ₀₁ (x ₁ , x ₂)	f ₁₀ (x ₁ , x ₂)	f ₁₁ (x ₁ , x ₂)
0	0	1	1	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	1	1	0	0	0	1

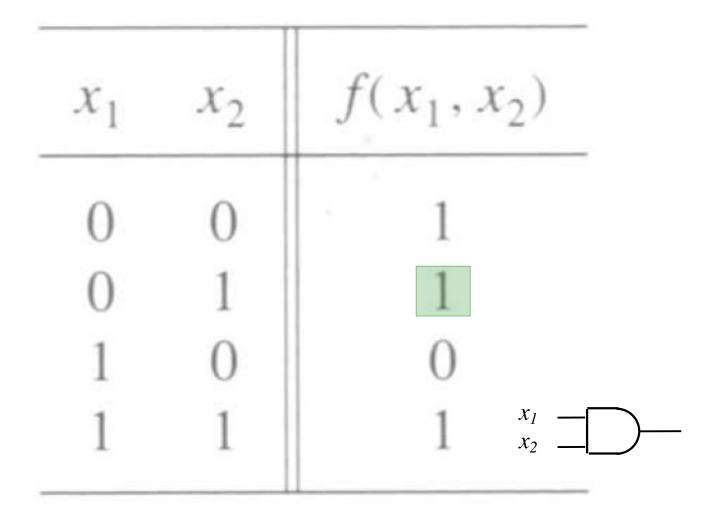

 $f(x_1, x_2) = \bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + 0 + x_1 x_2$

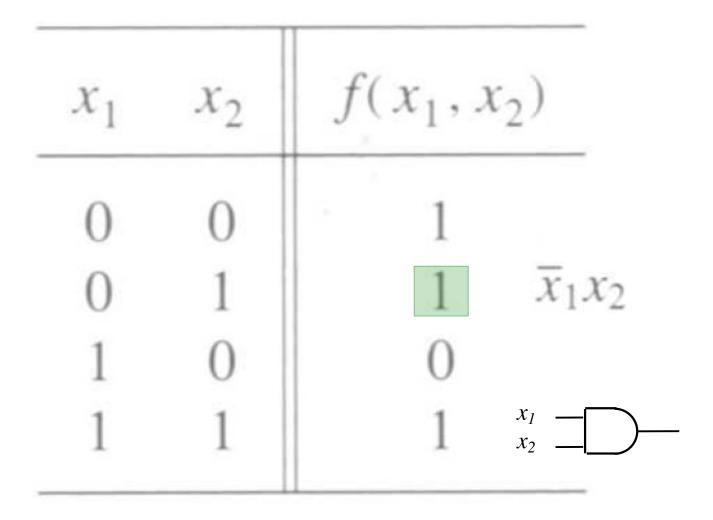
A function to be synthesized

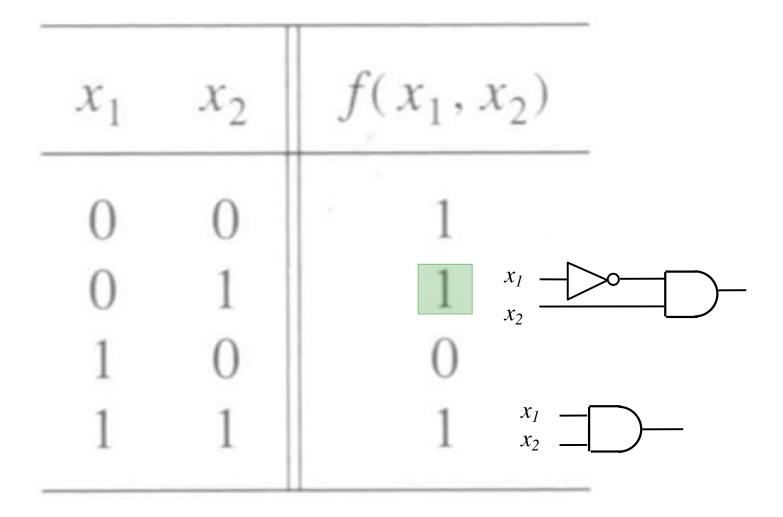


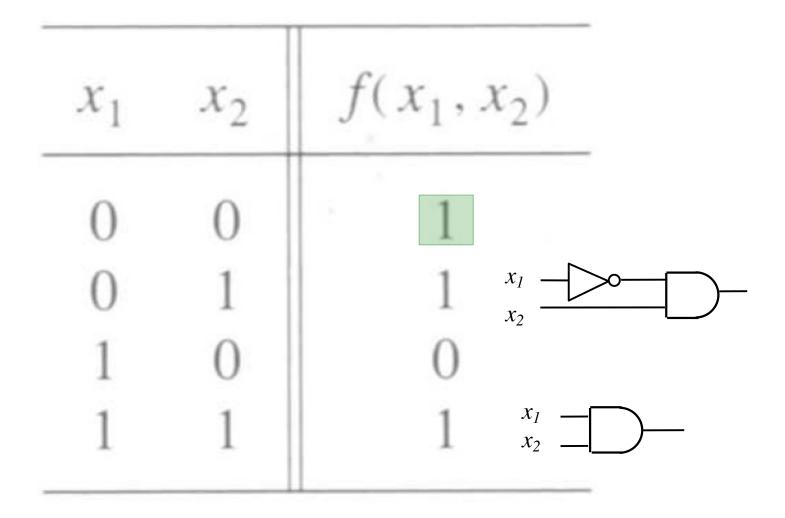
[Figure 2.19 from the textbook]

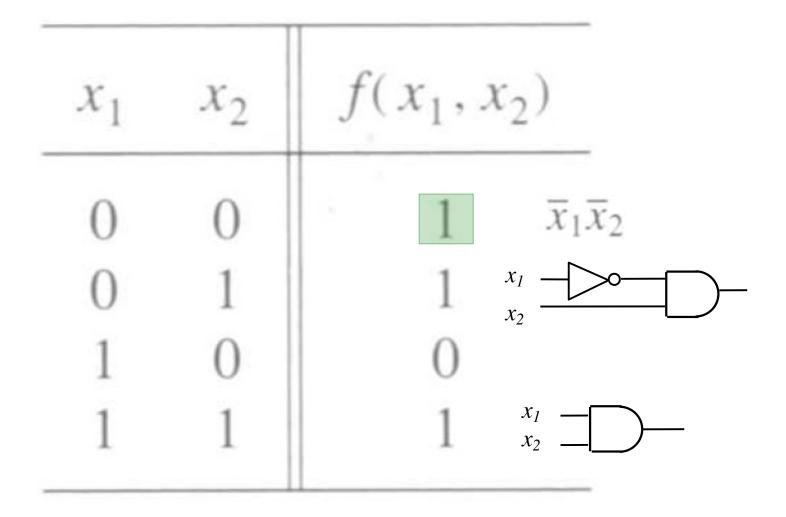

Let's look at it row by row. How can we express the last row?

