

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Design Examples

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

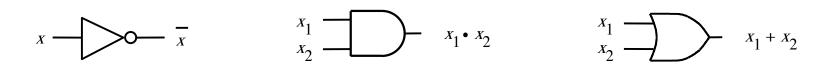
- HW3 is due on Monday Sep 16 @ 10pm
- Please write clearly on the first page the following three things:
 - Your First and Last Name
 - Your Student ID Number
 - Your Lab Section Letter
- Submit on Canvas as *one* PDF file.
- Please orient your pages such that the text can be read without the need to rotate the page.

Quick Review

Axioms of Boolean Algebra

1a.	$0 \bullet 0 = 0$
1b.	1 + 1 = 1
2a.	$1 \cdot 1 = 1$
2b.	0 + 0 = 0
3a.	$0 \cdot 1 = 1 \cdot 0 = 0$
3b.	1 + 0 = 0 + 1 = 1
4a.	If $x=0$, then $\overline{x} = 1$
4b.	If $x=1$, then $\overline{x} = 0$

The Three Basic Logic Gates



NOT gate

AND gate

OR gate

[Figure 2.8 from the textbook]

Single-Variable Theorems

5a.	$\mathbf{x} \bullet 0 = 0$
5b.	x + 1 = 1
6a.	$\mathbf{x} \bullet 1 = \mathbf{x}$
6b.	$\mathbf{x} + 0 = \mathbf{x}$
7a.	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$
7b.	$\mathbf{x} + \mathbf{x} = \mathbf{x}$
8a.	$x \cdot \overline{x} = 0$
8b.	$x + \overline{x} = 1$
9.	$\overline{\overline{\mathbf{x}}} = \mathbf{x}$

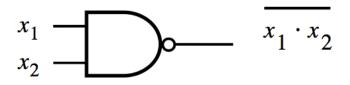
Two- and Three-Variable Properties

10a.	$\mathbf{x} \bullet \mathbf{y} = \mathbf{y} \bullet \mathbf{x}$	Commutative
10b.	$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$	
11a.	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$	Associative
11b.	x + (y + z) = (x + y) + z	
12a.	$x \bullet (y + z) = x \bullet y + x \bullet z$	Distributive
12b.	$x + y \cdot z = (x + y) \cdot (x + z)$)
13a.	$x + x \cdot y = x$	Absorption
13b.	$\mathbf{x} \bullet (\mathbf{x} + \mathbf{y}) = \mathbf{x}$	

Two- and Three-Variable Properties

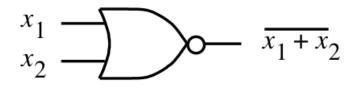
14a.	$\mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{\overline{y}} = \mathbf{x}$	Combining
14b.	$(x + y) \bullet (x + \overline{y}) = x$	
15a.	$\overline{\mathbf{x} \cdot \mathbf{y}} = \overline{\mathbf{x}} + \overline{\mathbf{y}}$	DeMorgan's
15b.	$\overline{\mathbf{x} + \mathbf{y}} = \overline{\mathbf{x}} \cdot \overline{\mathbf{y}}$	theorem
16a.	$\mathbf{x} + \overline{\mathbf{x}} \bullet \mathbf{y} = \mathbf{x} + \mathbf{y}$	
16b.	$\mathbf{x} \bullet (\mathbf{\overline{x}} + \mathbf{y}) = \mathbf{x} \bullet \mathbf{y}$	
17a.	$x \bullet y + y \bullet z + \overline{x} \bullet z = x \bullet y + \overline{x} \bullet z$	Consensus
17b.	$(x+y) \bullet (y+z) \bullet (\overline{x}+z) = (x+y) \bullet (\overline{x}+z)$	

NAND Gate



x_{l}	<i>x</i> ₂	f
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate



x_{l}	<i>x</i> ₂	f
0	0	1
0	1	0
1	0	0
1	1	0

Why do we need two more gates?

They can be implemented with fewer transistors.

Each of the new gates can be used to implement the three basic logic gates: NOT, AND, OR.

Implications

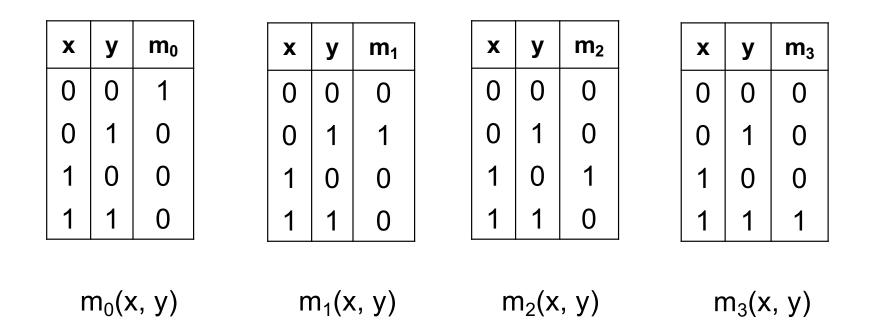
Any Boolean function can be implemented with only NAND gates!

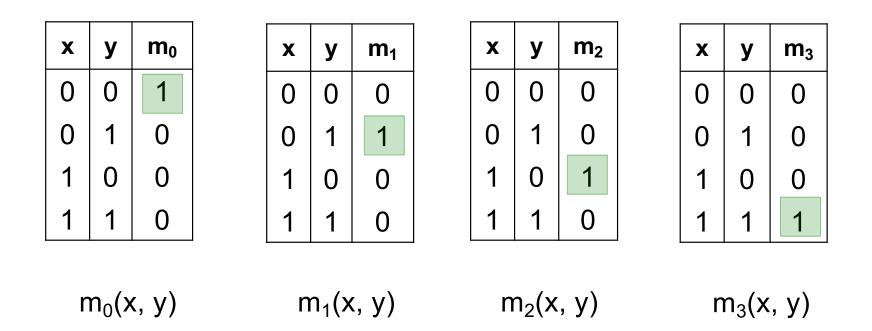
Implications

Any Boolean function can be implemented with only NAND gates!

The same is also true for NOR gates!

minterms (for two variables)

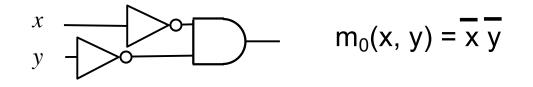


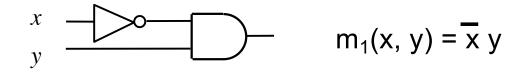


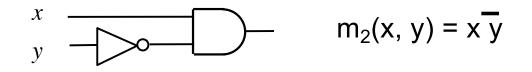
x	У	m₀(x, y)	m₁(x, y)	m₂(x, y)	m₃(x, y)
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

x	У	xy	ху	ху	ху
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

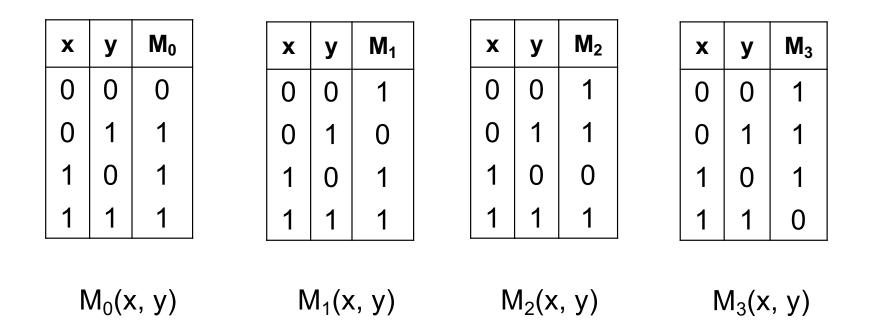
Circuits for the four minterms

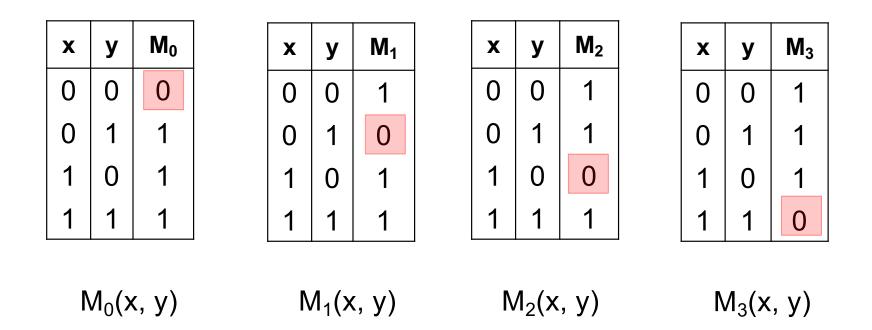






Maxterms (for two variables)





x	У	M ₀ (x, y)	M ₁ (x, y)	M ₂ (x, y)	M ₃ (x, y)
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

x	У	x + y	x + y	x + y	$\overline{x} + \overline{y}$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

