

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Minimization with K-Maps

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- HW4 is out
- It is due on Monday Sep 23 @ 10 pm
- It is posted on the class web page
- I also sent you an e-mail with the link.

Quick Review

Expressions for the minterms

0 0 0
$$m_0 = x y z$$

0 0 1 $m_1 = x y z$
0 1 0 $m_2 = x y z$
0 1 1 $m_3 = x y z$
1 0 0 $m_4 = x y z$
1 0 1 $m_5 = x y z$
1 1 0 $m_6 = x y z$
1 1 1 $m_7 = x y z$

The bars coincide with the 0's in the binary expansion of the minterm sub-index

Expressions for the Maxterms

$$0 \ 0 \ 0 \ M_0 = x + y + z$$

$$0 \ 0 \ 1 \ M_1 = x + y + \overline{z}$$

$$0 \ 1 \ 0 \ M_2 = x + \overline{y} + z$$

$$0 \ 1 \ 1 \ M_3 = x + \overline{y} + \overline{z}$$

1 0 0
$$M_4 = \overline{x} + y + z$$

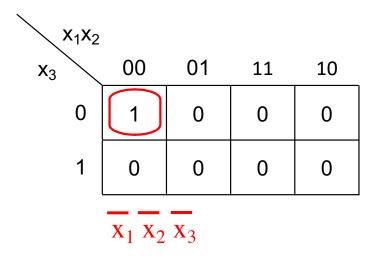
1 0 1
$$M_5 = \overline{x} + y + \overline{z}$$

$$\mathbf{M}_6 = \overline{\mathbf{x}} + \overline{\mathbf{y}} + \mathbf{z}$$

$$\mathbf{M}_7 = \overline{\mathbf{x}} + \overline{\mathbf{y}} + \overline{\mathbf{z}}$$

The bars coincide
with the 1's
in the binary expansion
of the maxterm sub-index

Expressions with three variables (for three-variable K-maps)



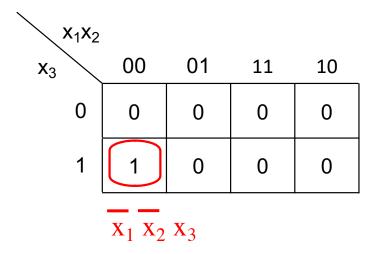
x_1x_2				
x ₃	00	01	11	10
0	0	1	0	0
1	0	0	0	0
$\overline{\mathbf{x}_1} \mathbf{x}_2 \overline{\mathbf{x}_3}$				

x_1x_2				
x ₃	00	01	11	10
0	0	0	1	0
1	0	0	0	0

 $x_1 x_2 x_3$

$\setminus x_1$	1 X 2				
x_3		00	01	11	10
	0	0	0	0	1
	1	0	0	0	0
	,				

 $x_1 x_2 x_3$



x_1x_2				
X ₃	00	01	11	10
0	0	0	0	0
1	0	1	0	0
$\overline{\mathbf{x}}_1 \mathbf{x}_2 \mathbf{x}_3$				

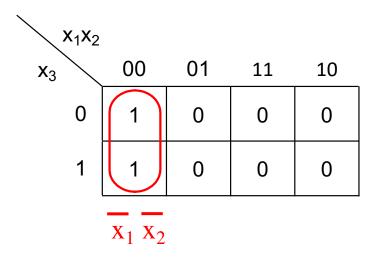
x_1x_2				
x ₃	00	01	11	10
0	0	0	0	0
1	0	0	1	0

x_1x_2				
x ₃	00	01	11	10
0	0	0	0	0
1	0	0	0	1

 $x_1 x_2 x_3$

 $x_1 x_2 x_3$

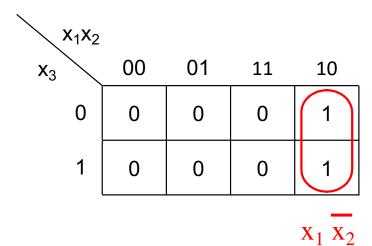
Expressions with two variables (for three-variable K-maps)

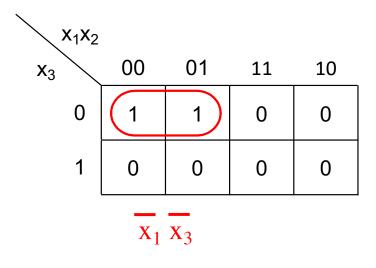


$\chi_1 \chi_2$				
X ₃	00	01	11	10
0	0	1	0	0
1	0	1	0	0
$\overline{\mathbf{x}}_1 \mathbf{x}_2$				

x_1x_2				
x ₃	00	01	11	10
0	0	0	1	0
1	0	0	1	0

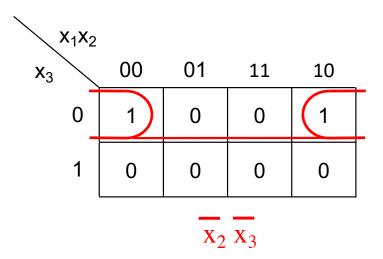
 $x_1 x_2$

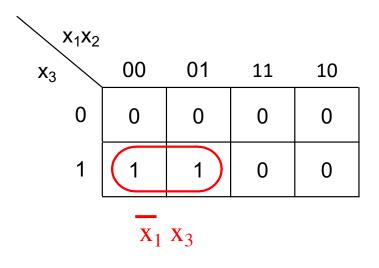


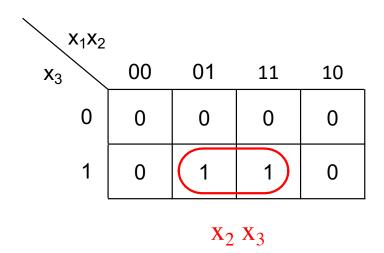


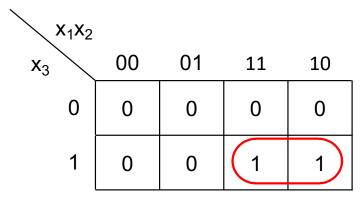
x_1x_2				
x ₃	00	01	11	10
0	0	1	1	0
1	0	0	0	0
·		x ₂	\overline{X}_3	

x_1x_2				
x ₃	00	01	11	10
0	0	0	1	1
1	0	0	0	0
			\mathbf{x}_1	$\overline{\mathbf{X}_3}$

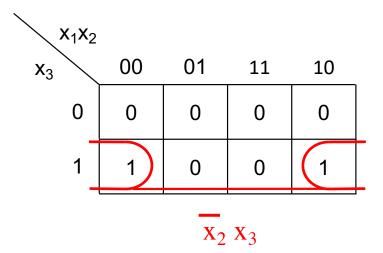




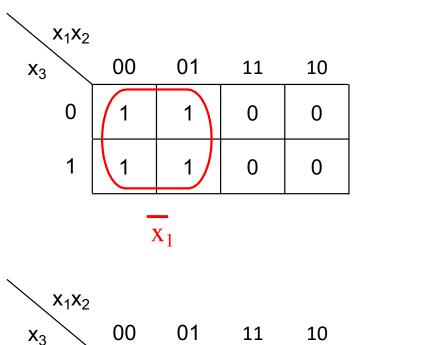


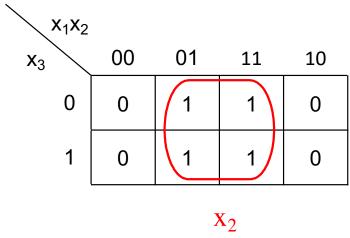


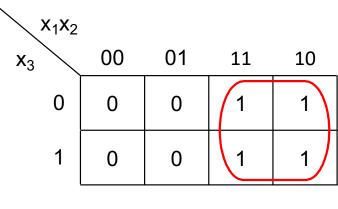
 $x_1 x_3$



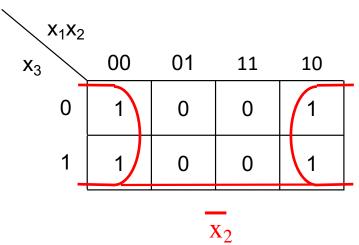
Expressions with one variable (for three-variable K-maps)