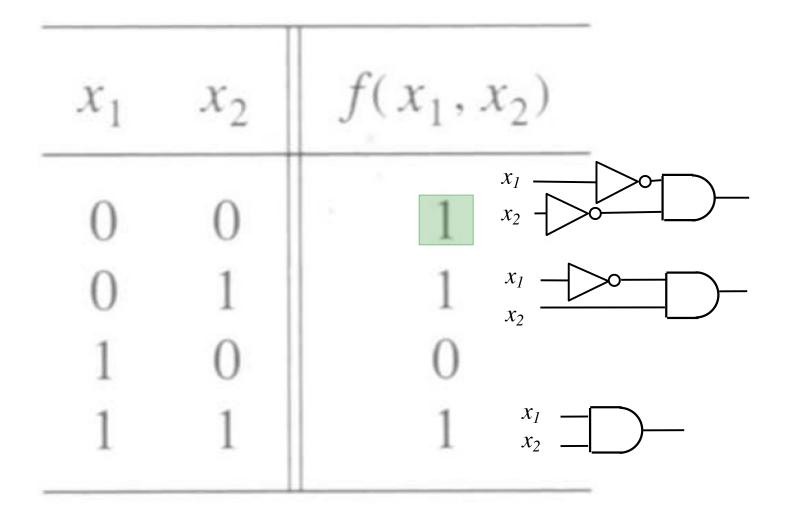

Let's look at it row by row. How can we express the last row?

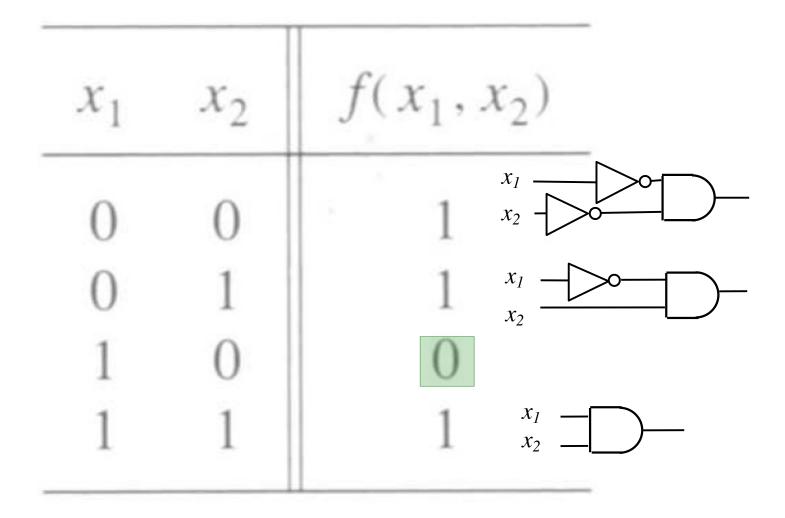

Let's look at it row by row. How can we express the last row?

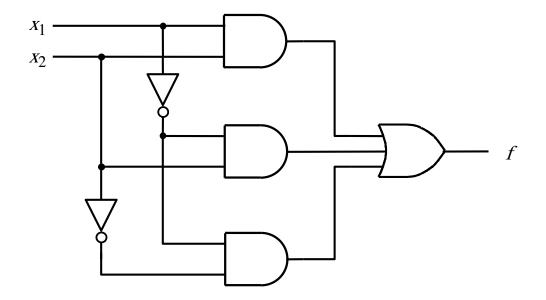

What about this row?

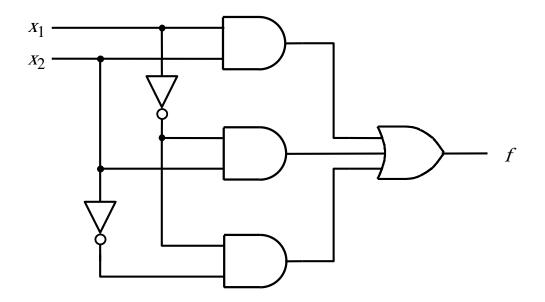

What about this row?

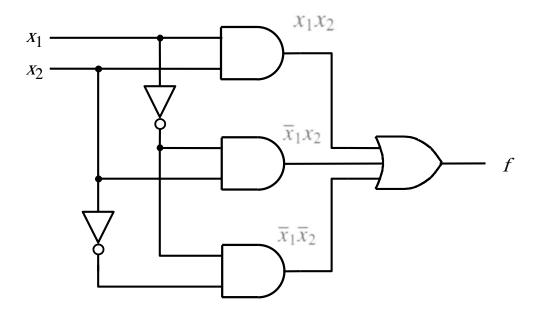

What about this row?

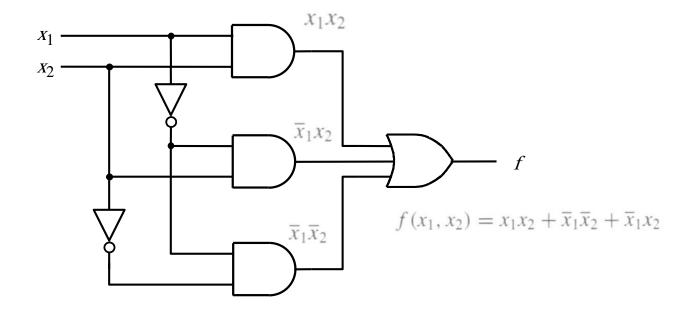

What about the first row?

