An extended Kalman filter for a
mobile robot
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A mobile robot (base)

Right wheel velocity

Ve

v, Left wheel velocity
o Angle to X axis

1

Distance between wheels

Sensors: Encoder, Gyro, Vision

Comparison of Ercodar. Vision. and itegsted Gyro
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Kinematics
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Extended Kalman Filter (Kinematic)

.
x=[%y,6,vq,v, |
Xy = AX, +Bu, +w,




Process Noise and Initial Variance
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Prediction Equations
X, =AX,_, +Bu,_,
P = APk_lAT +Q

Encoder, Gyro update
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Measurement Noise
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Measurement Update
K =P HT(HP H™ +R)"
X, =X, +K(z, —HX,)
P.=(1-KH)P,

Vision Update (velocity)
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Vision Update (landmark at (x.,y,))
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SLAM

¢ SLAM (Simultaneous Localization and Mapping) puts
landmark locations as part of state to be estimated in
the EKF.

« Prediction step is trivial (landmark doesn’t move)
* Measurement example below.

« Many landmarks means you have a very large state
vector.

« Current research is addressing how to handle this
well.

x=[%y,0,%x,y. ]
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Notes
“Extended” KF because of angle in A matrix
and full state in predicting visual observations

* A B, H, Q, and R are sparse or diagonal, so
should use special purpose coding for efficiency

Dimensionality of inversion depends on number
of sensors (HpkaT + R)*1

« Different sampling rates can be handled with a
variable length prediction and different Hs

» Need to measure gyro bias when stopped
* Need to handle slipping, vision glitches

What | would like to see

e Combine particle system and Kalman
filter, so each particle maintains a simple
distribution, instead of just a point
estimate.

« More accurate modeling of belief state?

* More efficient?

Particle Filtering with EKF Particles

Each particle is EKF, with weight.

As particles overlap, merge them and add
weights.

As particles become infeasible, kill them.
As particles become too certain, confuse
them.

» Add new patrticles in empty spaces
according to some prior.

« UWash demos




What If You Took Into Account the
Mobile Robot Dynamics?
» Need to change input u to be motor
torques.
 This changes prediction step only.

» How do vg and v, depend on motor
torques?

A Kalman Filter for a Rocket (1D)

Very Simple Dynamics

Dynamics

F =mX

. Fdt
Kepp = K T——

m

Kalman Filter (Dynamic)

x =[x, x[
u=[F[

1 dt 0
A: B:
0 1 dt/m

X = AX, +Bu, +w,