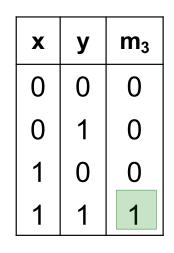
minterms and Maxterms (for two variables)

minterms and Maxterms

x	у	m ₀
0	0	1
0	1	0
1	0	0
1	1	0

X	у	m ₁
0	0	0
0	1	1
1	0	0
1	1	0

x	У	m ₂
0	0	0
0	1	0
1	0	1
1	1	0



x	у	Mo
0	0	0
0	1	1
1	0	1
1	1	1

x	У	M 1
0	0	1
0	1	0
1	0	1
1	1	1

x	У	M ₂
0	0	1
0	1	1
1	0	0
1	1	1

x	у	M 3
0	0	1
0	1 1	1
1	0	1
1	1	0

minterms and Maxterms

$$m_0(x, y) = x y$$
 $M_0(x, y) = x + y$

 $m_1(x, y) = \overline{x} y \qquad \qquad M_1(x, y) = x + \overline{y}$

 $m_2(x, y) = x\overline{y}$ $M_2(x, y) = \overline{x} + y$

 $m_3(x, y) = x y \qquad \qquad M_3(x, y) = \overline{x} + \overline{y}$

minterms (for three variables)

The Eight minterms

X	У	Z	m ₀	m ₁	m ₂	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

The Eight minterms

x	У	Z	m ₀	m ₁	m ₂	m ₃	m ₄	m 5	m ₆	m 77
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Expressions for the minterms

 $m_0 = x y z$ $m_1 = x y z$ $m_2 = \overline{x} y \overline{z}$ $m_3 = \overline{x} y z$ $m_4 = x y z$ $m_5 = x \overline{y} z$ $m_6 = x y \overline{z}$ $m_7 = x y z$

Expressions for the minterms

0	0	0	$m_0 = \overline{x} \overline{y} \overline{z}$	
0	0	1	$m_1 = \overline{x} \overline{y} z$	
0	1	0	$m_2 = \overline{x} y \overline{z}$	The bars coincide
0	1	1	$m_3 = \overline{x} y z$	with the 0's
1	0	0	$m_4 = x \overline{y} \overline{z}$	in the binary expansion of the minterm sub-index
1	0	1	$m_5 = x \overline{y} z$	
1	1	0	$m_6 = x y \overline{z}$	
1	1	1	$m_7 = x y z$	

Maxterms (for three variables)

The Eight Maxterms

X	У	Z	Mo	M ₁	M ₂	M ₃	M ₄	M 5	M ₆	M 7
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

The Eight Maxterms

x	У	Z	Mo	M 1	M ₂	M ₃	M ₄	M 5	M ₆	M 7
0	0	0	0	1	1	1	1	1	1	1
0	0	1	1	0	1	1	1	1	1	1
0	1	0	1	1	0	1	1	1	1	1
0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	1	1	1	0	1	1	1
1	0	1	1	1	1	1	1	0	1	1
1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	1	0

Expressions for the Maxterms

M ₀	=	x + y + z	
M ₁	=	$x + y + \overline{z}$	
M ₂	=	x + y + z	
M ₃	=	$x + \overline{y} + \overline{z}$	
M_4	=	x + y + z	
M_5	=	$\overline{x} + y + \overline{z}$	
M 6	=	$\overline{x} + \overline{y} + z$	
M 7	=	$\overline{x} + \overline{y} + \overline{z}$	

Expressions for the Maxterms

- $0 \ 0 \ 0 \ M_0 = x + y + z$
- 0 0 1 $M_1 = x + y + \overline{z}$
- 0 1 0 $M_2 = x + \overline{y} + z$
- **0 1 1** $M_3 = x + \overline{y} + \overline{z}$
- 1 0 0 $M_4 = \bar{x} + y + z$
- 1 0 1 $M_5 = \bar{x} + y + \bar{z}$
- 1 1 0 $M_6 = \overline{x} + \overline{y} + z$
- 1 1 1 $M_7 = \overline{x} + \overline{y} + \overline{z}$

The bars coincide with the 1's in the binary expansion of the maxterm sub-index minterms and Maxterms (for three variables)

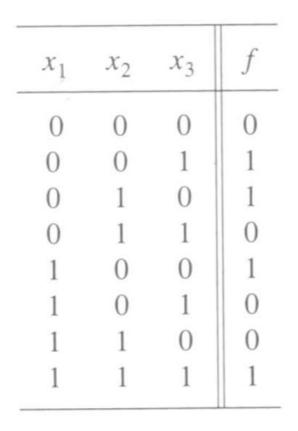
minterms and Maxterms

_ _

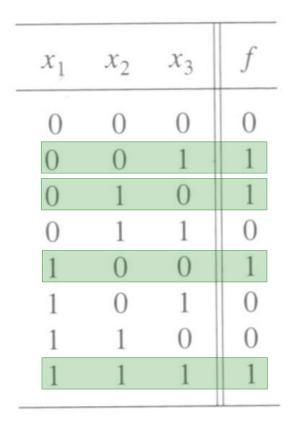
$m_0 = \overline{x} \overline{y} \overline{z}$	$M_0 = x + y + z$
$m_1 = \overline{x} \overline{y} z$	$M_1 = x + y + \overline{z}$
$m_2 = \overline{x} y \overline{z}$	$M_2 = x + \overline{y} + z$
$m_3 = \overline{x} y z$	$M_3 = x + \overline{y} + \overline{z}$
$m_4 = x \overline{y} \overline{z}$	$M_4 = \overline{x} + y + z$
$m_5 = x \overline{y} z$	$M_5 = \overline{x} + y + \overline{z}$
$m_6 = x y \overline{z}$	$M_6 = \overline{x} + \overline{y} + z$
$m_7 = x y z$	$M_7 = \overline{x} + \overline{y} + \overline{z}$

Synthesis Example

Truth table for a three-way light control



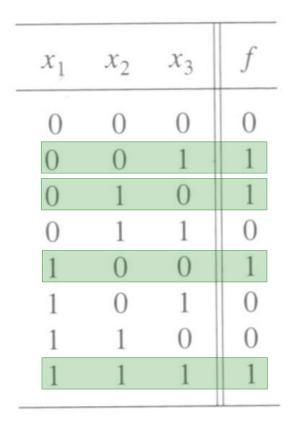
[Figure 2.31 from the textbook]

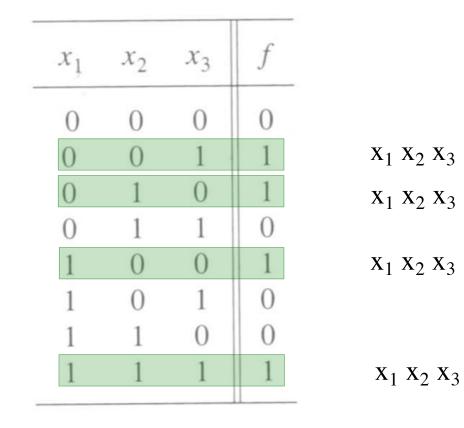


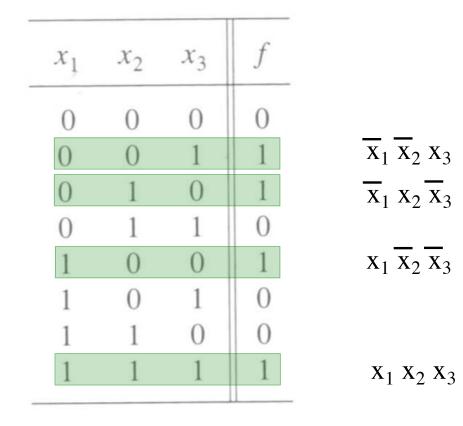
minterms and Maxterms (with three variables)