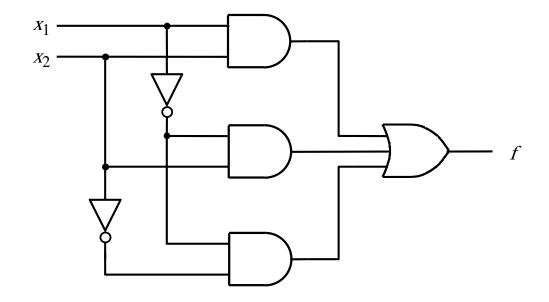

What about the first row?


What about the first row?


Finally, what about the zero?

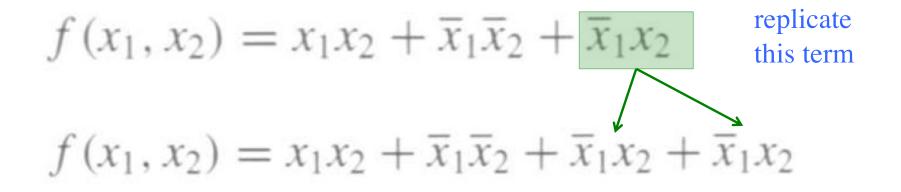

Putting it all together


Let's verify that this circuit implements correctly the target truth table


Let's verify that this circuit implements correctly the target truth table

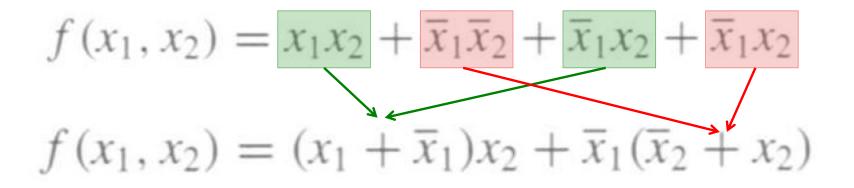
Putting it all together

Canonical Sum-Of-Products (SOP)


 $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$

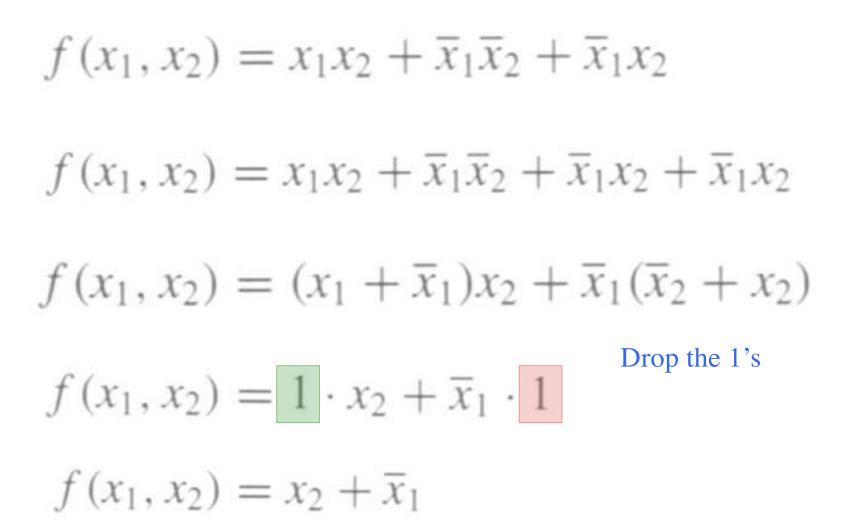
[Figure 2.20a from the textbook]

Summary of This Procedure

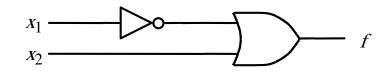

- Get the truth table of the function
- Form a product term (AND gate) for each row of the table for which the function is 1
- Each product term contains all input variables
- In each row, if $x_i = 1$ enter it as x_i , otherwise use $\overline{x_i}$
- Sum all of these products (OR gate) to get the function

 $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$

 $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$

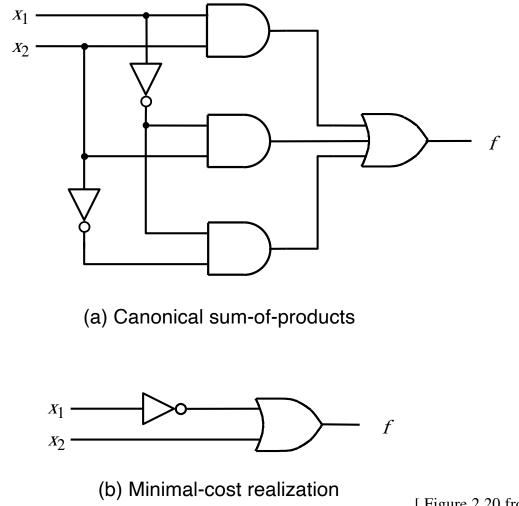

group these terms

 $f(x_1, x_2) = x_1 x_2 + \overline{x}_1 \overline{x}_2 + \overline{x}_1 x_2$


$$f(x_1, x_2) = x_1 x_2 + \bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + \bar{x}_1 x_2$$

These two terms are trivially equal to 1
$$f(x_1, x_2) = (x_1 + \bar{x}_1) x_2 + \bar{x}_1 (\bar{x}_2 + x_2)$$

$$f(x_1, x_2) = 1 \cdot x_2 + \overline{x}_1 \cdot 1$$


Minimal-cost realization

$$f(x_1, x_2) = x_2 + \overline{x}_1$$

[Figure 2.20b from the textbook]

Two implementations for the same function

[Figure 2.20 from the textbook]

Basis Functions / minterms (for three variables)