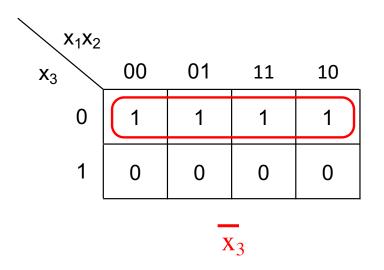


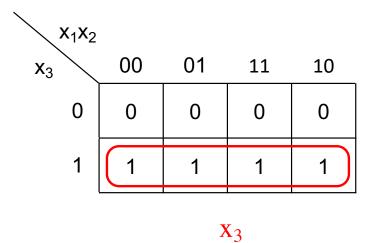




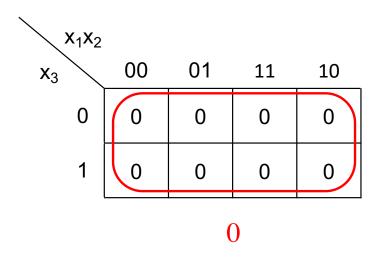
 \mathbf{x}_1

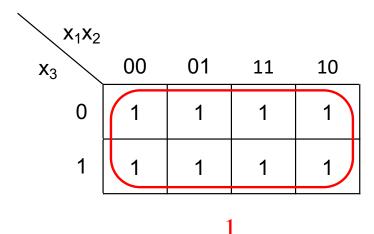


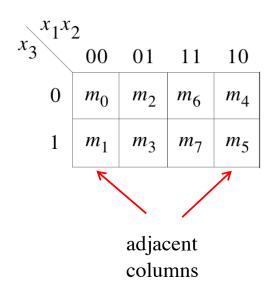


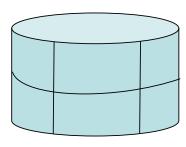


Expressions with zero variables (for three-variable K-maps)

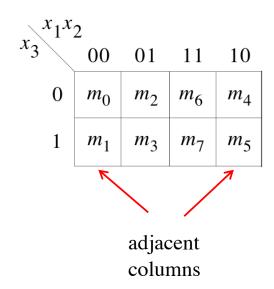


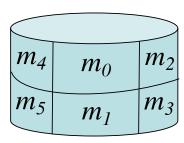




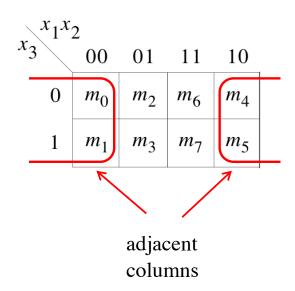


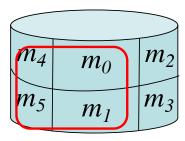
As if the K-map were drawn on a cylinder



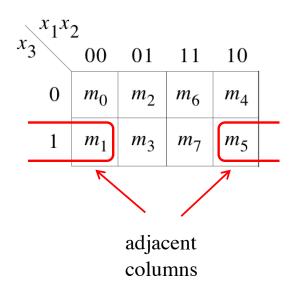


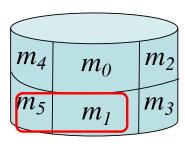
As if the K-map were drawn on a cylinder





As if the K-map were drawn on a cylinder

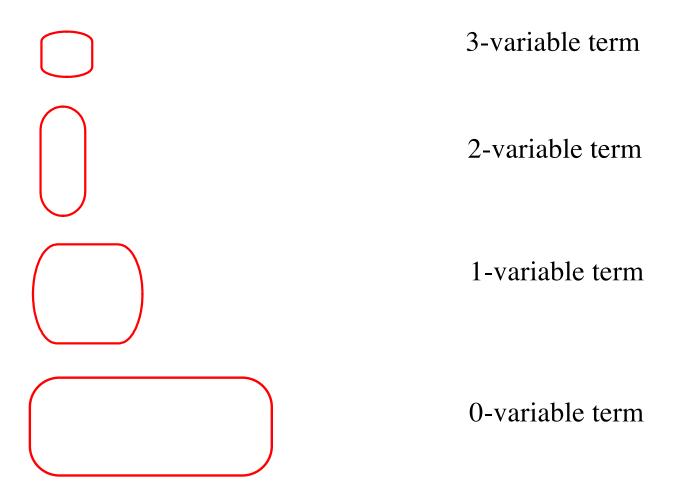




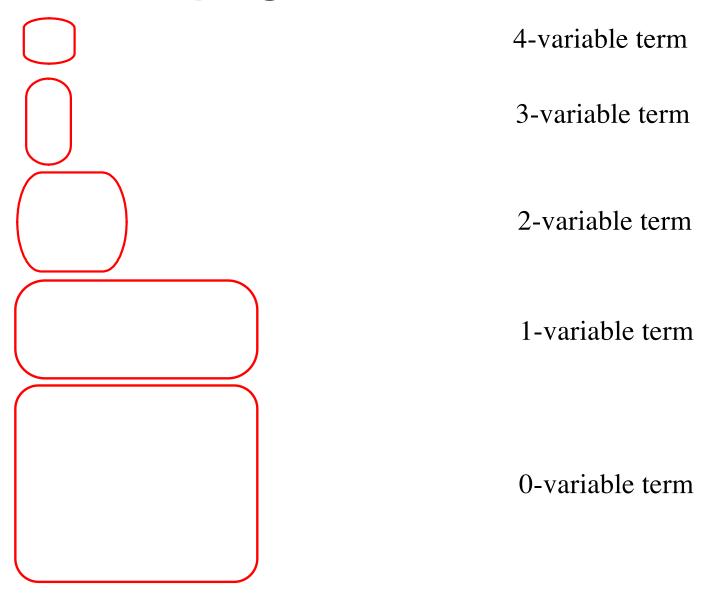
As if the K-map were drawn on a cylinder

Grouping Size v.s. Term Size (for 3-variable K-maps)

3-variable term 2-variable term 1-variable term 0-variable term

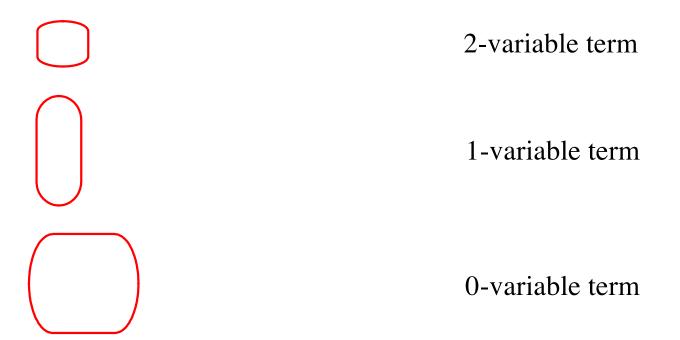


Grouping Size v.s. Term Size (for 4-variable K-maps)



4-variable term 3-variable term 2-variable term 1-variable term 0-variable term

Grouping Size v.s. Term Size (for 2-variable K-maps)



2-variable term

1-variable term

0-variable term

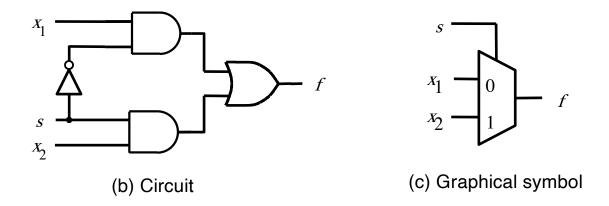
2-variable K-map	3-variable K-map	4-variable K-map
2	3	4
1	2	3
0	1	2
N/A	0	1
N/A	N/A	0

Example: K-Map for the 2-1 Multiplexer

2-1 Multiplexer (Definition)

- Has two inputs: x_1 and x_2
- Also has another input line s
- If s=0, then the output is equal to x_1
- If s=1, then the output is equal to x_2

Circuit for 2-1 Multiplexer



Truth Table for a 2-1 Multiplexer

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
0 0 1	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

[Figure 2.33a from the textbook]

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

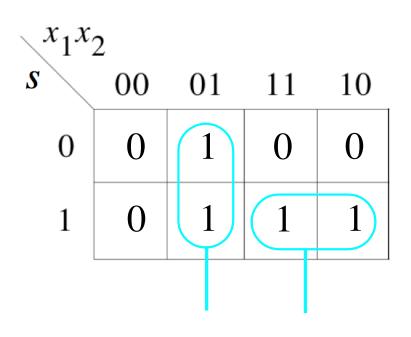
	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
m_1	0 0 1	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

x_1x_2	2			
s	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

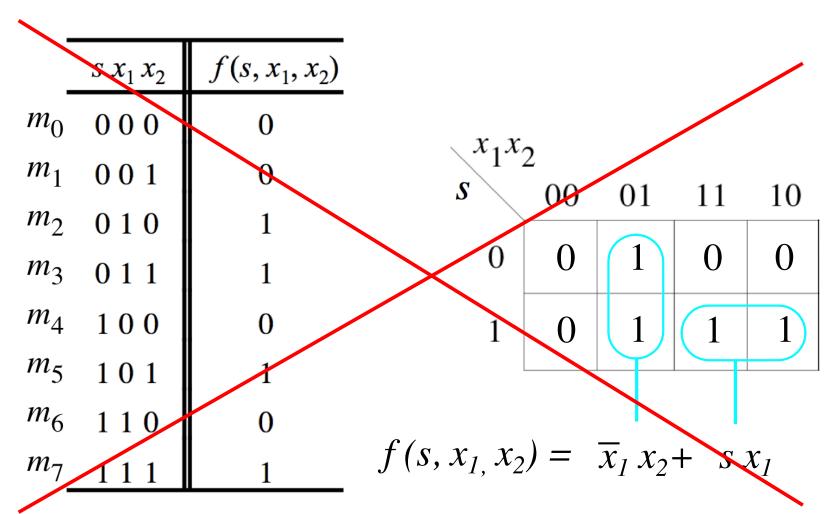
	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	000	0
m_1	0 0 1	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

x_1x_2	2			
s	00	01	11	10
0	0	1	0	0
1	0	1	1	1

	$s x_1 x_2$	$f(s, x_1, x_2)$
m_0	0 0 0	0
m_1	0 0 1	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1



	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	000	0	r r				
m_1	001	0	$s^{x_1x_2}$	2	01	11	10
m_2	010	1			01	11	
m_3	0 1 1	1	0	0	(1)	0	$\begin{bmatrix} 0 \end{bmatrix}$
m_4	100	0	1	0	$\left \begin{array}{c} 1 \end{array} \right $	1	1
m_5	101	1					
m_6	110	0		,	_		
m_7	111	1	$f(s, x_1, x_2)$) =	$\overline{x}_1 x_2$	+ S.	x_1



Something is wrong!