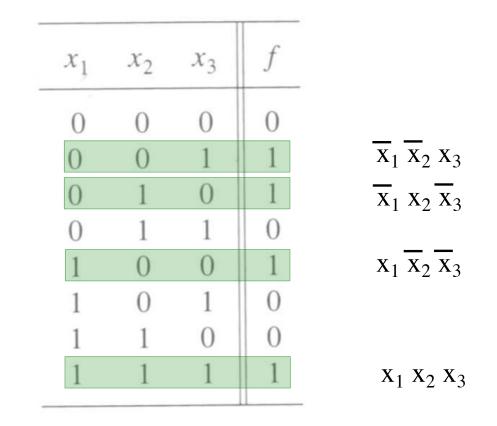
Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{ccc} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 \overline{x}_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

[Figure 2.22 from the textbook]



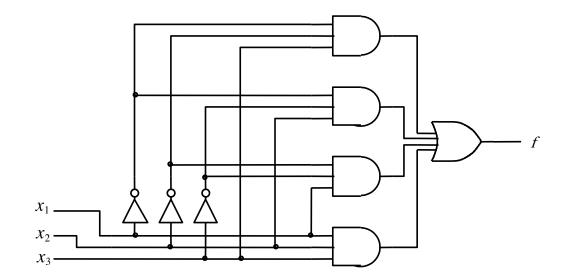






 $f = m_1 + m_2 + m_4 + m_7$ = $\overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$

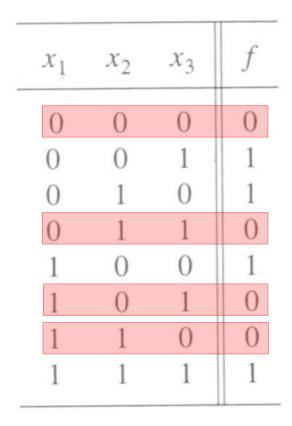
Sum-of-products realization



[Figure 2.32a from the textbook]

<i>x</i> ₁	x_2	<i>x</i> ₃	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

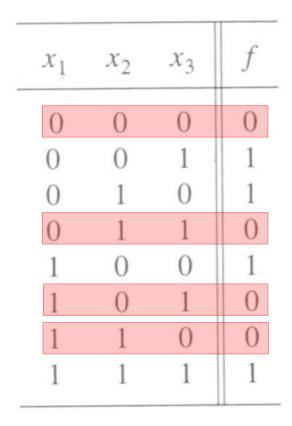
[Figure 2.31 from the textbook]

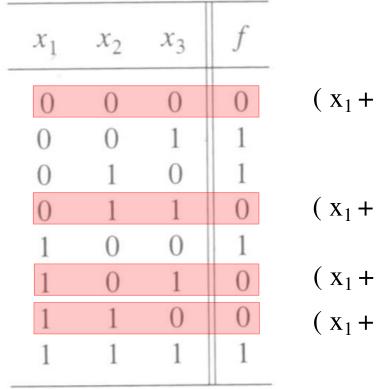


minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 \overline{x}_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$ $m_7 = x_1 x_2 x_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

[Figure 2.22 from the textbook]



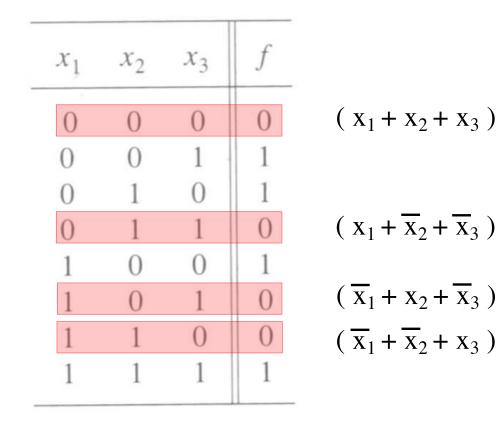


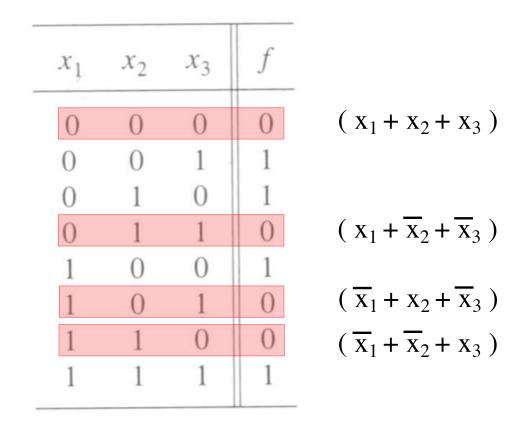
 $(x_1 + x_2 + x_3)$

$$(x_1 + x_2 + x_3)$$

$$(x_1 + x_2 + x_3)$$

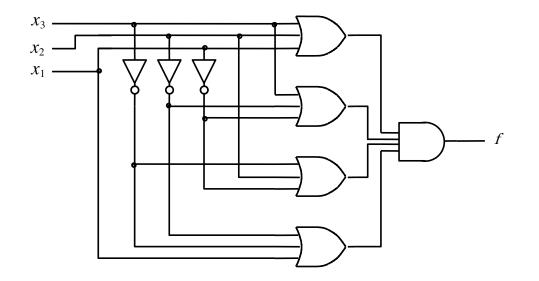
$$(x_1 + x_2 + x_3)$$





 $f = M_0 \cdot M_3 \cdot M_5 \cdot M_6$ = $(x_1 + x_2 + x_3)(x_1 + \overline{x}_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + x_3)$

Product-of-sums realization



[Figure 2.32b from the textbook]

Function Synthesis

Example 2.10

Implement the function $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$

Minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$egin{array}{ccc} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$egin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$	$egin{array}{ccc} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$	$ \begin{array}{c} m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \\ m_1 = \overline{x}_1 \overline{x}_2 x_3 \\ m_2 = \overline{x}_1 x_2 \overline{x}_3 \\ m_3 = \overline{x}_1 x_2 \overline{x}_3 \\ m_4 = x_1 \overline{x}_2 \overline{x}_3 \\ m_5 = x_1 \overline{x}_2 x_3 \\ m_6 = x_1 x_2 \overline{x}_3 \\ m_7 = x_1 x_2 x_3 \end{array} $	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$ $M_{7} = \overline{x}_{1} + \overline{x}_{2} + \overline{x}_{3}$

[Figure 2.22 from the textbook]

minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 \overline{x}_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

$$f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$$

• The SOP expression is:

$$f = m_2 + m_3 + m_4 + m_6 + m_7$$

= $\overline{x}_1 x_2 \overline{x}_3 + \overline{x}_1 x_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 \overline{x}_3 + x_1 x_2 x_3$

• This could be simplified as follows:

$$f = \overline{x}_1 x_2 (\overline{x}_3 + x_3) + x_1 (\overline{x}_2 + x_2) \overline{x}_3 + x_1 x_2 (\overline{x}_3 + x_3)$$

= $\overline{x}_1 x_2 + x_1 \overline{x}_3 + x_1 x_2$
= $(\overline{x}_1 + x_1) x_2 + x_1 \overline{x}_3$
= $x_2 + x_1 \overline{x}_3$

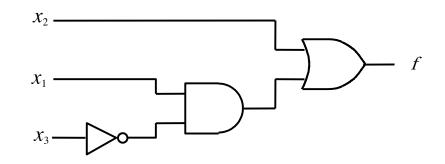
Recall Property 14a

14a. $x \bullet y + x \bullet \overline{y} = x$ 14b. $(x + y) \bullet (x + \overline{y}) = x$

Combining

SOP realization of the function

The SOP expression is: $f = x_2 + x_1 \overline{x}_3$



[Figure 2.30a from the textbook]

Example 2.12

Implement the function $f(x_1, x_2, x_3) = \prod M(0, 1, 5)$,

which is equivalent to $f(x_1, x_2, x_3) = \sum m(2, 3, 4, 6, 7)$

minterms and Maxterms (with three variables)

Row number	x_1	x_2	x_3	Minterm	Maxterm
$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ \end{array} $	0 0 0 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

$$f(x_1, x_2, x_3) = \Pi M(0, 1, 5)$$

• The POS expression is:

$$f = M_0 \cdot M_1 \cdot M_5$$

= $(x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)$

• This could be simplified as follows:

$$f = (x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x}_3)(x_1 + x_2 + \overline{x}_3)(\overline{x}_1 + x_2 + \overline{x}_3)$$

= $((x_1 + x_2) + x_3)((x_1 + x_2) + \overline{x}_3)(x_1 + (x_2 + \overline{x}_3))(\overline{x}_1 + (x_2 + \overline{x}_3)))(\overline{x}_1 + (x_2 + \overline{x}_3))$
= $((x_1 + x_2) + x_3\overline{x}_3)(x_1\overline{x}_1 + (x_2 + \overline{x}_3))$
= $(x_1 + x_2)(x_2 + \overline{x}_3)$

