
Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

CprE 281:
Digital Logic

Intro to Verilog

CprE 281: Digital Logic
Iowa State University, Ames, IA
Copyright © Alexander Stoytchev

Administrative Stuff

• HW3 is due on Monday Sep 16 @ 10pm

Quick Review

The Three Basic Logic Gates

x NOT

0 1
1 0

x y AND

0 0 0
0 1 0
1 0 0
1 1 1

x y OR

0 0 0
0 1 1
1 0 1
1 1 1

x
y

x y • x
y

x y + x x

AND with Switches

AND Circuit

Light Battery
+
_

x=0 y=0

AND Circuit

Light Battery
+
_

x=0 y=1

AND Circuit

Light Battery
+
_

x=1 y=0

AND Circuit

Light Battery
+
_

x=1 y=1

NOT with Switches

NOT Circuit

Light

Resistor

Battery
+
_ x=1

NOT Circuit

Light

Resistor

Battery
+
_ x=0

NAND with Switches

NAND Circuit

Light

Resistor

Battery
+
_

x=0

y=0

NAND Circuit

Light

Resistor

Battery
+
_

x=0

y=1

NAND Circuit

Light

Resistor

Battery
+
_

x=1

y=0

NAND Circuit

Light

Resistor

Battery
+
_

x=1

y=1

OR with Switches

OR Circuit

Light Battery
+
_

x=0

y=0

OR Circuit

Light Battery
+
_

x=0

y=1

OR Circuit

Light Battery
+
_

y=0

x=1

OR Circuit

Light Battery
+
_

x=1

y=1

NOR with Switches

NOR Circuit

Light

Resistor

Battery
+
_ x=0 y=0

NOR Circuit

Light

Resistor

Battery
+
_ x=0 y=1

NOR Circuit

Light

Resistor

Battery
+
_ x=1 y=0

NOR Circuit

Light

Resistor

Battery
+
_ x=1 y=1

The Three Basic Logic Gates

x NOT

0 1
1 0

x y AND

0 0 0
0 1 0
1 0 0
1 1 1

x y OR

0 0 0
0 1 1
1 0 1
1 1 1

x
y

x y • x
y

x y + x x

NAND and NOR

x y NAND

0 0 1
0 1 1
1 0 1
1 1 0

x y NOR

0 0 1
0 1 0
1 0 0
1 1 0

x
x

x y • x
y

x y +

XOR and XNOR

x y XOR

0 0 0
0 1 1
1 0 1
1 1 0

x y XNOR

0 0 1
0 1 0
1 0 0
1 1 1

x
y

x y + x
y

x y +

XNOR with Switches

XNOR Circuit

Light Battery
+
_

x=0 y=0

XNOR Circuit

Light Battery
+
_

x=0 y=1

XNOR Circuit

Light Battery
+
_

x=1 y=0

XNOR Circuit

Light Battery
+
_

x=1 y=1

XOR with Switches

XOR Circuit

Light Battery
+
_

x=0 y=0

XOR Circuit

Light Battery
+
_

x=0 y=1

XOR Circuit

Light Battery
+
_

x=1 y=0

XOR Circuit

Light Battery
+
_

x=1 y=1

7-Segment Display Example

7-Segment Display

a

b

c

d

e

f
g

Displaying Some Numbers

a

b

c

d

e

f
g

a

b

c

d

e

f
g

a

b

c

d

e

f
g

Displaying Some Hexadecimal Numbers

a

b

c

d

e

f
g

a

b

c

d

e

f
g

a

b

c

d

e

f
g

a

b

c

d

e

f
g

a

b

c

d

e

f
g

a

b

c

d

e

f
g

Display of numbers

[Figure 2.34 from the textbook]

Display of numbers

Display of numbers

b = 1

e = s0c = s1

f = s1 s0

g = s1 s0a = s0

d = s0

Intro to Verilog

History
• Created in 1983/1984

• Verilog-95 (IEEE standard 1364-1995)

• Verilog 2001 (IEEE Standard 1364-2001)

• Verilog 2005 (IEEE Standard 1364-2005)

• SystemVerilog

• SystemVerilog 2009 (IEEE Standard 1800-2009).

HDL

• Hardware Description Language

• Verilog HDL

• VHDL

Verilog HDL != VHDL

• These are two different Languages!