Compare this with the SOP derivation

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
1 1 1	1

Where should we put the negation signs?

$$S X_1 X_2$$

$$S X_1 X_2$$

$$s x_1 x_2$$

$$s x_1 x_2$$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
0 0 1	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$s x_1 x_2$	$f(s, x_1, x_2)$	
000	0	
001	0	
010	1	$\overline{s} x_1 \overline{x}_2$
0 1 1	1	$\overline{s} x_1 x_2$
100	0	
101	1	$s \overline{x_1} x_2$
110	0	
111	1	$s x_1 x_2$

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x}_2 + x_2) + s (\overline{x}_1 + x_1) x_2$$

Let's simplify this expression

$$f(s, x_1, x_2) = \overline{s} x_1 \overline{x}_2 + \overline{s} x_1 x_2 + s \overline{x}_1 x_2 + s x_1 x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 (\overline{x}_2 + x_2) + s (\overline{x}_1 + x_1) x_2$$

$$f(s, x_1, x_2) = \overline{s} x_1 + s x_2$$

$s x_1 x_2$	$f(s, x_1, x_2)$
000	0
001	0
010	1
0 1 1	1
100	0
101	1
110	0
111	1

[Figure 2.33a from the textbook]

	$s x_1 x_2$	$f(s, x_1, x_2)$	
m_0	0 0 0	0	
m_1	001	0	
m_2	010	1	
m_3	0 1 1	1	
m_4	100	0	
m_5	101	1	
m_6	110	0	
m_7	111	1	

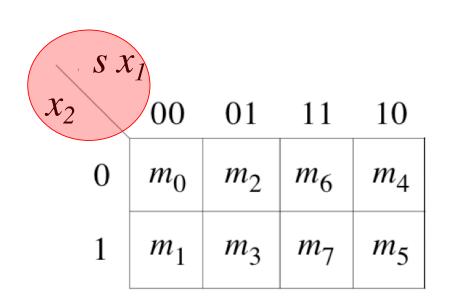
	$s x_1 x_2$	$f(s, x_1, x_2)$	
m_0	000	0	
m_1	0 0 1	0	
m_2	010	1	
m_3	0 1 1	1	
m_4	100	0	
m_5	101	1	
m_6	110	0	
m_7	111	1	

x_1x_2	2			
s	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

	$(s x_1 x_2)$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
m_3	0 1 1	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1

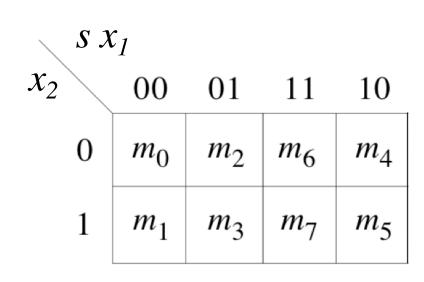
$\int_{S}^{x_1x_2}$	200	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

1	$(s x_1 x_2)$	$f(s, x_1, x_2)$
m_0	000	0
m_1	001	0
m_2	010	1
m_3	011	1
m_4	100	0
m_5	101	1
m_6	110	0
m_7	111	1



The order of the labeling matters.

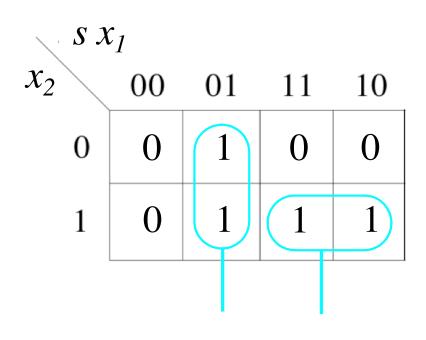
	$s x_1 x_2$	$f(s, x_1, x_2)$	
m_0	0 0 0	0	
m_1	0 0 1	0	
m_2	010	1	
m_3	0 1 1	1	
m_4	100	0	
m_5	101	1	
m_6	110	0	
m_7	111	1	



	$s x_1 x_2$	$f(s, x_1, x_2)$	
m_0	000	0	
m_1	0 0 1	0	
m_2	010	1	
m_3	0 1 1	1	
m_4	100	0	
m_5	101	1	
m_6	110	0	
m_7	111	1	

$\sim S \lambda$	z_1			
x_2	00	01	11	10
0	0	1	0	0
1	0	1	1	1

	$s x_1 x_2$	$f(s, x_1, x_2)$	
m_0	000	0	
m_1	0 0 1	0	
m_2	010	1	
m_3	0 1 1	1	
m_4	100	0	
m_5	101	1	
m_6	110	0	
m_7	111	1	



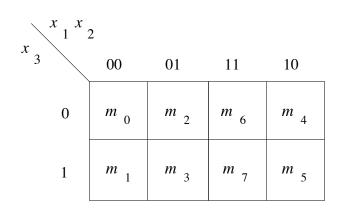
	$s x_1 x_2$	$f(s, x_1, x_2)$					
m_0	0 0 0	0	c v	•			
m_1	0 0 1	0	x_2 x_2	$\frac{1}{00}$	01	11	10
m_2	010	1	7.72	00	01	11	
m_3	011	1	0	0	$\left \left(\begin{array}{c} 1 \end{array} \right) \right $	0	0
m_4	100	0	1	0	$\left \left(\begin{array}{c} 1 \end{array} \right) \right $	1	1)
m_5	101	1					
m_6	110	0	0. /	,	_		
m_7	111	1	$f(s, x_1, x_2)$) =	$\overline{s} x_1$	+ S	x_2

This is correct!

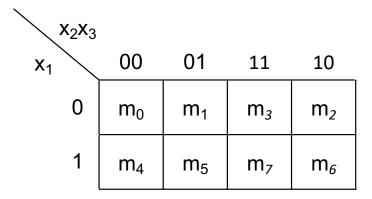
Two Different Ways to Draw the K-map

<i>x</i> 1	<i>x</i> 2	<i>x</i> ₃	
0	0	0	m_0
0	0	1	m_{1}
0	1	0	m_2
0	1	1	m_{3}
1	0	0	m_{4}
1	0	1	m 5
1	1	0	m_{6}
1	1	1	m 7
			1

(a) Truth table



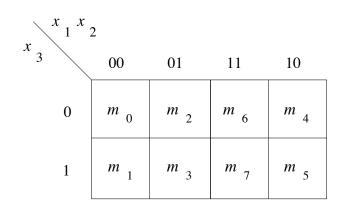
(b) Karnaugh map



Another Way to Draw 3-variable K-map

<i>x</i> 1	<i>x</i> 2	<i>x</i> ₃	
0	0	0	m_{0}
0	0	1	m_{1}
0	1	0	m_{2}
0	1	1	m_{3}
1	0	0	m_{4}
1	0	1	m 5
1	1	0	m 6
1	1	1	m 7

(a) Truth table



(b) Karnaugh map

χ_1		
x_2x_3	0	1
00	m ₀	m ₄
01	m ₁	m ₅
11	m ₃	m ₇
10	m ₂	m ₆

There are 4 different versions!