The Eight Basis Functions

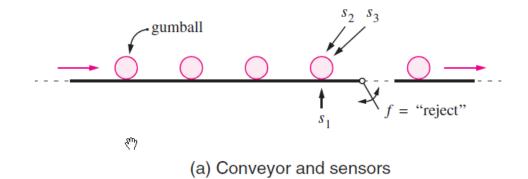
x	У	Z	f ₀₀₀	f ₀₀₁	f ₀₁₀	f ₀₁₁	f ₁₀₀	f ₁₀₁	f ₁₁₀	f ₁₁₁
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

The Eight Basis Functions

X	У	Z	f ₀₀₀	f ₀₀₁	f ₀₁₀	f ₀₁₁	f ₁₀₀	f ₁₀₁	f ₁₁₀	f ₁₁₁
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

The Eight minterms

x	У	Z	m ₀	m ₁	m ₂	m ₃	m ₄	m 5	m ₆	m 77
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1


Expressions for the minterms

 $m_0 = x y z$ $m_1 = x y z$ $m_2 = \overline{x} y \overline{z}$ $m_3 = \overline{x} y z$ $m_4 = x y z$ $m_5 = x \overline{y} z$ $m_6 = x y \overline{z}$ $m_7 = x y z$

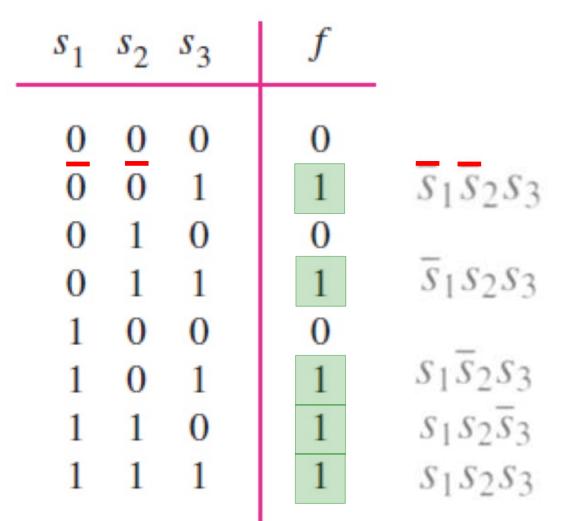
Expressions for the minterms

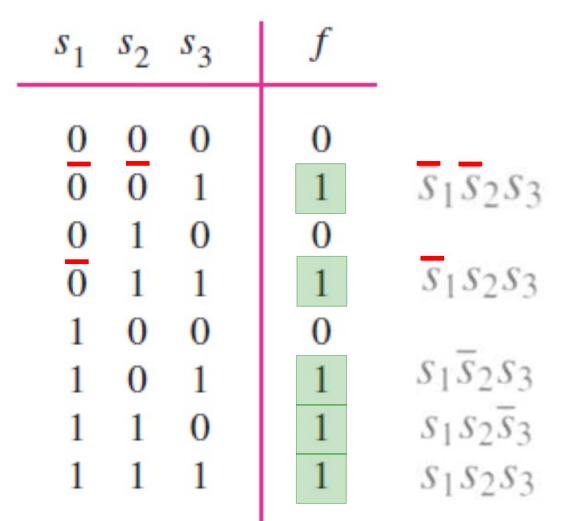
0	0	0	$m_0 = \overline{x} \overline{y} \overline{z}$	
0	0	1	$m_1 = \overline{x} \overline{y} z$	
0	1	0	$m_2 = \overline{x} y \overline{z}$	The bars coincide
0	1	1	$m_3 = \overline{x} y z$	with the 0's
1	0	0	$m_4 = x \overline{y} \overline{z}$	in the binary expansion of the minterm sub-index
1	0	1	$m_5 = x \overline{y} z$	
1	1	0	$m_6 = x y \overline{z}$	
1	1	1	$m_7 = x y z$	

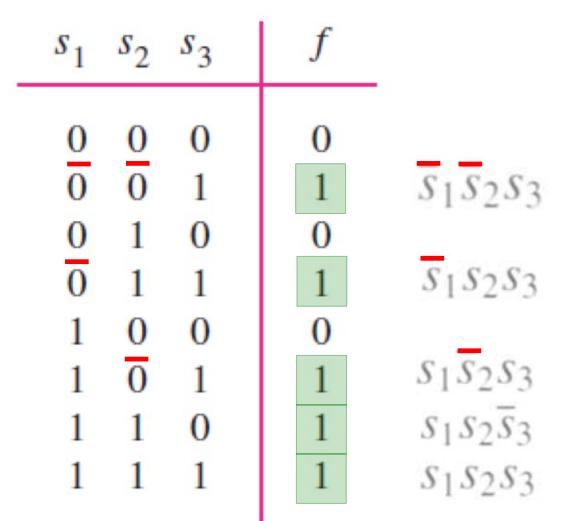
Function Synthesis Example (with three variables)

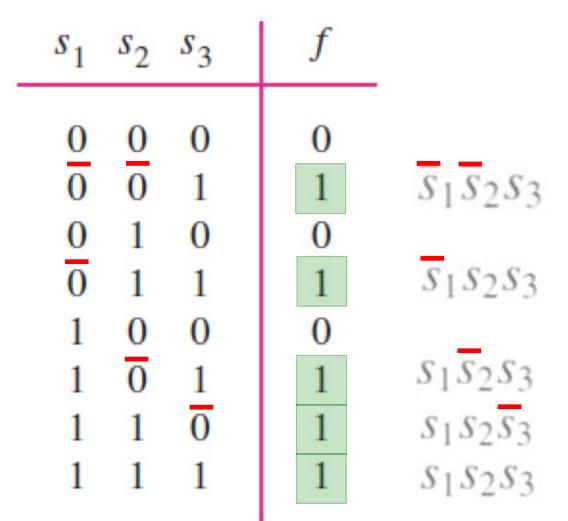
s_1	<i>s</i> ₂	<i>s</i> ₃	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
			l i