• Verilog is closer to C

• VHDL is closer to Ada

[Figure 2.35 from the textbook]

Sample Verilog Program

x 1
x 2

x 1 x 2 +

AND gate

x 1
x 2

x 1 x 2 •

The Three Basic Logic Gates

[Figure 2.8 from the textbook]

OR gate NOT gate

You can build any circuit using only these three gates

x x

How to specify a NOT gate in Verilog

NOT gate

x x

x y

How to specify a NOT gate in Verilog

NOT gate

we’ll use the letter y for the output

x y

How to specify a NOT gate in Verilog

NOT gate

not (y, x);

Verilog code

How to specify an AND gate in Verilog

AND gate

and (f, x1, x2);

Verilog code

x 1
x 2

x 1 x 2 • f=

How to specify an OR gate in Verilog

OR gate

or (f, x1, x2);

Verilog code

x 1
x 2

x 1 x 2 + f=

3-input AND gate

3-input Logic Gates

3-input OR gate

or (f, x1, x2, x3);and (f, x1, x2, x3);

x 1

x 3

x 1 x 2 • x 3 • x 2 x 1 x 2 +
x 1

x 3

x 2 x 3 +

Other Logic Gates

NAND gate

x 1
x 2

x 1 x 2 •
x 1
x 2

x 1 x 2 +

NOR gate

x 1
x 2

x 1 x 2 ⨁

XNOR gate

x 1
x 2

x 1 x 2 ⨁

XOR gate

Other Logic Gates

NAND gate

x 1
x 2

x 1 x 2 •
x 1
x 2

x 1 x 2 +

NOR gate

x 1
x 2

x 1 x 2 ⨁

XNOR gate

x 1
x 2

x 1 x 2 ⨁

XOR gate

nand (f, x1, x2); nor (f, x1, x2);

xnor (f, x1, x2);xor (f, x1, x2);

Verilog Code

Structural Behavioral

Structural Verilog

2-to-1 Multiplexer in Verilog
(structural syntax)

2-1 Multiplexer

[Figure 2.36 from the textbook]

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook][Figure 2.36 from the textbook]

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook][Figure 2.36 from the textbook]

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook][Figure 2.36 from the textbook]

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook][Figure 2.36 from the textbook]

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook][Figure 2.36 from the textbook]

k

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook][Figure 2.36 from the textbook]

k

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook][Figure 2.36 from the textbook]

k g

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook][Figure 2.36 from the textbook]

k g

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook][Figure 2.36 from the textbook]

k g

h

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook][Figure 2.36 from the textbook]

k g

h

Verilog Code for a 2-1 Multiplexer

[Figure 2.37 from the textbook][Figure 2.36 from the textbook]

k g

h

Behavioral Verilog

Verilog Code

Structural Behavioral

Verilog Code

Structural Behavioral

Continuous Procedural

2-to-1 Multiplexer in Verilog
(behavioral-continuous syntax)

Verilog Code for a 2-1 Multiplexer

[Figure 2.40 from the textbook][Figure 2.36 from the textbook]

// Behavioral-Continuous specification

Verilog Code for a 2-1 Multiplexer

[Figure 2.40 from the textbook][Figure 2.36 from the textbook]

// Behavioral-Continuous specification

Verilog Code for a 2-1 Multiplexer

[Figure 2.40 from the textbook][Figure 2.36 from the textbook]

// Behavioral-Continuous specification

Verilog Code for a 2-1 Multiplexer

[Figure 2.40 from the textbook][Figure 2.36 from the textbook]

// Behavioral-Continuous specification

2-to-1 Multiplexor in Verilog
(behavioral-procedural specification)

Verilog Code for a 2-1 Multiplexer

[Figure 2.42 from the textbook][Figure 2.36 from the textbook]

// Behavioral-Procedural specification

Verilog Code for a 2-1 Multiplexer

[Figure 2.42 from the textbook][Figure 2.36 from the textbook]

// Behavioral-Procedural specification

procedural statement

Verilog Code for a 2-1 Multiplexer

[Figure 2.42 from the textbook][Figure 2.36 from the textbook]

// Behavioral-Procedural specification

The always block is executed only when one of the
signals in the sensitivity list has changed its value.

sensitivity list

Verilog Code for a 2-1 Multiplexer

[Figure 2.42 from the textbook][Figure 2.36 from the textbook]

// Behavioral-Procedural specification

of type register
(can store a value)

reg: does not need to be computed all the time.
It stores a value until you write to it a new value.

Verilog Code for a 2-1 Multiplexer

[Figure 2.42 from the textbook][Figure 2.36 from the textbook]

// Behavioral-Procedural specification

of type register
(can store a value)

Because the signal f is updated inside a procedural
statement (i.e., inside an always block) it must be
declared of type reg. This is required so it can hold its
value until the next time the always block is executed,
which will happen only when one of the signals on the
sensitivity list has changed its value.