x_1x_2				
X ₃	00	01	11	10
0	m_0	m_2	m_{6}	m ₄
1	m ₁	m_3	m ₇	m ₅

$\chi_2 x_3$				
x ₁	00	01	11	10
0	m_0	m ₁	m ₃	m_2
1	m ₄	m ₅	m ₇	m ₆

χ_3		
x_1x_2	0	1
00	m_0	m ₁
01	m_2	m ₃
11	m ₆	m ₇
10	m ₄	m ₅

χ_1		
x_2x_3	0	1
00	m_0	m ₄
01	m ₁	m ₅
11	m_3	m ₇
10	m ₂	m ₆

Gray Code

- Sequence of binary codes
- Neighboring lines vary by only 1 bit

	000
	001
00	011
01	010
11	110
10	111
	101
	100

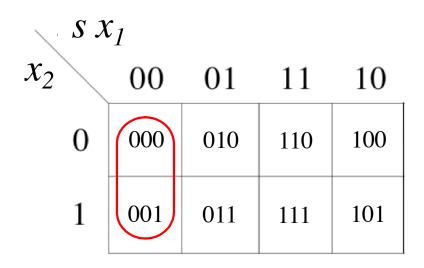
_				
	$s x_1 x_2$			
m_0^-	000			
m_1	001			
m_2	010			
m_3	0 1 1			
m_4	100			
m_5	101			
m_6	110			
m_{7}	111			

$\sim s x_1$				
x_2	00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

_	
	$s x_1 x_2$
m_0	000
m_1	001
m_2	010
m_3	011
m_4	100
m_5	101
m_6	110
m_7	111

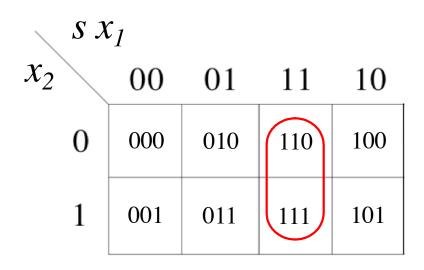
$S \lambda$	z_1			
x_2	00	01	11	10
0	000	010	110	100
1	001	011	111	101

_	
	$s x_1 x_2$
m_0	000
m_1	001
m_2	010
m_3	011
m_4	100
m_5	101
m_6	110
m_7	111



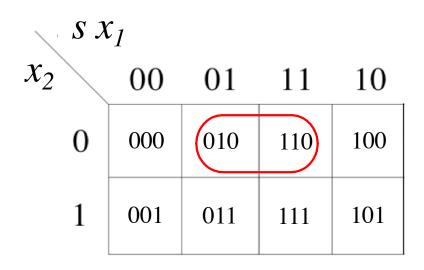
These two neighbors differ only in the LAST bit

_	
_	$s x_1 x_2$
m_0	000
m_1	001
m_2	010
m_3	011
m_4	100
m_5	101
m_6	110
m_7	111



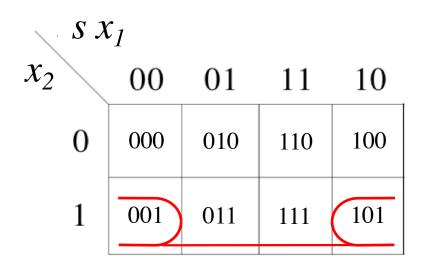
These two neighbors differ only in the LAST bit

_	
_	$s x_1 x_2$
m_0	000
m_1	001
m_2	010
m_3	011
m_4	100
m_5	101
m_6	110
m_7	111

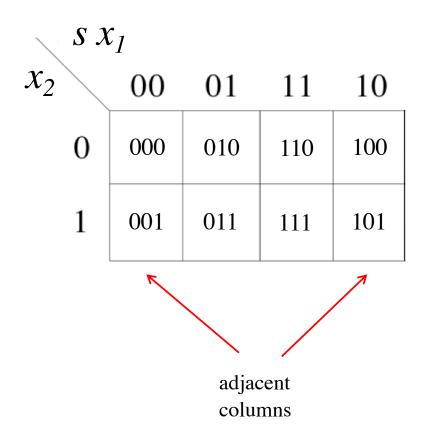


These two neighbors differ only in the FIRST bit

_	
_	$s x_1 x_2$
m_0	000
m_1	001
m_2	010
m_3	0 1 1
m_4	100
m_5	101
m_6	110
m_{7}	1 1 1

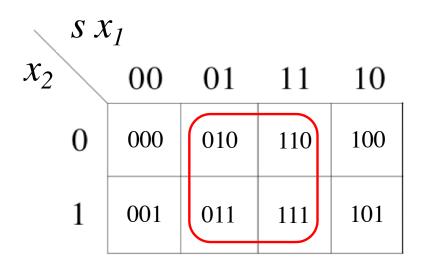


These two neighbors differ only in the FIRST bit



Gray Code & K-map

_						
	$s x_1 x_2$					
m_0	000					
m_1	001					
m_2	010					
m_3	0 1 1					
m_4	100					
m_5	101					
m_6	110					
m_7	111					

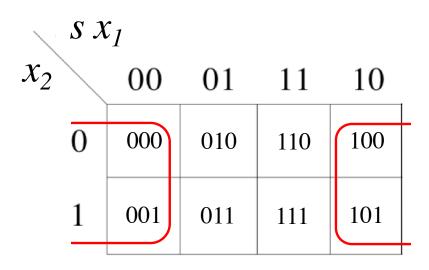


These four neighbors differ in the FIRST and LAST bit

They are similar in their MIDDLE bit

Gray Code & K-map

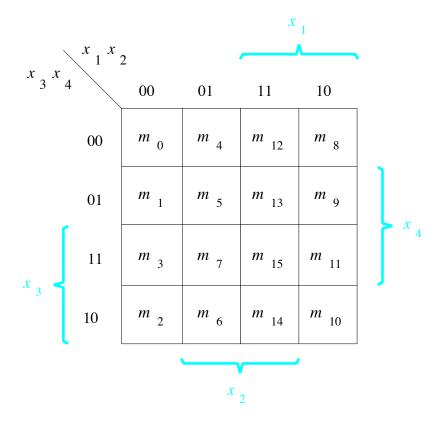
_	$s x_1 x_2$				
m_0^-	000				
m_1	001				
m_2	010				
m_3	011				
m_4	100				
m_5	101				
m_6	110				
m_7	111				