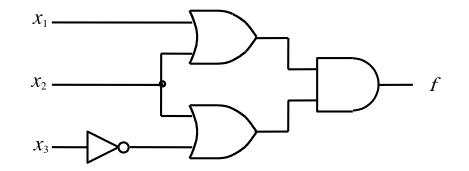
Recall Property 14b

14a. $x \bullet y + x \bullet \overline{y} = x$ 14b. $(x + y) \bullet (x + \overline{y}) = x$

Combining

POS realization of the function

The POS expression is: $f = (x_1 + x_2) (x_2 + \overline{x_3})$



[Figure 2.29a from the textbook]

More Examples

Example 2.14

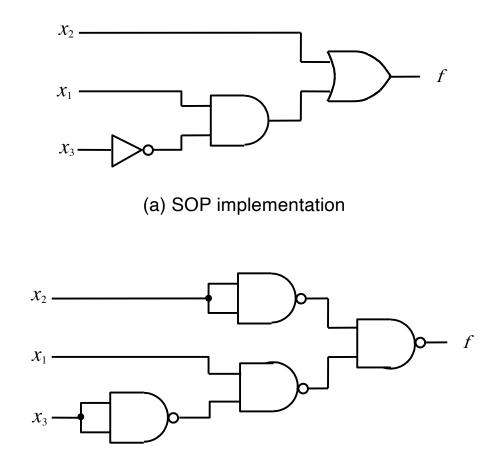
Implement the function $f(x_1, x_2, x_3) = \Sigma m(2, 3, 4, 6, 7)$ using only NAND gates.

Example 2.14

Implement the function $f(x_1, x_2, x_3) = \Sigma m(2, 3, 4, 6, 7)$ using only NAND gates.

The SOP expression is: $f = x_2 + x_1 \overline{x}_3$

NAND-gate realization of the function



(b) NAND implementation

[Figure 2.30 from the textbook]

Example 2.13

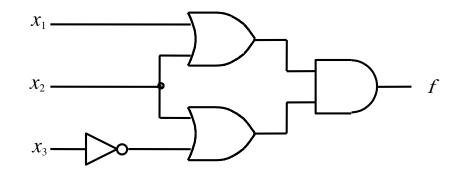
Implement the function $f(x_1, x_2, x_3) = \Sigma m(2, 3, 4, 6, 7)$ using only NOR gates.

Example 2.13

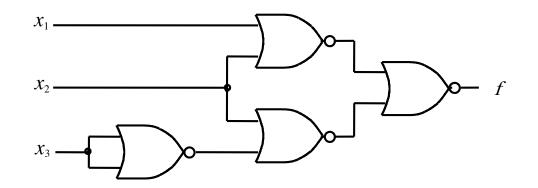
Implement the function $f(x_1, x_2, x_3) = \Sigma m(2, 3, 4, 6, 7)$ using only NOR gates.

The POS expression is: $f = (x_1 + x_2) (x_2 + \overline{x_3})$

NOR-gate realization of the function



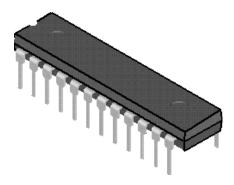
(a) POS implementation



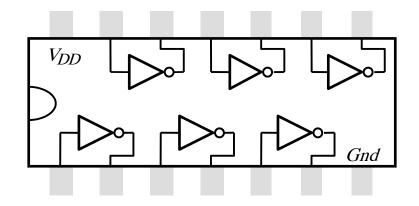
(b) NOR implementation

[Figure 2.29 from the textbook]

Implementation with Chips



(a) Dual-inline package



(b) Structure of 7404 chip

Figure B.21. A 7400-series chip.

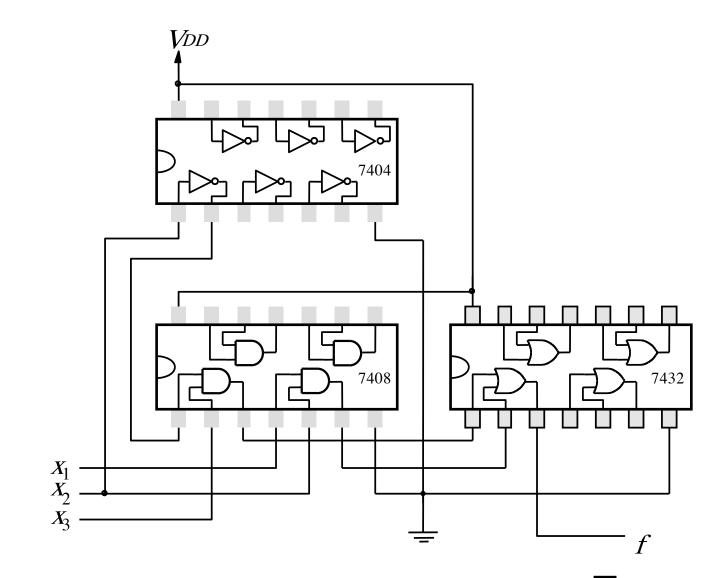


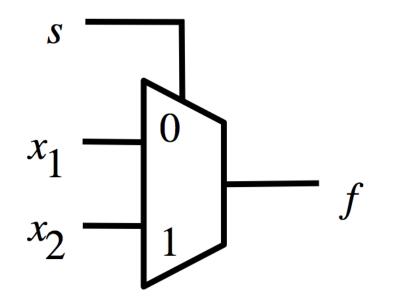
Figure B.22. An implementation of $f = x_1x_2 + \overline{x_2}x_3$.

Multiplexers

2-to-1 Multiplexer (Definition)

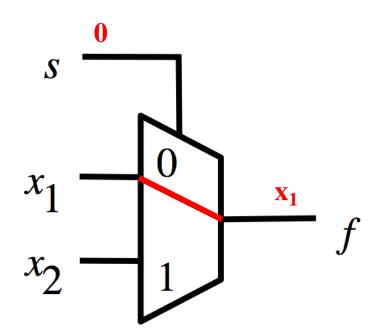
- Has two inputs: x₁ and x₂
- Also has another input line s
- If s=0, then the output is equal to x₁
- If s=1, then the output is equal to x_2

Graphical Symbol for a 2-to-1 Multiplexer

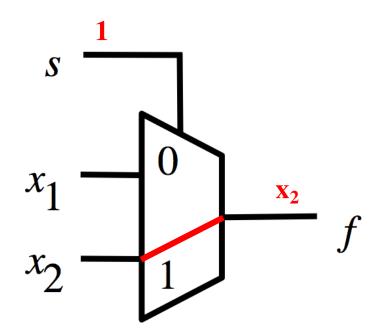


[Figure 2.33c from the textbook]

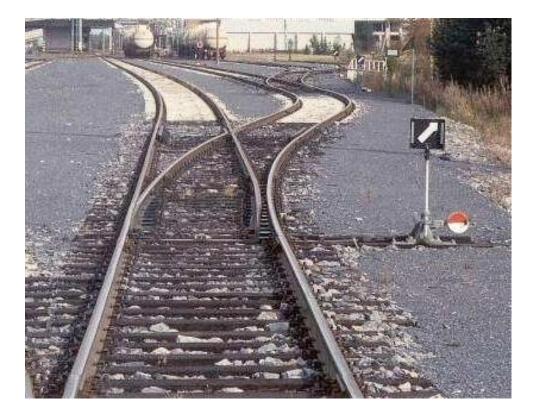
Analysis of the 2-to-1 Multiplexer (when the input s=0)



Analysis of the 2-to-1 Multiplexer (when the input s=1)

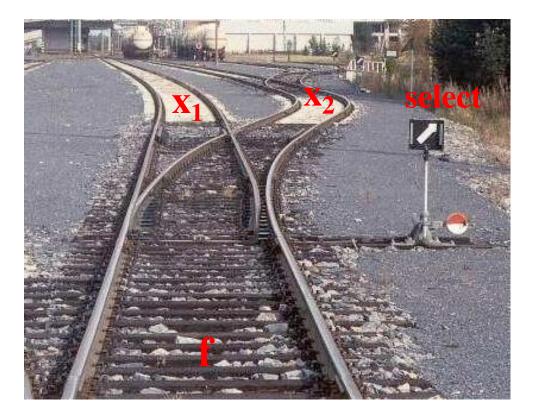


Analogy: Railroad Switch



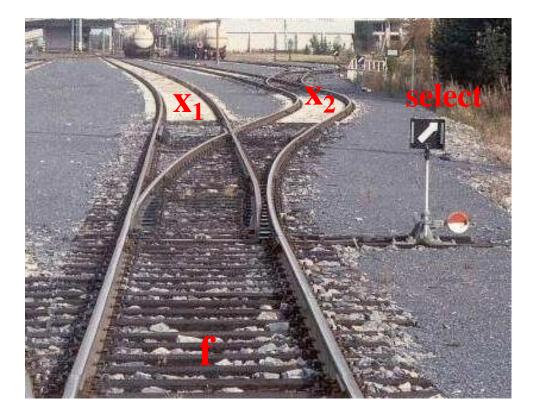
http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch



http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switch



This is not a perfect analogy because the trains can go in either direction, while the multiplexer would only allow them to go from top to bottom.

http://en.wikipedia.org/wiki/Railroad_switch]

Truth Table for a 2-to-1 Multiplexer

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

[Figure 2.33a from the textbook]

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

Where should we put the negation signs?

