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An extended Kalman filter for a 
mobile robot

© Chris Atkeson 2004

A mobile robot (base)
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Sensors: Encoder, Gyro, Vision Zooming In On Previous Slide

Kinematics
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Extended Kalman Filter (Kinematic)
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Process Noise and Initial Variance
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Prediction Equations
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Encoder, Gyro update
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Measurement Noise

{ }
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

nn

T

R

R
R

L

MLMM

L

L

00

00
00

22

11

vvER

Measurement Update
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Vision Update (velocity)
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Vision Update (landmark at (xL,yL))
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SLAM
• SLAM (Simultaneous Localization and Mapping) puts 

landmark locations as part of state to be estimated in 
the EKF.

• Prediction step is trivial (landmark doesn’t move)
• Measurement example below.
• Many landmarks means you have a very large state 

vector.
• Current research is addressing how to handle this 

well.
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Notes
• “Extended” KF because of angle in A matrix 

and full state in predicting visual observations
• A, B, H, Q, and R are sparse or diagonal, so 

should use special purpose coding for efficiency
• Dimensionality of inversion depends on number 

of sensors
• Different sampling rates can be handled with a 

variable length prediction and different Hs
• Need to measure gyro bias when stopped
• Need to handle slipping, vision glitches
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What I would like to see

• Combine particle system and Kalman
filter, so each particle maintains a simple 
distribution, instead of just a point 
estimate.

• More accurate modeling of belief state?
• More efficient?

Particle Filtering with EKF Particles

• Each particle is EKF, with weight.
• As particles overlap, merge them and add 

weights.
• As particles become infeasible, kill them.
• As particles become too certain, confuse 

them.
• Add new particles in empty spaces 

according to some prior.

• UWash demos
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What If You Took Into Account the 
Mobile Robot Dynamics?

• Need to change input u to be motor 
torques.

• This changes prediction step only.
• How do vR and vL depend on motor 

torques?

A Kalman Filter for a Rocket (1D)

Very Simple Dynamics

Dynamics
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Kalman Filter (Dynamic)
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