These four neighbors differ in the FIRST and LAST bit

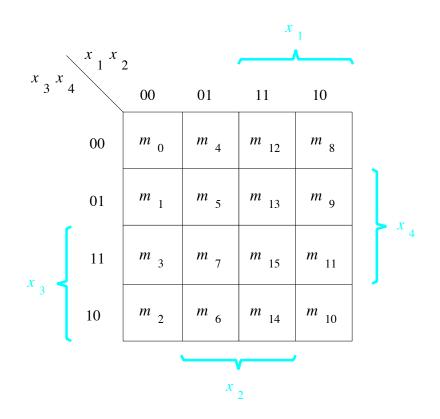
They are similar in their MIDDLE bit

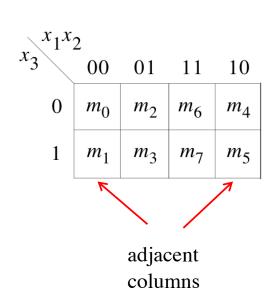
A four-variable Karnaugh map

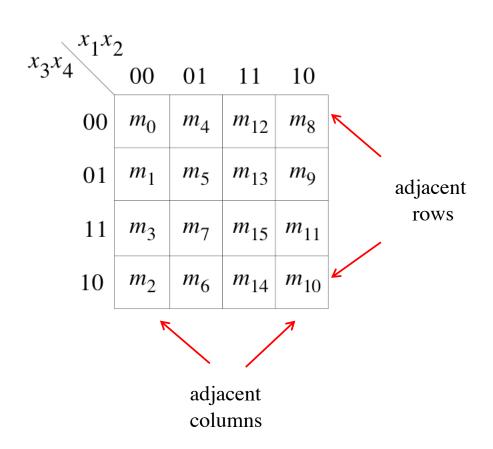


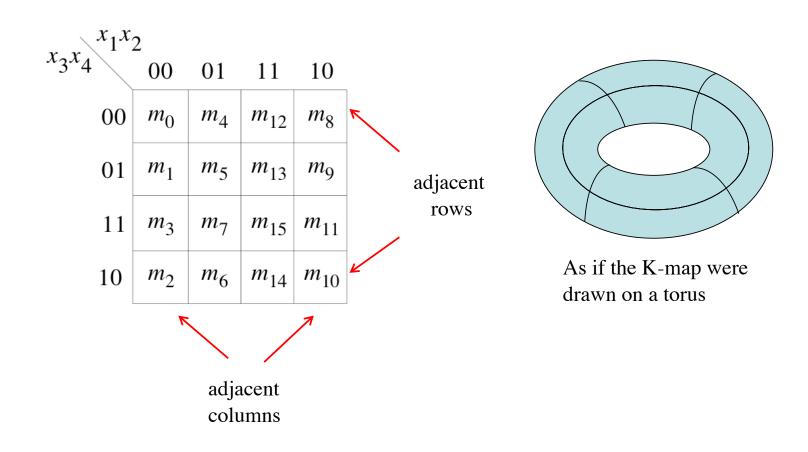
A four-variable Karnaugh map

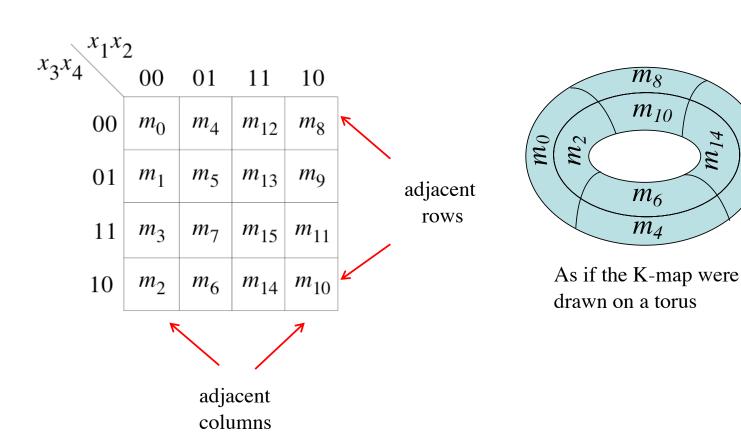
x1	x2	x 3	x4		
0	0	0	0	m0	
0	0	0	1	m1	
0	0	1	0	m2	
0	0	1	1	m3	
0	1	0	0	m4	
0	1	0	1	m5	
0	1	1	0	m6	
0	1	1	1	m7	
1	0	0	0	m8	
1	0	0	1	m9	
1	0	1	0	m10	
1	0	1	1	m11	
1	1	0	0	m12	
1	1	0	1	m13	
1	1	1	0	m14	
1	1	1	1	m15	