 $s x_1 x_2$ $s x_1 x_2$

 $s x_1 x_2$

 $s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
011	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

 $f(s, x_1, x_2) = \overline{s} x_1 \overline{x_2} + \overline{s} x_1 x_2 + s \overline{x_1} x_2 + s x_1 x_2$

Let's simplify this expression

 $f(s, x_1, x_2) = \overline{s} x_1 \overline{x_2} + \overline{s} x_1 x_2 + s \overline{x_1} x_2 + s x_1 x_2$

Let's simplify this expression

 $f(s, x_1, x_2) = \overline{s} x_1 \overline{x_2} + \overline{s} x_1 x_2 + s \overline{x_1} x_2 + s x_1 x_2$

 $f(s, x_1, x_2) = \overline{s} x_1 (\overline{x_2} + x_2) + s (\overline{x_1} + x_1) x_2$

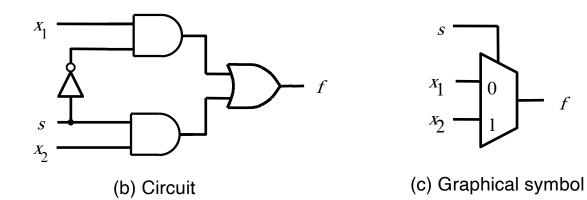
Let's simplify this expression

 $f(s, x_1, x_2) = \overline{s} x_1 \overline{x_2} + \overline{s} x_1 x_2 + s \overline{x_1} x_2 + s x_1 x_2$

 $f(s, x_1, x_2) = \overline{s} x_1 (\overline{x_2} + x_2) + s (\overline{x_1} + x_1) x_2$

 $f(s, x_1, x_2) = \overline{s} x_1 + s x_2$

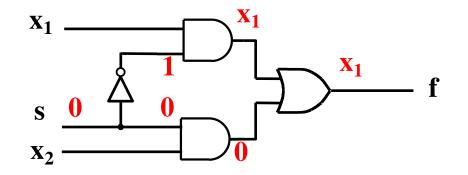
Circuit for 2-to-1 Multiplexer



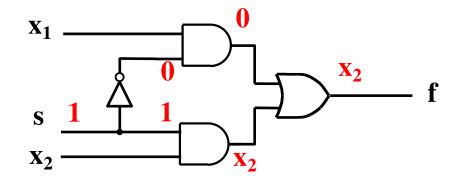
$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

[Figure 2.33b-c from the textbook]

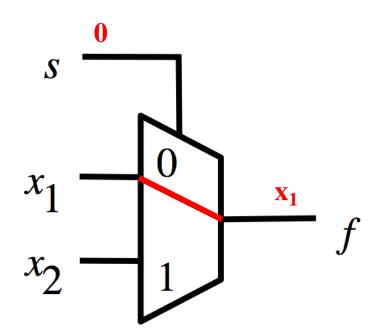
Analysis of the 2-to-1 Multiplexer (when the input s=0)



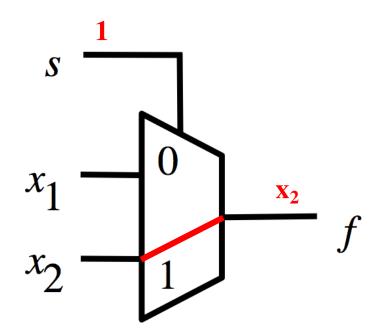
Analysis of the 2-to-1 Multiplexer (when the input s=1)



Analysis of the 2-to-1 Multiplexer (when the input s=0)



Analysis of the 2-to-1 Multiplexer (when the input s=1)



More Compact Truth-Table Representation

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
011	1
100	0
101	1
110	0
111	1

S	$f(s, x_1, x_2)$
0	<i>x</i> ₁
1	<i>x</i> ₂

(a)Truth table

[Figure 2.33 from the textbook]

4-to-1 Multiplexer

4-to-1 Multiplexer (Definition)

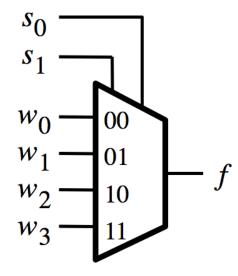
- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If $s_1=0$ and $s_0=1$, then the output f is equal to w_1
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

4-to-1 Multiplexer (Definition)

- Has four inputs: w_0 , w_1 , w_2 , w_3
- Also has two select lines: s₁ and s₀
- If $s_1=0$ and $s_0=0$, then the output f is equal to w_0
- If $s_1=0$ and $s_0=1$, then the output f is equal to w_1
- If $s_1=1$ and $s_0=0$, then the output f is equal to w_2
- If $s_1=1$ and $s_0=1$, then the output f is equal to w_3

We'll talk more about this when we get to chapter 4, but here is a quick preview.

Graphical Symbol and Truth Table

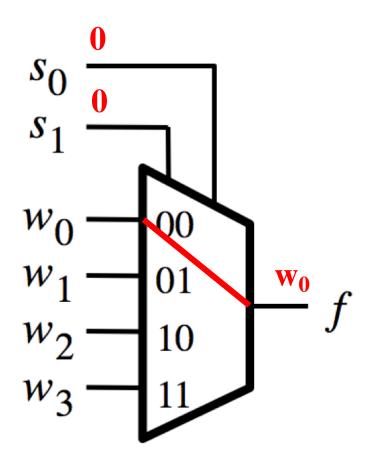


<i>s</i> ₁	<i>s</i> ₀	f
0	0	w ₀
0	1	w_1
1	0	w_2
1	1	<i>w</i> ₃

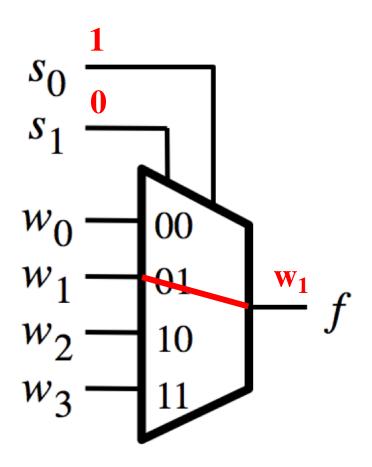
(a) Graphic symbol

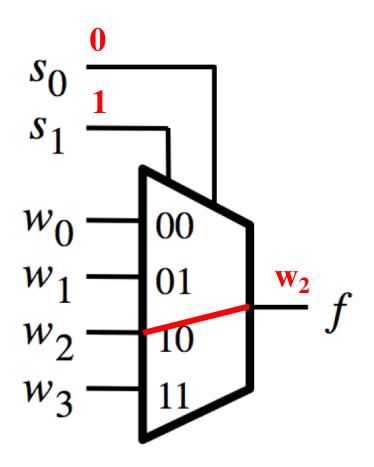
(b) Truth table

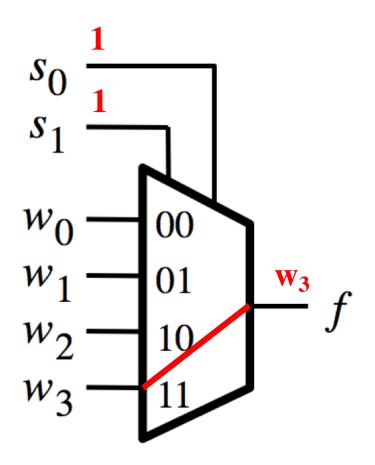
Analysis of the 4-to-1 Multiplexer ($s_1=0$ and $s_0=0$)