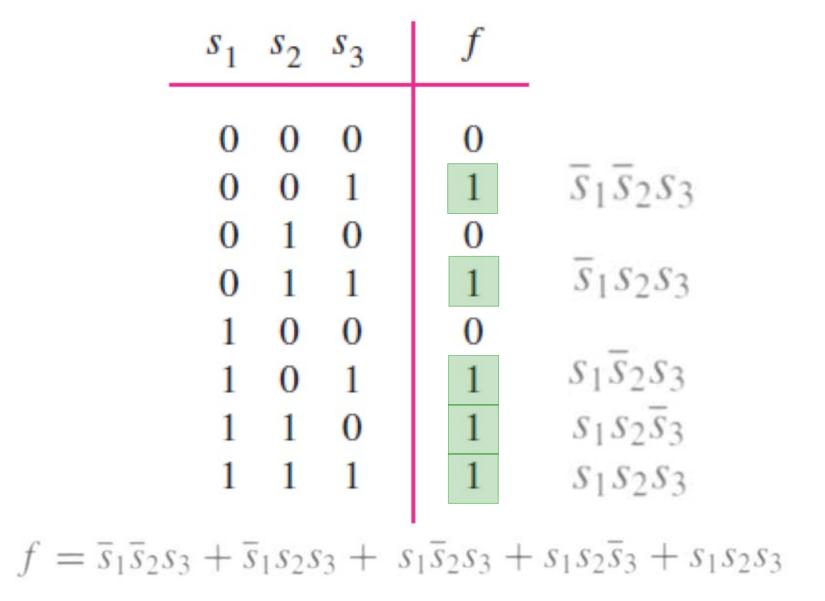
(b) Truth table

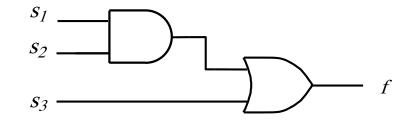

[Figure 2.21 from the textbook]


s_1	<i>s</i> ₂	<i>s</i> ₃	f
-	-	-	
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
			1

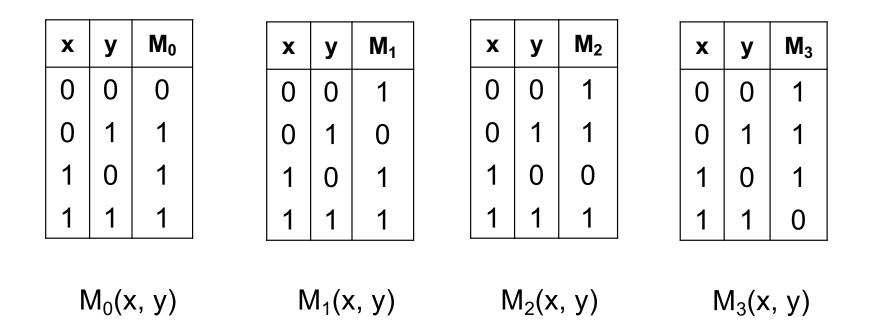

[Figure 2.21b from the textbook]

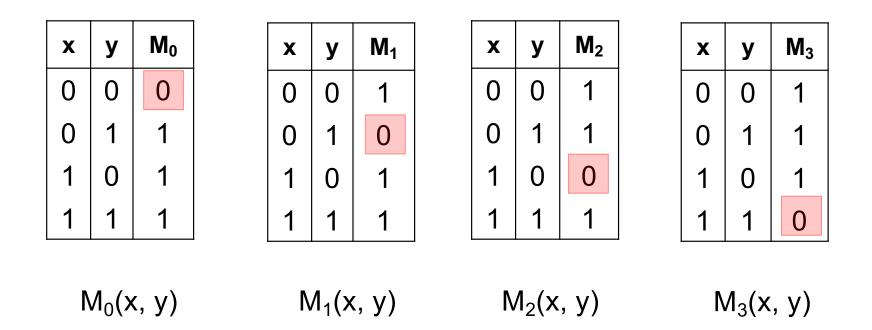

s_1	<i>s</i> ₂	<i>s</i> ₃	f
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
			1


$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$



Let's look at another problem (minimization)


- $f = \overline{s_1}\overline{s_2}s_3 + \overline{s_1}s_2s_3 + s_1\overline{s_2}s_3 + s_1s_2s_3 + s_1s_2\overline{s_3} + s_1s_2\overline{s_3} + s_1s_2s_3$ = $\overline{s_1}s_3(\overline{s_2} + s_2) + s_1s_3(\overline{s_2} + s_2) + s_1s_2(\overline{s_3} + s_3)$ = $\overline{s_1}s_3 + s_1s_3 + s_1s_2$
 - $= s_3 + s_1 s_2$


Let's look at another problem (minimization)

- $f = \overline{s_1}\overline{s_2}s_3 + \overline{s_1}s_2s_3 + s_1\overline{s_2}s_3 + s_1s_2s_3 + s_1s_2\overline{s_3} + s_1s_2\overline{s_3} + s_1s_2s_3$ = $\overline{s_1}s_3(\overline{s_2} + s_2) + s_1s_3(\overline{s_2} + s_2) + s_1s_2(\overline{s_3} + s_3)$ = $\overline{s_1}s_3 + s_1s_3 + s_1s_2$
 - $= s_3 + s_1 s_2$

Maxterms (an alternative set of basis functions)

x	У	M ₀ (x, y)	M ₁ (x, y)	M ₂ (x, y)	M ₃ (x, y)
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

x	У	x + y	x + y	x + y	$\overline{x} + \overline{y}$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

$$M_0 = x + y$$
$$M_1 = x + \overline{y}$$
$$M_2 = \overline{x} + y$$
$$M_3 = \overline{x} + \overline{y}$$

$$M_{0} = x + y$$

$$M_{1} = x + \overline{y}$$
Note that these are now sums, not products.
$$M_{2} = \overline{x} + y$$

$$M_{3} = \overline{x} + \overline{y}$$

0 0
$$M_0 = x + y$$

$$\mathbf{0} \quad \mathbf{1} \qquad \mathbf{M}_1 = \mathbf{x} + \overline{\mathbf{y}}$$

$$1 \quad 0 \qquad M_2 = \overline{x} + y$$

1 1
$$M_3 = \overline{x} + \overline{y}$$

The bars coincide with the 1's in the binary expansion of the maxterm sub-index

$$M_0 = x + y$$

0 1
$$M_1 = x + \overline{y}$$

1 0
$$M_2 = \bar{x} + y$$

1 1
$$M_3 = \overline{x} + \overline{y}$$

The bars coincide with the 1's in the binary expansion of the maxterm sub-index

Minterms and Maxterms

Row number	x_1	x_2	Minterm	Maxterm
$\begin{array}{c} 0\\ 1\\ 2\\ 3 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	$ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{vmatrix} $	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \bar{x}_{2}$ $M_{2} = \bar{x}_{1} + x_{2}$ $M_{3} = \bar{x}_{1} + \bar{x}_{2}$