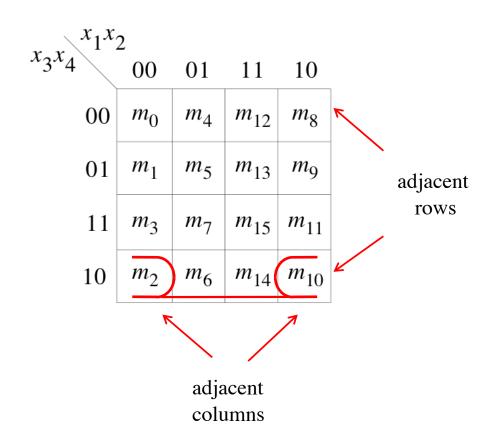


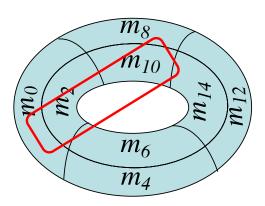




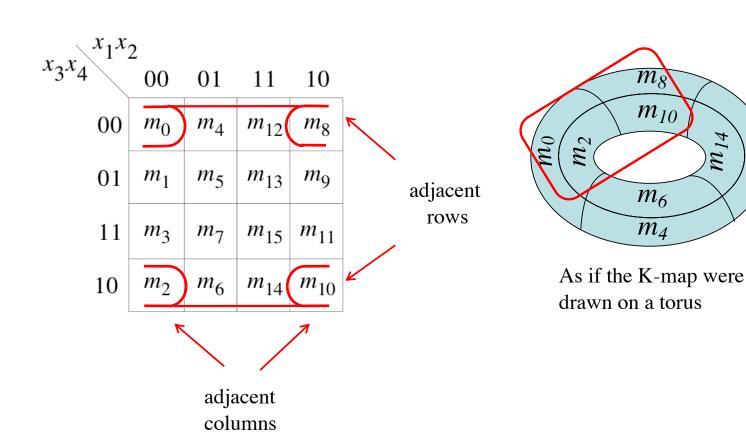




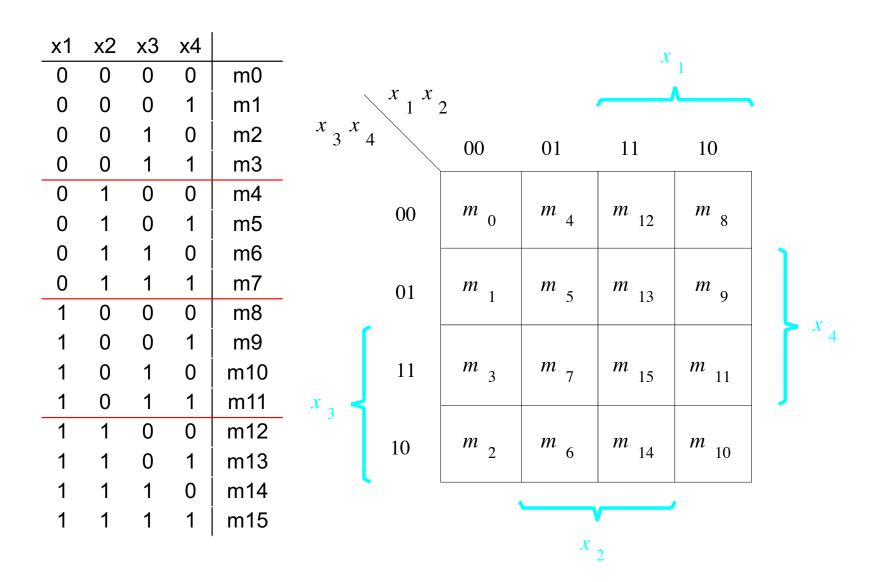




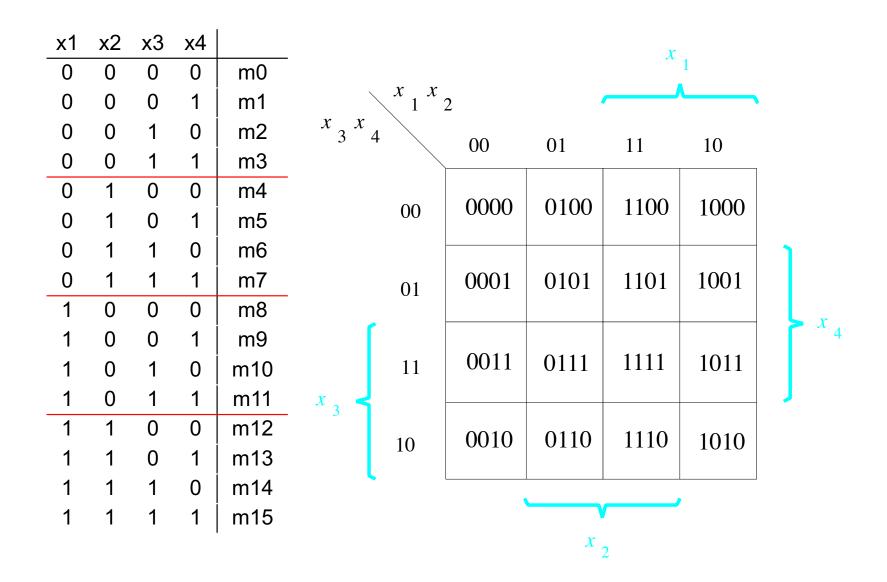
As if the K-map were drawn on a torus



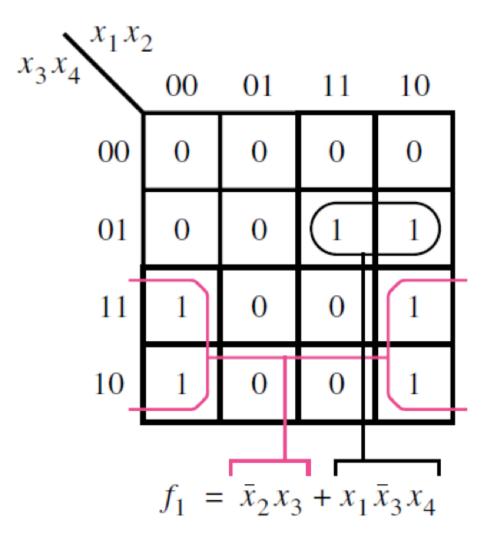
Gray Code & K-map



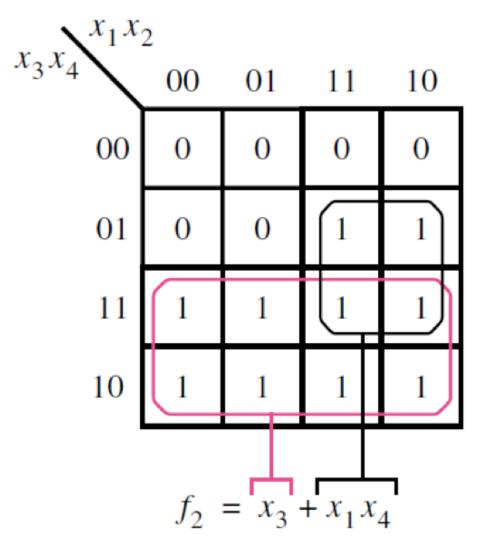
Gray Code & K-map



Example of a four-variable Karnaugh map



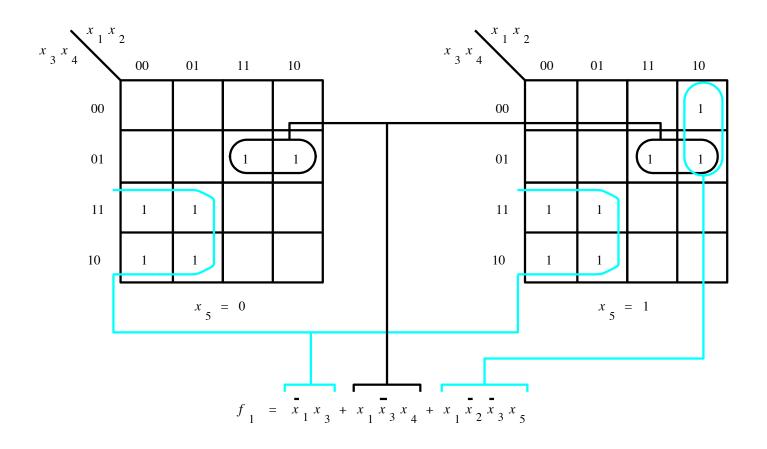
Example of a four-variable Karnaugh map



[Figure 2.54 from the textbook]

Five-Variable K-Map

A five-variable Karnaugh map



Strategy For Minimization

Grouping Rules

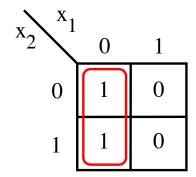
- Group "1"s with rectangles
- Both sides a power of 2:
 - 1x1, 1x2, 2x1, 2x2, 1x4, 4x1, 2x4, 4x2, 4x4
- Can use the same minterm more than once
- Can wrap around the edges of the map
- Some rules in selecting groups:
 - Try to use as few groups as possible to cover all "1"s.
 - For each group, try to make it as large as you can (i.e., if you can use a 2x2, don't use a 2x1 even if that is enough).

Literal: a variable, complemented or uncomplemented

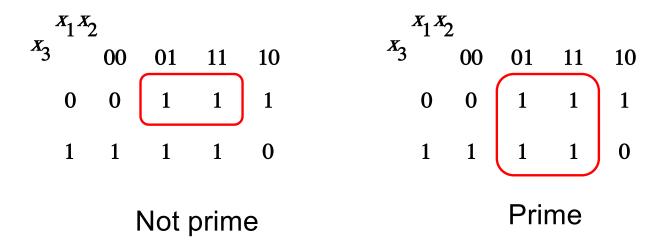
Some Examples:

- X₁
- X₂

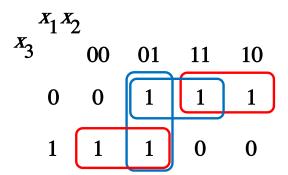
- Implicant: product term that indicates the input combinations for which the function output is 1
- Example
 - x₁ indicates that x₁x₂ and x₁x₂ yield output of 1



- Prime Implicant
 - Implicant that cannot be combined into another implicant with fewer literals
 - Some Examples



- Essential Prime Implicant
 - Prime implicant that includes a minterm not covered by any other prime implicant
 - Some Examples



- Cover
 - Collection of implicants that account for all possible input valuations where output is 1

Ex.
$$x_1' x_2 x_3 + x_1 x_2 x_3' + x_1 x_2' x_3'$$

• Ex.
$$x_1' x_2 x_3 + x_1 x_3'$$

$$X_1$$
 X_2 X_3 X_4 X_5 X_5 X_6 X_6 X_6 X_6 X_6 X_6 X_7 X_8 X_8 X_8 X_8 X_8 X_8 X_8 X_8 X_8 X_9 X_9

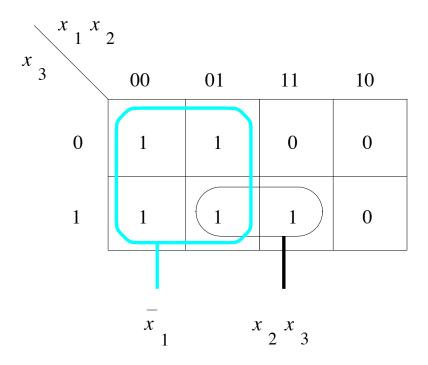
- Give the Number of
 - Implicants?
 - Prime Implicants?
 - Essential Prime Implicants?

$$X_1 X_2$$
 X_3
 $X_1 X_2$
 X_3
 $X_1 X_2$
 $X_2 X_3$
 $X_3 X_4$
 $X_4 X_5$
 $X_5 X_6$
 $X_6 X_7 X_8$
 $X_7 X_8$
 $X_8 X_9$
 $X_8 X_9$
 $X_8 X_9$
 $X_9 X_9$

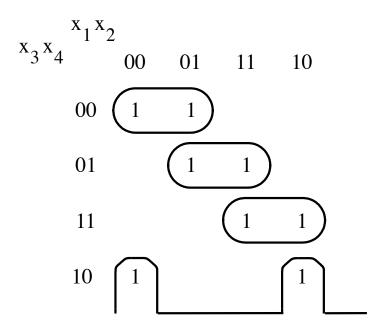
Why concerned with minimization?

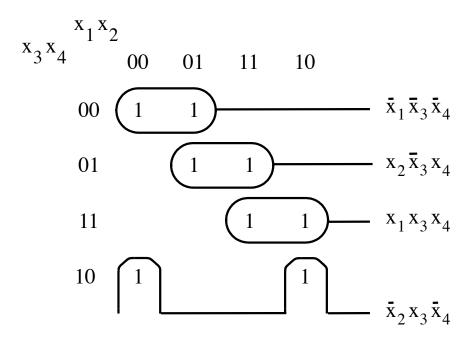
- Simplified function
- Reduce the cost of the circuit
 - Cost: Gates + Inputs
 - Transistors

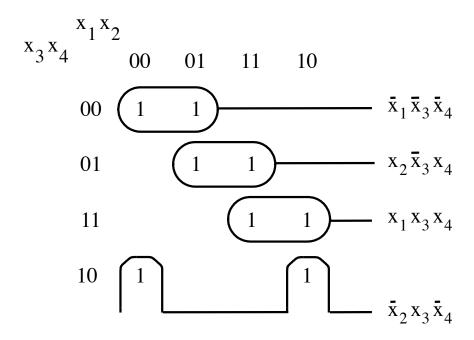
Three-variable function f $(x_1, x_2, x_3) = \sum m(0, 1, 2, 3, 7)$



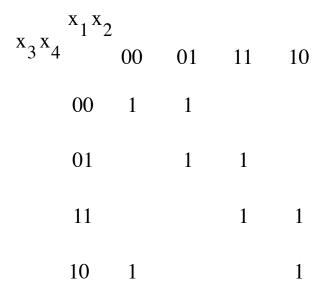
	$x_1 x_2$						
^x ₃ ^x ₄		00	01	11	10		
	00	1	1				
	01		1	1			
	11			1	1		
	10	1			1		

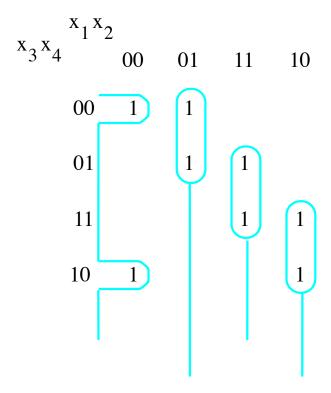


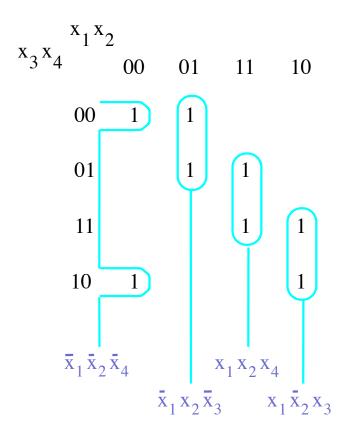


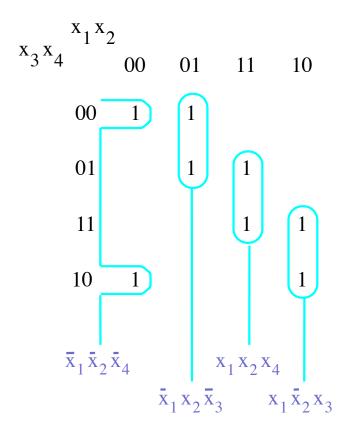


$$f = \bar{x}_1 \bar{x}_3 \bar{x}_4 + x_2 \bar{x}_3 x_4 + x_1 x_3 x_4 + \bar{x}_2 x_3 \bar{x}_4$$