Analysis of the 4-to-1 Multiplexer ($s_1=0$ and $s_0=1$)







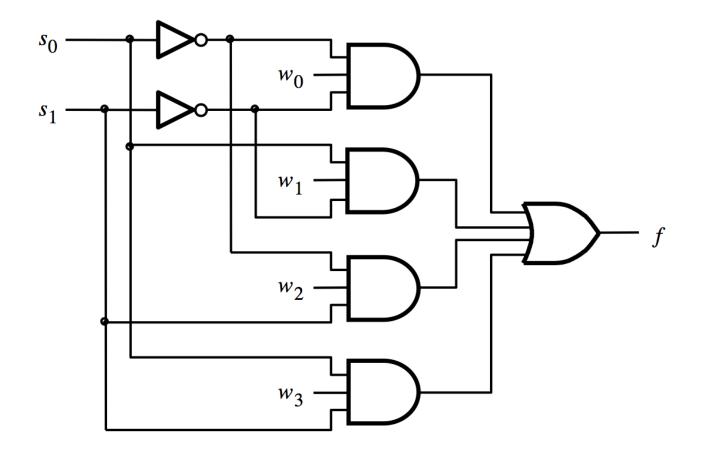
$S_1 S_0$	I ₃ I ₂ I ₁ I ₀	F S1 S0	I ₃ I ₂ I ₁ I ₀	F S1 S0	I ₃ I ₂ I ₁ I ₀ F	$S_1S_0 \hspace{0.1in} I_3 \hspace{0.1in} I_2 \hspace{0.1in} I_1 \hspace{0.1in} I_0 \hspace{0.1in} F$
0 0	0 0 0 0	0 0 1	0 0 0 0	0 1 0	0 0 0 0 0	1 1 0 0 0 0 0
	0 0 0 1	1	0 0 0 1	0	0 0 0 1 0	0 0 0 1 0
	0 0 1 0	0	0 0 1 0	1	0 0 1 0 0	0 0 1 0 0
	0 0 1 1	1	0 0 1 1	1	0 0 1 1 0	0 0 1 1 0
	0 1 0 0	0	0 1 0 0	0	0 1 0 0 1	0 1 0 0 0
	0 1 0 1	1	0 1 0 1	0	01011	0 1 0 1 0
	0 1 1 0	0	0 1 1 0	1	0 1 1 0 1	0 1 1 0 0
	0 1 1 1	1	0 1 1 1	1	0 1 1 1 1	0 1 1 1 0
	1000	0	1 0 0 0	0	10000	1 0 0 0 1
	1001	1	1 0 0 1	0	10010	1 0 0 1 1
	1010	0	1010	1	10100	10101
	1 0 1 1	1	1 0 1 1	1	10110	10111
	1 1 0 0	0	1 1 0 0	0	1 1 0 0 1	1 1 0 0 1
	1 1 0 1	1	1 1 0 1	0	1 1 0 1 1	1 1 0 1 1
	1 1 1 0	0	1 1 1 0	1	1 1 1 0 1	1 1 1 0 1
	1 1 1 1	1	1 1 1 1	1	1 1 1 1 1	1 1 1 1 1

S_1S_0	I ₃ I;	2 I1	I ₀	F	S_1S_0	I ₃	I_2	I_1	I ₀	F	5	S ₁	S ₀	I3	I2	I_1	I ₀	F	S	$1 S_0$	I3	I2	I_1	I ₀	F
0 0	0 0	0	0	0	0 1	0	0	0	0	0		1	0	0	0	0	0	0	1	1	0	0	0	0	0
	0 0	0	1	1		0	0	0	1	0				0	0	0	1	0			0	0	0	Т	0
	0 0	1	0	0		0	0	1	0	1				0	0	1	0	0			0	0	1	0	0
	0 0	1	1	1		0	0	1	1	1				0	0	1	1	0			0	0	1	1	0
	0 1	0	0	0		0	1	0	0	0				0	1	0	0	1			0	1	0	0	0
	0 1	0	1	1		0	1	0	1	0				0	1	0	1	1			0	1	0	1	0
	0 1	1	0	0		0	1	1	0	1				0	1	1	0	1			0	1	1	0	0
	0 1	1	1	1		0	1	1	1	1				0	1	1	1	1			0	1	1	1	0
	1 0	0	0	0		1	0	0	0	0				1	0	0	0	0			1	0	0	0	1
	1 0	0	1	1		1	0	0	1	0				1	0	0	1	0			1	0	0	1	1
	1 0	1	0	0		1	0	1	0	1				1	0	1	0	0			Т	0	1	0	1
	1 0	1	1	1		1	0	1	1	1				1	0	1	1	0			1	0	1	1	1
	1 1	0	0	0		1	1	0	0	0				1	1	0	0	1			1	1	0	0	1
	1.1	0	1	1		1	1	0	1	0				1	1	0	1	1			1	1	0	1	1
	1 1	1	0	0		1	1	1	0	1				1	1	1	0	1			Т	1	1	0	1
	1 1	1	1	1		1	1	1	1	1				1	1	1	1	1			Т	1	1	L	1

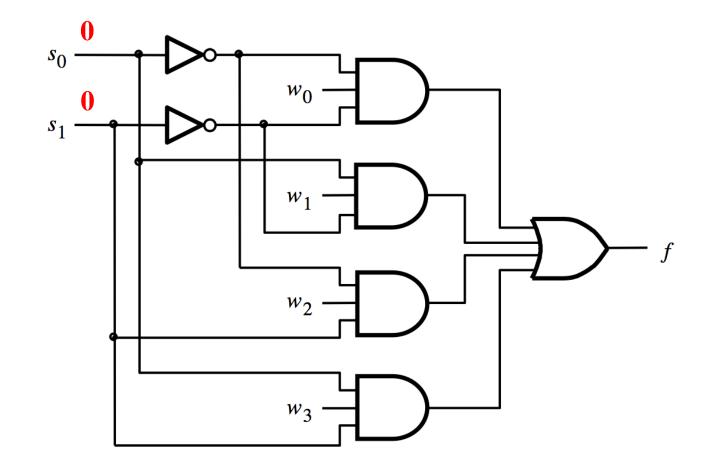
$\mathbf{S}_1 \mathbf{S}_0$	I3	I_2	I_1	I ₀	F	5	$S_1 S_0$	I	I ₂	I_1	I ₀	F	S_1	S_0	I3	I2	I_1	I ₀	F	S	$1 S_0$	I3	I ₂	I_1	I ₀	F
0 0	0	0	0	0	0		0 1	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0
	0	0	0	1	1			0	0	0	1	0			0	0	0	1	0			0	0	0	Т	0
	0	$_{0}$	1	0	0			0	0	1	0	1			0	$_{0}$	1	0	0			0	0	1	0	0
	0	0	1	1	1			0	0	1	1	1			0	0	1	1	0			0	0	1	1	0
	0	1	0	0	0			0	1	0	0	0			0	1	0	0	1			0	1	0	0	0
	0	1	0	1	1			0	1	0	1	0			0	1	0	1	1			0	1	0	1	0
	0	1	1	0	0			0	1	1	0	1			0	1	1	0	1			0	1	1	0	0
	0	1	1	1	1			0	1	1	1	1			0	1	1	1	1			0	1	1	1	0
	1	0	0	0	0			1	0	0	0	0			1	0	0	0	0			1	0	0	0	1
	1	0	0	Г	1			1	0	0	1	0			Т	0	0	1	0			1	0	0	1	1
	1	0	1	0	0			1	0	1	0	1			1	0	1	0	0			Т	0	1	0	1
	1	$_{0}$	1	1	1			1	0	1	1	1			1	$_{0}$	1	1	0			Т	0	1	Т	1
	1	1	0	0	0			1	1	0	0	0			1	1	0	0	1			1	1	0	0	1
	1	1	0	1	1			1	1	0	1	0			Т	1	0	1	1			1	1	0	1	1
	1	1	1	0	0			1	1	1	0	1			1	1	1	0	1			Т	1	1	0	1
	1	1	1	1	1			1	1	1	1	1			1	1	1	1	1			Т	1	1	I.	1