Minterms and Maxterms

Row number	x_1	x_2	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{array} \end{array} $	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$

Use these for Sum-of-Products Minimization (1's of the function) Use these for Product-of-Sums Minimization (0's of the function)

Minterms and Maxterms

Row number	x_1	x_2	Minterm	Maxterm
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$	$ \begin{vmatrix} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{vmatrix} $	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \bar{x}_{2}$ $M_{2} = \bar{x}_{1} + x_{2}$ $M_{3} = \bar{x}_{1} + \bar{x}_{2}$

Use these for Sum-of-Products Minimization (1's of the function) Use these for **Product-of-Sums** Minimization (0's of the function)

(uses the ones of the function)

(for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	$\begin{array}{c} 0\\ 0\\ 0\\ 1 \end{array}$

(for the AND logic function)

Row number	$x_1 x_2$	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{ccc} 0 & 0 \ 0 & 1 \ 1 & 0 \ 1 & 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	$\begin{array}{c} 0\\ 0\\ 0\\ 1\end{array}$

(for the AND logic function)

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	$\begin{array}{c} 0\\ 0\\ 0\\ 1\end{array}$

 $f(x_1, x_2) = m_3 = x_1 x_2$

(In this case there is just one product and there is no need for a sum)

Another Example

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	$egin{array}{ccc} 1 \\ 1 \\ 0 \\ 1 \end{array}$

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \end{array}$	$ \begin{array}{ c c c c c } m_0 &= \overline{x}_1 \overline{x}_2 \\ m_1 &= \overline{x}_1 x_2 \\ m_2 &= x_1 \overline{x}_2 \\ m_3 &= x_1 x_2 \end{array} \end{array} $	1 1 0 1

Row number	x_1	x_2	Minterm	$f(x_1, x_2)$
0	0	0	$m_0 = \overline{x}_1 \overline{x}_2$	1
1	0	1	$ \begin{array}{c c} m_0 = \overline{x}_1 \overline{x}_2 \\ m_1 = \overline{x}_1 x_2 \\ m_2 = x_1 \overline{x}_2 \\ m_3 = x_1 x_2 \end{array} $	1
2	1	0	$m_2 = x_1 \overline{x}_2$	0
3	1	1	$m_3 = x_1 x_2$	1

$$f = m_0 \cdot 1 + m_1 \cdot 1 + m_2 \cdot 0 + m_3 \cdot 1$$

= $m_0 + m_1 + m_3$
= $\bar{x}_1 \bar{x}_2 + \bar{x}_1 x_2 + x_1 x_2$

(uses the zeros of the function)

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \end{array}$	$ M_0 = x_1 + x_2 M_1 = x_1 + \overline{x_2} M_2 = \overline{x_1} + x_2 M_3 = \overline{x_1} + \overline{x_2} $	0 1 1 1

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \end{array}$	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	0 1 1 1 1

Product-of-Sums Form (for the OR logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
0	0	0	$M_0 = x_1 + x_2$	0
1	0	1	$M_0 = x_1 + x_2 M_1 = x_1 + \overline{x_2} M_2 = \overline{x_1} + x_2 M_3 = \overline{x_1} + \overline{x_2}$	1
2	1	0	$M_2 = \overline{x_1} + x_2$	1
3	1	1	$M_3 = \overline{x_1} + \overline{x_2}$	1

 $f(x_1, x_2) = M_0 = x_1 + x_2$

(In this case there is just one sum and there is no need for a product)

Another Example

Product-of-Sums Form (for this logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \end{array}$	$ \begin{array}{ c c c c c c c c } M_0 &= x_1 + x_2 \\ M_1 &= x_1 + \overline{x_2} \\ M_2 &= \overline{x_1} + x_2 \\ M_3 &= \overline{x_1} + \overline{x_2} \end{array} $	0 1 0 1

Product-of-Sums Form (for this logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \end{array}$	$ \begin{array}{ c c c c c c c c } M_0 &= x_1 + x_2 \\ M_1 &= x_1 + \overline{x_2} \\ M_2 &= \overline{x_1} + x_2 \\ M_3 &= \overline{x_1} + \overline{x_2} \end{array} $	0 1 0 1

Product-of-Sums Form (for this logic function)

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
0	0	0 1	$M_0 = x_1 + x_2 M_1 = x_1 + \overline{x_2} M_2 = \overline{x_1} + x_2$	0
$\frac{1}{2}$	1 1	0 1	$M_{1} = x_{1} + x_{2}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	0

$$f(x_1, x_2) = M_0 \bullet M_2 = (x_1 + x_2) \bullet (\overline{x_1} + x_2)$$

Yet Another Example

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	0 0 1 1	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$		1 1 0 1

We need to minimize using the zeros of the function f. But let's first minimize the inverse of f, i.e., \overline{f} .