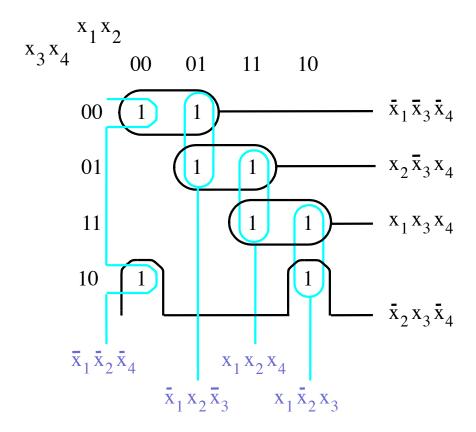




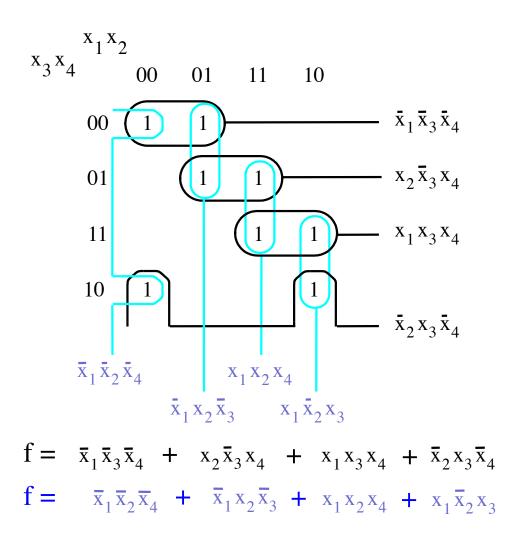


$$f = \bar{x}_1 \bar{x}_2 \bar{x}_4 + \bar{x}_1 x_2 \bar{x}_3 + x_1 x_2 x_4 + x_1 \bar{x}_2 x_3$$

Example: Both Are Valid Solutions



Example: Both Are Valid Solutions



Do You Still Remember This Boolean Algebra Theorem?

14a.
$$x \cdot y + x \cdot \overline{y} = x$$
 Combining
14b. $(x + y) \cdot (x + \overline{y}) = x$

х	у	$(x + y) \cdot (x + \overline{y}) = x$
0	0	
0	1	
1	0	
1	1	

х	у	$(x + y) \cdot (x + \overline{y}) = x$
0	0	0
0	1	1
1	0	1
1	1	1

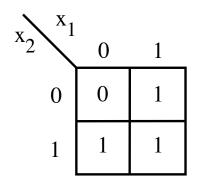
х	у	(x +	$\mathbf{y}) \cdot (\mathbf{x} + \overline{\mathbf{y}})$	= x
0	0	0	1	
0	1	1	0	
1	0	1	1	
1	1	1	1	

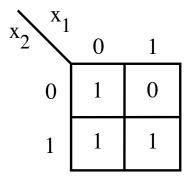
х	у	(x	+	y)•(x	+ <u>y</u>)	=	x
0	0		0	0	1		
0	1		1	0	0		
1	0		1	1	1		
1	1		1	1	1		

х	у	(x +	у)•(x	+ <u>y</u>)	= x
0	0	0	0	1	0
0	1	1	0	0	0
1	0	1	1	1	1
1	1	1	1	1	1

х	у	(x -	⊢ y)	• (x	+ <u>y</u>)	=	x
0	0		O	0	1		0
0	1		1	0	0		0
1	0		1	1	1		1
1	1		1	1	1		1

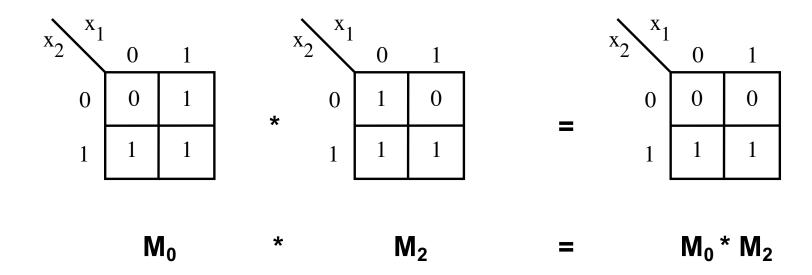
They are equal.

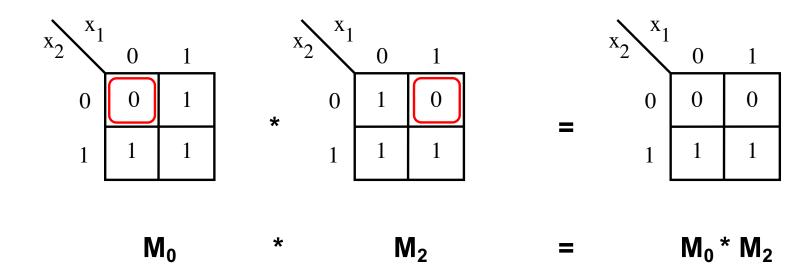


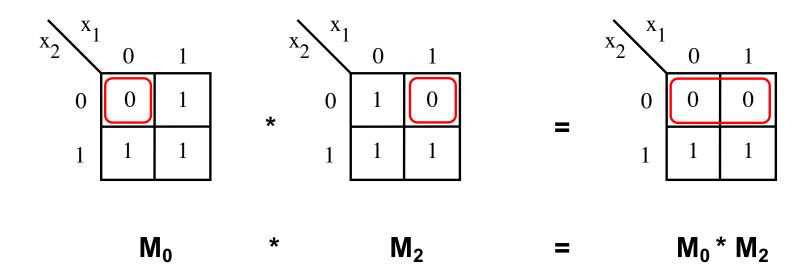


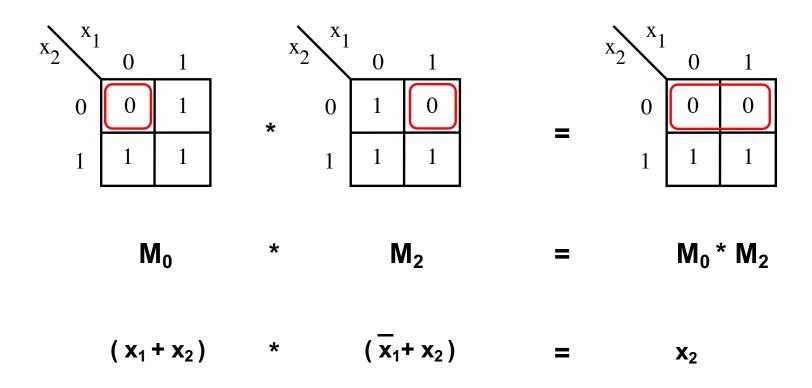
 M_0

 M_2



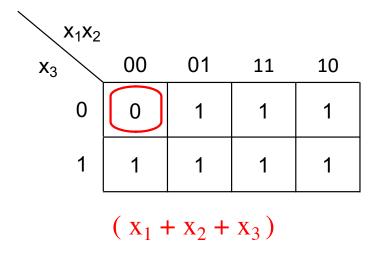






Property 14b (Combining)

Expressions with three variables (for three-variable K-maps)



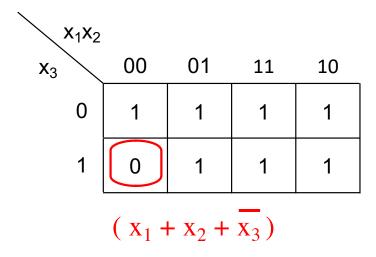
x_1x_2						
X_3	00	01	11	10		
0	1	0	1	1		
1	1	1	1	1		
$(x_1 + \overline{x_2} + x_3)$						

x_1x_2	2			
X_3	00	01	11	10
0	1	1	0	1
1	1	1	1	1

 $(\overline{x_1} + \overline{x_2} + x_3)$

x_1x_2				
x ₃	00	01	11	10
0	1	1	1	0
1	1	1	1	1

$$(\overline{x_1} + x_2 + x_3)$$



x_1x_2						
x ₃	00	01	11	10		
0	1	1	1	1		
1	1	0	1	1		
$(x_1 + \overline{x_2} + \overline{x_3})$						

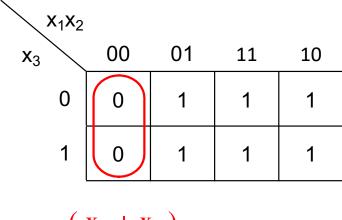
\ ;	x ₁ x ₂				
X_3		00	01	11	10
	0	1	1	1	1
	1	1	1	0	1