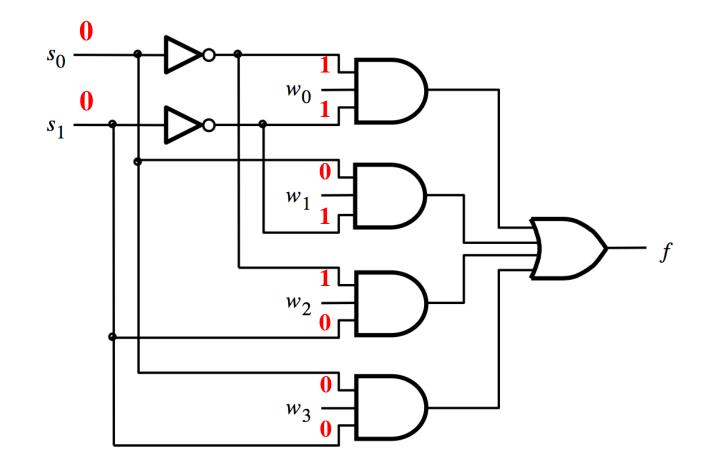
$S_1 S_0$	I ₃ I ₂ I ₁ I ₀ F	$S_1 S_0 I_3 I_2 I_1 I_0$	F S1 S0 I3 I2 I1 I0	F S1 S0 I3 I2 I1 I0 F
0 0	0 0 0 0 0	0 1 0 0 0 0	0 10 0000	0 1 1 0 0 0 0 0
	0 0 0 1 1	0 0 0 1	0 0 0 1	0 0 0 1 0
	0 0 1 0 0	0 0 1 0	1 0 0 1 0	0 0 1 0 0
	0 0 1 1 1	0 0 1 1	1 0 0 1 1	0 0 1 1 0
	0 1 0 0 0	0 1 0 0	0 0 1 0 0	1 0 1 0 0
	01011	0 1 0 1	0 0 1 0 1	1 0 1 0 1 0
	0 1 1 0 0	0 1 1 0	1 0 1 1 0	1 0 1 1 0 0
	0 1 1 1 1	0 1 1 1	1 0 1 1 1	1 0 1 1 1 0
	10000	1 0 0 0	0 1000	0 1 0 0 0 1
	10011	1 0 0 1	0 1 0 0 1	0 1 0 0 1 1
	10100	1 0 1 0	1 1010	0 1 0 1 0 1
	1 0 1 1 1	1 0 1 1	1 1 0 1 1	0 1 0 1 1 1
	1 1 0 0 0	1 1 0 0	0 1 1 0 0	1 1 0 0 1
	1 1 0 1 1	1 1 0 1	0 1 1 0 1	1 1 1 0 1 1
	1 1 1 0 0	1 1 1 0	1 1 1 1 0	1 1 1 1 0 1
	1 1 1 1 1	1 1 1 1	1 1111	1 1 1 1 1

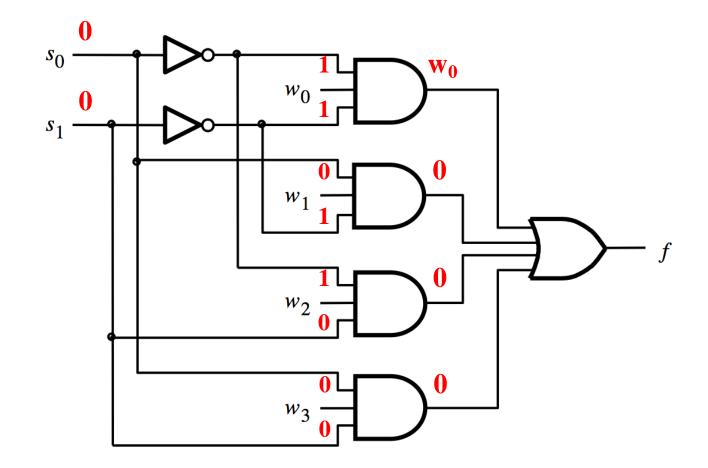
4-to-1 Multiplexer (SOP circuit)

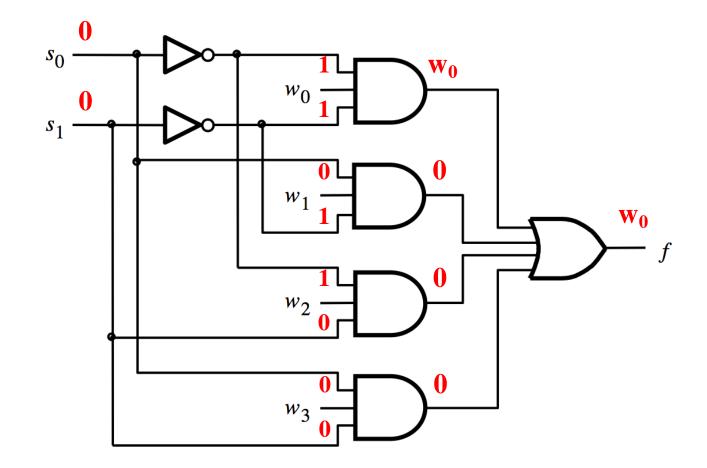


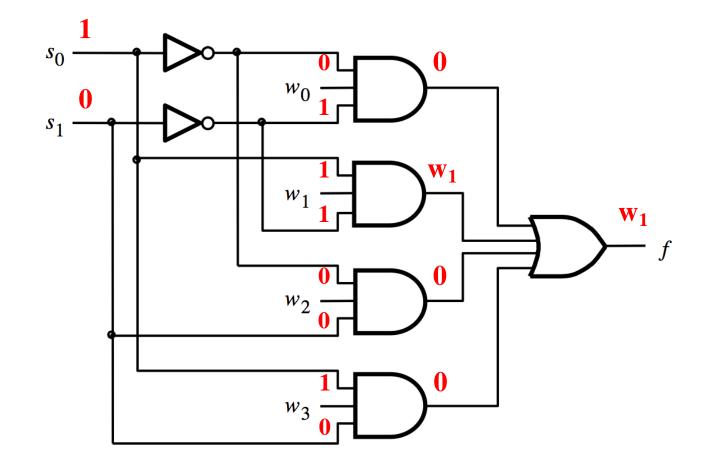
$$f = \overline{s_1} \,\overline{s_0} \,w_0 + \overline{s_1} \,s_0 \,w_1 + s_1 \,\overline{s_0} \,w_2 + s_1 \,s_0 \,w_3$$