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	0 1 0 1	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	1 1 0 1	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}$

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$	$egin{aligned} y_1 &= x_1 + x_2 \ y_1 &= x_1 + \overline{x_2} \ y_2 &= \overline{x_1} + x_2 \ y_3 &= \overline{x_1} + \overline{x_2} \end{aligned}$	1 1 0 1	$\begin{array}{c} 0\\ 0\\ 1\\ 0 \end{array}$

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \end{array}$	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	$egin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} 0\\ 0\\ 1\\ 0 \end{array}$

$$\overline{f}(x_1, x_2) = m_2$$
$$= x_1 \overline{x}_2$$

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \ 1 \ 1 \end{array}$	$ M_0 = x_1 + x_2 M_1 = x_1 + \overline{x_2} M_2 = \overline{x_1} + x_2 M_3 = \overline{x_1} + \overline{x_2} $	1 1 0 1	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}$

$$\overline{\overline{f}} = f = \overline{x_1 \overline{x_2}} \qquad \overline{f}(x_1, x_2) = m_2$$
$$= \overline{x_1} + x_2 \qquad = x_1 \overline{x_2}$$

Product-of-Sums Form

Row number	x_1	x_2	Maxterm	$f(x_1, x_2)$	$\overline{f}(x_1, x_2)$
$egin{array}{c} 0 \ 1 \ 2 \ 3 \end{array}$	$egin{array}{c} 0 \ 0 \ 1 \ 1 \ 1 \end{array}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$	$M_{0} = x_{1} + x_{2}$ $M_{1} = x_{1} + \overline{x_{2}}$ $M_{2} = \overline{x_{1}} + x_{2}$ $M_{3} = \overline{x_{1}} + \overline{x_{2}}$	1 1 0 1	$\begin{array}{c} 0\\ 0\\ 1\\ 0 \end{array}$

$$\overline{\overline{f}} = f = \overline{x_1 \overline{x_2}} \qquad \overline{f}(x_1, x_2) = m_2$$
$$= \overline{x_1} + x_2 \qquad = x_1 \overline{x_2}$$

 $f = \overline{m}_2 = M_2$

minterms (for three variables)

The Eight minterms

x	У	Z	m ₀	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

The Eight minterms

x	У	Z	m ₀	m ₁	m ₂	m ₃	m ₄	m 5	m ₆	m 77
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Expressions for the minterms

 $m_0 = x y z$ $m_1 = x y z$ $m_2 = \overline{x} y \overline{z}$ $m_3 = \overline{x} y z$ $m_4 = x y z$ $m_5 = x \overline{y} z$ $m_6 = x y \overline{z}$ $m_7 = x y z$

Expressions for the minterms

0	0	0	$m_0 = \overline{x} \overline{y} \overline{z}$	
0	0	1	$m_1 = \overline{x} \overline{y} z$	
0	1	0	$m_2 = \overline{x} y \overline{z}$	The bars coincide
0	1	1	$m_3 = \overline{x} y z$	with the 0's
1	0	0	$m_4 = x \overline{y} \overline{z}$	in the binary expansion of the minterm sub-index
1	0	1	$m_5 = x \overline{y} z$	
1	1	0	$m_6 = x y \overline{z}$	
1	1	1	$m_7 = x y z$	

Maxterms (for three variables)

The Eight Maxterms

X	У	Z	Mo	M ₁	M ₂	M ₃	M ₄	M 5	M ₆	M 7
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

The Eight Maxterms

x	У	Z	Mo	M 1	M ₂	M ₃	M ₄	M 5	M ₆	M 7
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

Expressions for the Maxterms

M ₀	=	x + y	+ z
M ₁	=	x + y	+ z
M ₂	=	x + y	+ z
M ₃	=	x + y	+ z
M_4	=	x + y	+ z
M_5	=	x + y	+ z
M ₆	=	x + y	+ z
M 7	=	$\overline{x} + \overline{y}$	+

Expressions for the Maxterms

- $0 \ 0 \ 0 \ M_0 = x + y + z$
- 0 0 1 $M_1 = x + y + \overline{z}$
- 0 1 0 $M_2 = x + \overline{y} + z$
- **0 1 1** $M_3 = x + \overline{y} + \overline{z}$
- 1 0 0 $M_4 = \bar{x} + y + z$
- 1 0 1 $M_5 = \bar{x} + y + \bar{z}$
- 1 1 0 $M_6 = \overline{x} + \overline{y} + z$
- 1 1 1 $M_7 = \overline{x} + \overline{y} + \overline{z}$

The bars coincide with the 1's in the binary expansion of the maxterm sub-index minterms and Maxterms (for three variables)

minterms and Maxterms

_ _

$m_0 = \overline{x} \overline{y} \overline{z}$	$M_0 = x + y + z$
$m_1 = \overline{x} \overline{y} z$	$M_1 = x + y + \overline{z}$
$m_2 = \overline{x} y \overline{z}$	$M_2 = x + \overline{y} + z$
$m_3 = \overline{x} y z$	$M_3 = x + \overline{y} + \overline{z}$
$m_4 = x \overline{y} \overline{z}$	$M_4 = \overline{x} + y + z$
$m_5 = x \overline{y} z$	$M_5 = \overline{x} + y + \overline{z}$
$m_6 = x y \overline{z}$	$M_6 = \overline{x} + \overline{y} + z$
$m_7 = x y z$	$M_7 = \overline{x} + \overline{y} + \overline{z}$

minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{ccc} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

[Figure 2.22 from the textbook]

Examples with three-variable functions

A three-variable function

Row				
number	<i>x</i> ₁	x_2	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

[Figure 2.23 from the textbook]

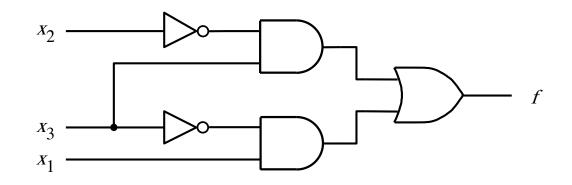
Sum-of-Products (SOP)

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Sum-of-Products (SOP)

Row number	x_1	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

 $f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3$


Sum-of-Products (SOP)

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

 $f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 + x_1 x_2 \overline{x}_3$

$$f = (\bar{x}_1 + x_1)\bar{x}_2x_3 + x_1(\bar{x}_2 + x_2)\bar{x}_3$$

= $1 \cdot \bar{x}_2x_3 + x_1 \cdot 1 \cdot \bar{x}_3$
= $\bar{x}_2x_3 + x_1\bar{x}_3$

Sum-of-products realization of this function

$$f = \overline{x_2} x_3 + x_1 \overline{x_3}$$

[Figure 2.24a from the textbook]

A three-variable function

Row				
number	<i>x</i> ₁	x_2	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