Verilog Code for a 2-1 Multiplexer

[Figure 2.42 from the textbook][Figure 2.36 from the textbook]

// Behavioral-Procedural specification

could be combined on one line:
output reg f;

Verilog Code for a 2-1 Multiplexer

[Figure 2.42 from the textbook][Figure 2.36 from the textbook]

A 2-to-1 Multiplexer has:

• one output f

• two inputs: x1 and x2

• It also has another input line s

• If s=0, then the output is equal to x1

• If s=1, then the output is equal to x2

// Behavioral-Procedural specification

Verilog Code for a 2-1 Multiplexer

[Figure 2.42 from the textbook][Figure 2.36 from the textbook]

A 2-to-1 Multiplexer has:

• one output f

• two inputs: x1 and x2

• It also has another input line s

• If s=0, then the output is equal to x1

• If s=1, then the output is equal to x2

// Behavioral-Procedural specification

always@ syntax

always @(x,y)

always @(x or y)

always @(*)

always @*

always@ syntax

always @(x,y)

always @(x or y)

always @(*)

always @*

Leave it to the Verilog compiler
to figure out which signals appear
in the always block and add them
to the sensitivity list.

Verilog Code for a 2-1 Multiplexer

[Figure 2.43 from the textbook][Figure 2.36 from the textbook]

// Behavioral-Procedural specification

Structural v.s. Behavioral

[Figure 2.37 from the textbook]

// Structural specification

Verilog Code:
Structural v.s. Behavioral

// Behavioral-Continuous specification

[Figure 2.40 from the textbook]

[Figure 2.42 from the textbook][Figure 2.37 from the textbook]

// Structural specification // Behavioral-Procedural specification

Verilog Code:
Structural v.s. Behavioral

Behavioral Verilog:
Continuous v.s. Procedural

[Figure 2.42 from the textbook]

// Behavioral-Procedural specification// Behavioral-Continuous specification

[Figure 2.40 from the textbook]

Verilog Code

Structural Behavioral

Continuous Procedural
(assign statements)

(basic components)

(always statements)

Another Example

Let’s Write the Code for This Circuit

[Figure 2.39 from the textbook]

[Figure 2.38 from the textbook]

Structural Verilog

module example2 (x1, x2, x3, x4, f, g, h);
 input x1, x2, x3, x4;
 output f, g, h;

 and (z1, x1, x3);
 and (z2, x2, x4);
 or (g, z1, z2);
 or (z3, x1, ~x3);
 or (z4, ~x2, x4);
 and (h, z3, z4);
 or (f, g, h);

endmodule

[Figure 2.39 from the textbook]

[Figure 2.38 from the textbook]

Structural Verilog

module example2 (x1, x2, x3, x4, f, g, h);
 input x1, x2, x3, x4;
 output f, g, h;

 and (z1, x1, x3);
 and (z2, x2, x4);
 or (g, z1, z2);
 or (z3, x1, ~x3);
 or (z4, ~x2, x4);
 and (h, z3, z4);
 or (f, g, h);

endmodule

[Figure 2.39 from the textbook]

z1

z2

z3

z4

[Figure 2.41 from the textbook]

Behavioral Verilog

[Figure 2.39 from the textbook]

module example4 (x1, x2, x3, x4, f, g, h);
 input x1, x2, x3, x4;
 output f, g, h;

 assign g = (x1 & x3) | (x2 & x4);
 assign h = (x1 | ~x3) & (~x2 | x4);
 assign f = g | h;

endmodule

Structural v.s. Behavioral

module example4 (x1, x2, x3, x4, f, g, h);
 input x1, x2, x3, x4;
 output f, g, h;

 assign g = (x1 & x3) | (x2 & x4);
 assign h = (x1 | ~x3) & (~x2 | x4);
 assign f = g | h;

endmodule

module example2 (x1, x2, x3, x4, f, g, h);
 input x1, x2, x3, x4;
 output f, g, h;

 and (z1, x1, x3);
 and (z2, x2, x4);
 or (g, z1, z2);
 or (z3, x1, ~x3);
 or (z4, ~x2, x4);
 and (h, z3, z4);
 or (f, g, h);

endmodule

// structural // behavioral-continuous

Yet Another Example

A logic circuit with two modules

[Figure 2.44 from the textbook]

The adder module

[Figure 2.12 from the textbook]

The adder module

[Figure 2.45 from the textbook]

The display module

b = 1

e = s0c = s1

f = s1 s0

g = s1 s0a = s0

d = s0

The display module

b = 1

e = s0

c = s1

f = s1 s0

g = s1 s0

a = s0

d = s0

[Figure 2.46 from the textbook]

Putting it all together

Putting it all together

Putting it all together

Putting it all together

variables of type wire
(neither input nor output)

Putting it all together

must be computed
all the time, unlike reg

Putting it all together

Putting it all together

Questions?

THE END