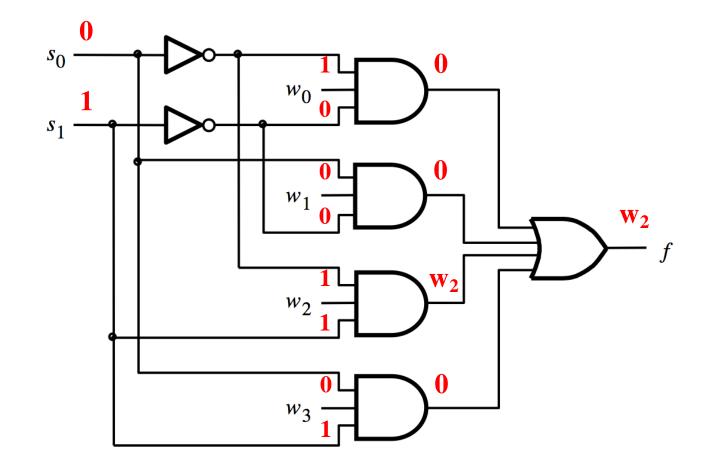


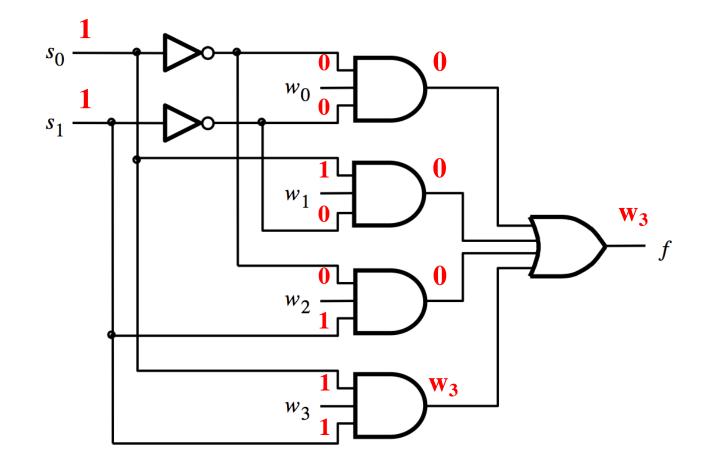






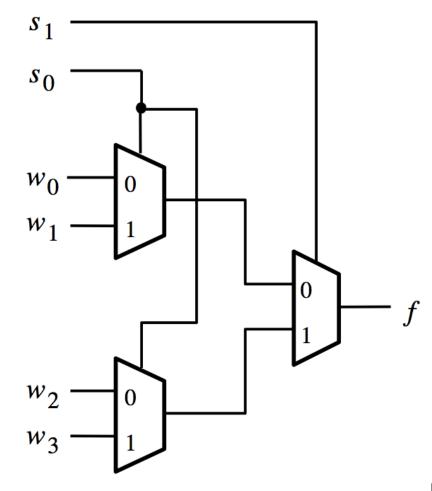




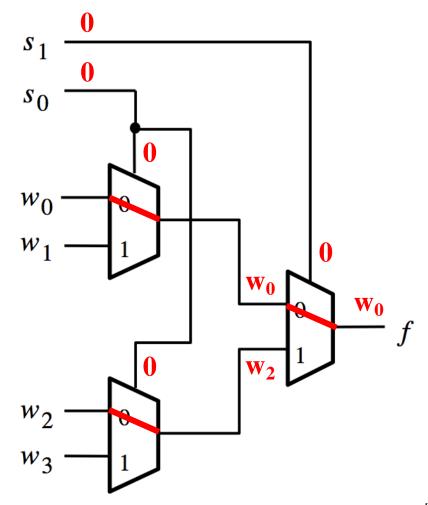


4-to-1 Multiplexer (alternative implementation)

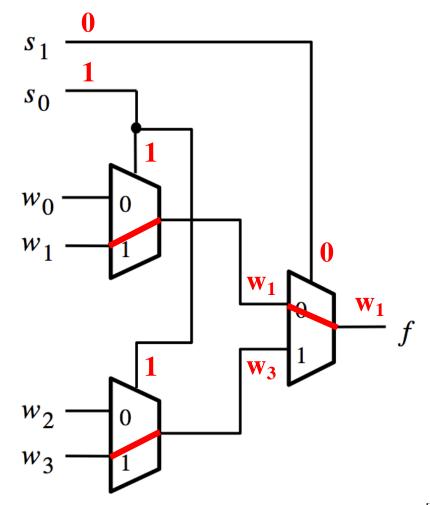
Using three 2-to-1 multiplexers to build one 4-to-1 multiplexer



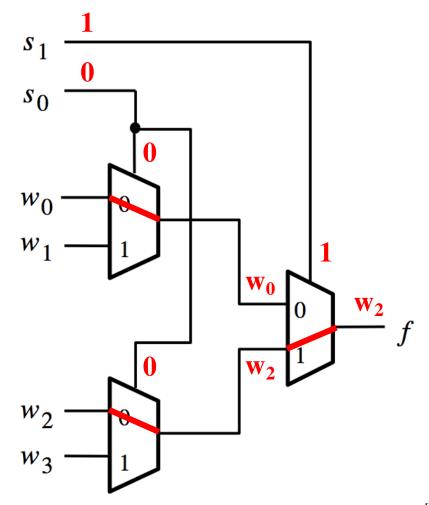
Analysis of the Hierarchical Implementation $(s_1=0 \text{ and } s_0=0)$



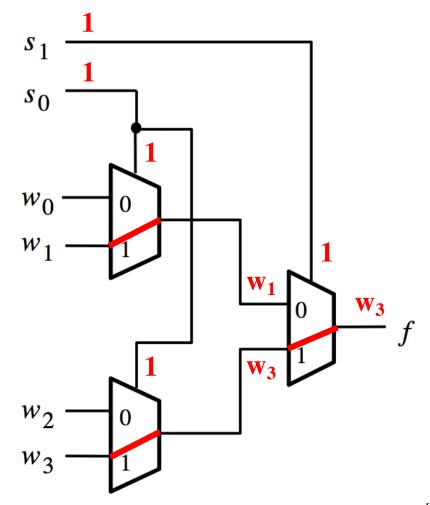
Analysis of the Hierarchical Implementation $(s_1=0 \text{ and } s_0=1)$



Analysis of the Hierarchical Implementation $(s_1=1 \text{ and } s_0=0)$



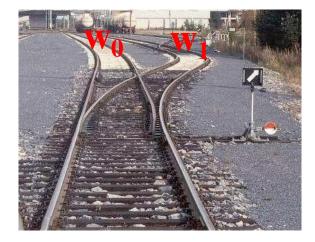
Analysis of the Hierarchical Implementation $(s_1=1 \text{ and } s_0=1)$

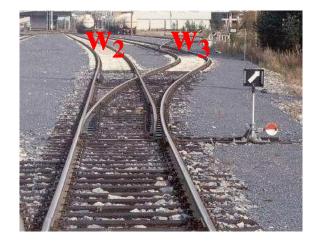


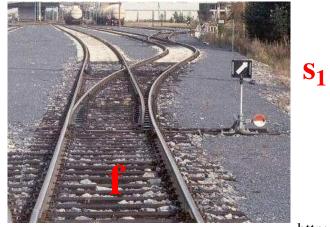
Analogy: Railroad Switches

http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches

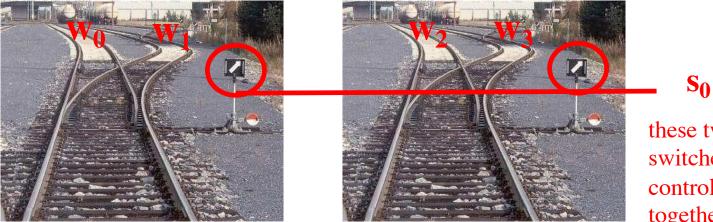




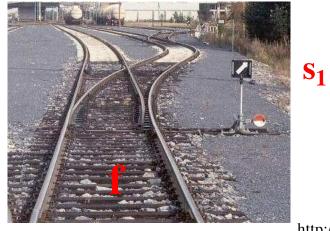


http://en.wikipedia.org/wiki/Railroad_switch]

Analogy: Railroad Switches



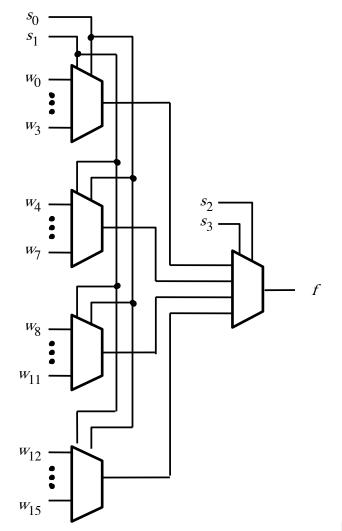
these two switches are controlled together

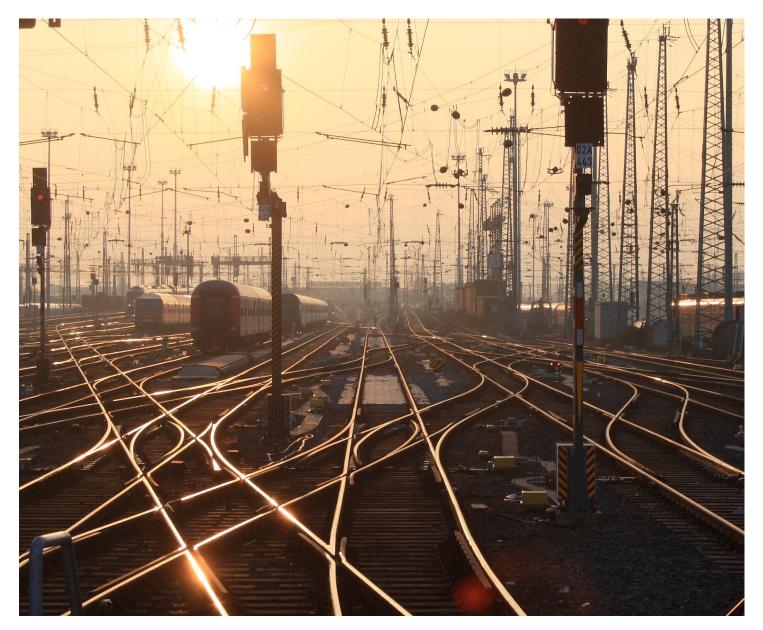


http://en.wikipedia.org/wiki/Railroad_switch]

16-to-1 Multiplexer

16-to-1 Multiplexer





[http://upload.wikimedia.org/wikipedia/commons/2/26/SunsetTracksCrop.JPG]

Questions?

THE END