[Figure 2.23 from the textbook]

Product-of-Sums (POS)

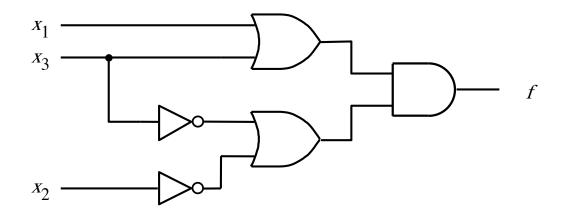
Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Product-of-Sums (POS)

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f = \overline{m_0 + m_2 + m_3 + m_7}$$

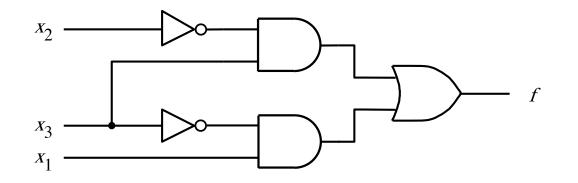
= $\overline{m_0} \cdot \overline{m_2} \cdot \overline{m_3} \cdot \overline{m_7}$
= $M_0 \cdot M_2 \cdot M_3 \cdot M_7$
= $(x_1 + x_2 + x_3)(x_1 + \overline{x_2} + x_3)(x_1 + \overline{x_2} + \overline{x_3})(\overline{x_1} + \overline{x_2} + \overline{x_3})$

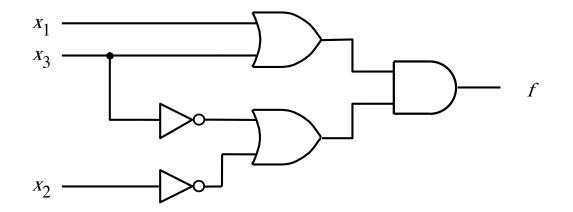

Product-of-Sums (POS)

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

 $f = ((x_1 + x_3) + x_2)((x_1 + x_3) + \overline{x}_2)(x_1 + (\overline{x}_2 + \overline{x}_3))(\overline{x}_1 + (\overline{x}_2 + \overline{x}_3))$

$$f = (x_1 + x_3)(\bar{x}_2 + \bar{x}_3)$$


Product-of-sums realization of this function


$$f = (x_1 + x_3) \bullet (\overline{x_2} + \overline{x_3})$$

[Figure 2.24b from the textbook]

Two realizations of this function

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

[Figure 2.24 from the textbook]

Shorthand Notation for SOP

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f(x_1, x_2, x_3) = \sum (m_1, m_4, m_5, m_6)$$

or

$$f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$$

Shorthand Notation for POS

Row number	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$

or

$$f(x_1, x_2, x_3) = \Pi M(0, 2, 3, 7)$$

Shorthand Notation

• Sum-of-Products (SOP)

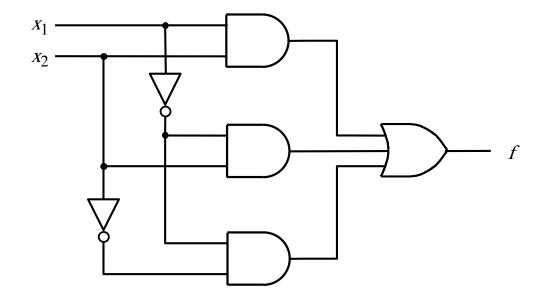
$$f(x_1, x_2, x_3) = \sum (m_1, m_4, m_5, m_6)$$

or

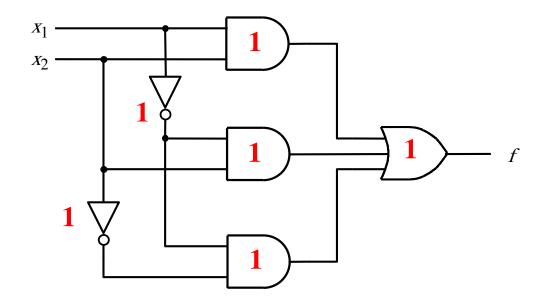
$$f(x_1, x_2, x_3) = \sum m(1, 4, 5, 6)$$

Product-of-Sums (POS)

$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$

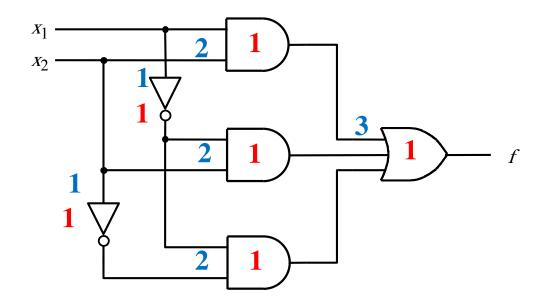

or

$$f(x_1, x_2, x_3) = \Pi M(0, 2, 3, 7)$$


The Cost of a Circuit

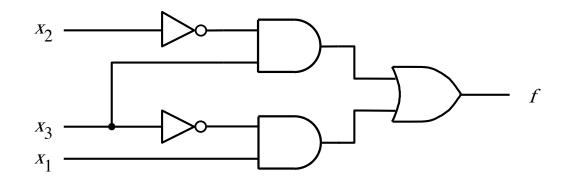
- Count all gates
- Count all inputs/wires to the gates
- Add the two partial counts. That is the cost.

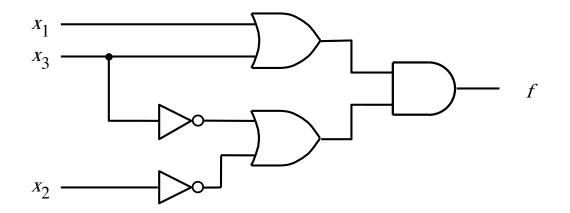
What is the cost of this circuit?



What is the cost of this circuit?

There are **6** gates.


What is the cost of this circuit?


There are 6 gates and 11 inputs.

The total cost is 17.

What is the cost of each circuit?

(a) A minimal sum-of-products realization

(b) A minimal product-of-sums realization

Questions?

THE END