 $(\overline{x_1} + \overline{x_2} + \overline{x_3})$

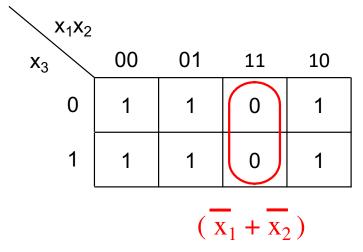
x_1x_2				
x ₃	00	01	11	10
0	1	1	1	1
1	1	1	1	0

$$(\overline{x_1} + x_2 + \overline{x_3})$$

Expressions with two variables (for three-variable K-maps)

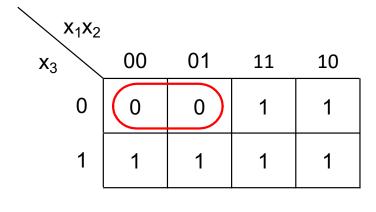


	\mathbf{v} .	1	V.	1
l	$\mathbf{\Lambda}$		^ 2	,

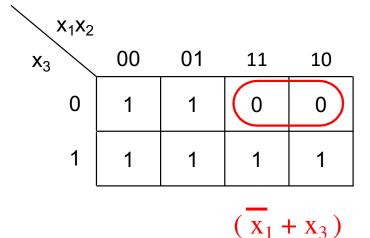


x_1x_2					
x ₃	00	01	11	10	
0	1	0	1	1	
1	1	0	1	1	
$(x_1 + \overline{x_2})$					

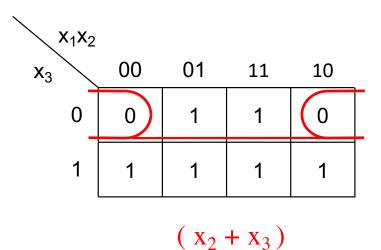
x_1x_2					
x ₃	00	01	11	10	_
0	1	1	1	0	
1	1	1	1	0	
			(>	_ x ₁ + x	₂)

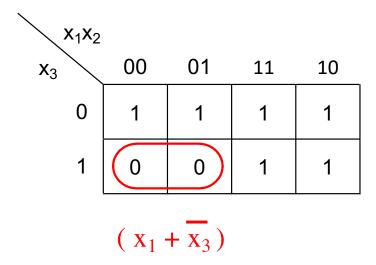


$$(x_1 + x_3)$$



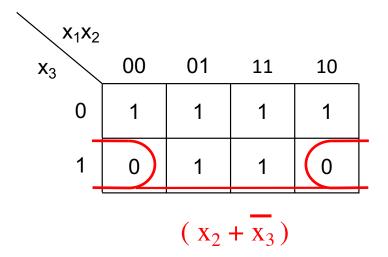
x_1x_2					
x_3	00	01	11	10	
0	1	0	0	1	
1	1	1	1	1	
$(\overline{\mathbf{x}}_2 + \mathbf{x}_3)$					



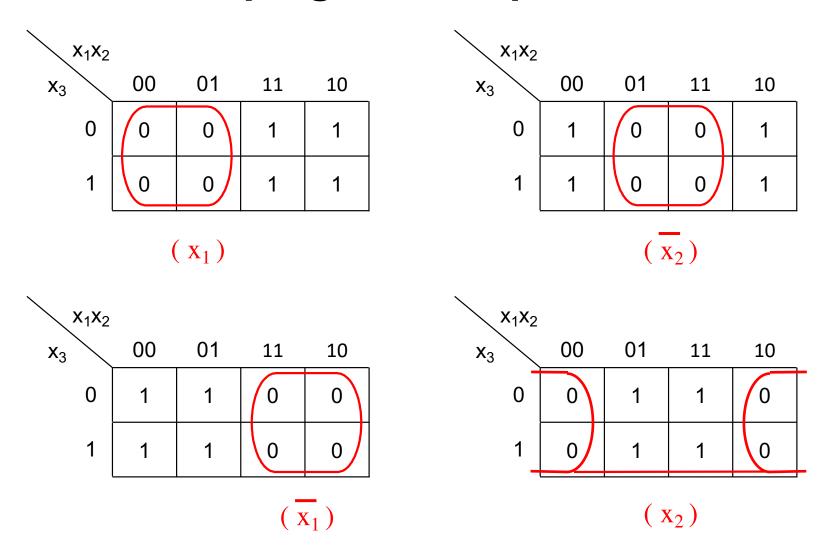


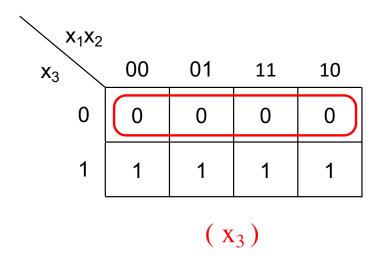
x_1x_2					
X ₃	00	01	11	10	
0	1	1	1	1	
1	1	0	0	1	
$(\overline{x}_2 + \overline{x}_3)$					

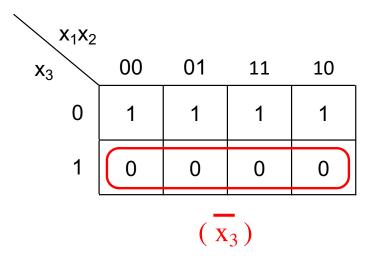
x_1x_2				
X_3	00	01	11	10
0	1	1	1	1
1	1	1	0	0
			$(\overline{\mathbf{x}}_1 -$	$-\frac{1}{X_2}$



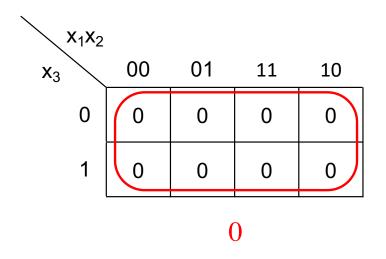
Expressions with one variable (for three-variable K-maps)

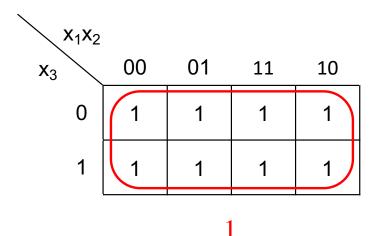






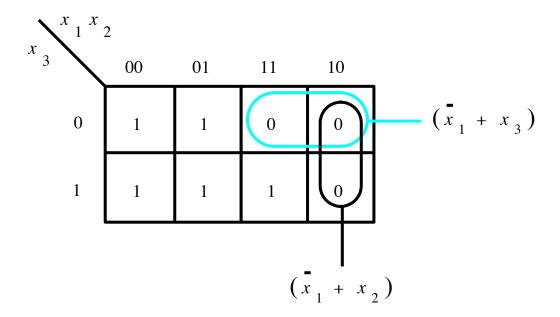
Expressions with zero variables (for three-variable K-maps)



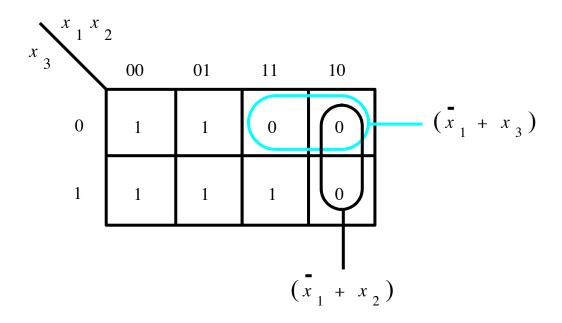


Some Examples

POS minimization of $f(x_1, x_2, x_3) = \prod M(4, 5, 6)$

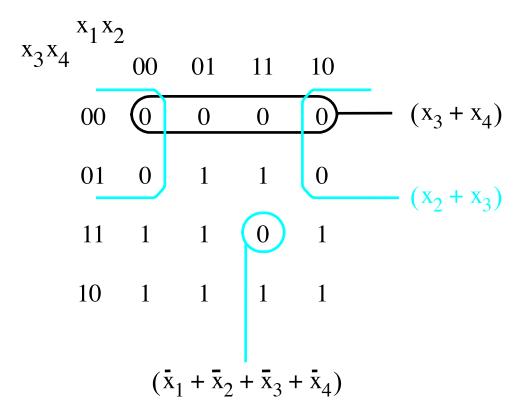


POS minimization of $f(x_1, x_2, x_3) = \prod M(4, 5, 6)$



$$f(x_1, x_2, x_3) = (\overline{x}_1 + x_3)(\overline{x}_1 + x_3)$$

POS minimization of f ($x_1,...,x_4$) = $\prod M(0, 1, 4, 8, 9, 12, 15)$



POS minimization of f ($x_1,...,x_4$) = $\prod M(0, 1, 4, 8, 9, 12, 15)$

$$f(x_1, x_2, x_3, x_4) = (x_3 + x_4)(x_2 + x_3)(\overline{x_1} + \overline{x_2} + \overline{x_3} + \overline{x_4})$$

[Figure 2.61 from the textbook]

Questions?

THE END