

Kinematics

$$x_{k+1} = x_k - 0.5(v_R + v_L)dt \sin \theta_k$$

$$y_{k+1} = y_k + 0.5(v_R + v_L)dt \cos \theta_k$$

$$\theta_{k+1} = \theta_k + \frac{v_R - v_L}{l}dt$$

$$\dot{\theta} = \frac{v_R - v_L}{l}, v_{tot} = \frac{v_R + v_L}{2}$$

Extended Kalman Filter (Kinematic)									
\mathbf{x}_{k+1}	1 =	Ax	, +]	$\mathbf{B}\mathbf{u}_k + \mathbf{w}_k$	$\mathbf{x} = \begin{bmatrix} x, y, \theta, v_R, v_L \end{bmatrix}^T$				
				C_{R_k} =	$=e_{R_k}-e_{R_{k-1}}$	$c_{L_k} = \epsilon$	$P_{L_k} =$	$e_{L_{k-1}}$	
					$\mathbf{u} = \left[c_R, c_L\right]^T$				
	[1	0	0	$-0.5dt\sin\theta_k$	$-0.5dt\sin\theta_k$]	0	0]	
	0	1	0	$0.5 dt \cos \theta_k$	$0.5 dt \cos \theta_k$		0	0	
A =	0	0	1	dt/l	-dt/l	B =	0	0	
	0	0	0	1	0		1	0	
	0	0	0	0	1		0	1	

Process Noise and Initial Variance						
	$\left\lceil Q_{11} \right\rceil$		0	•••	0	
$\mathbf{O} = \mathbf{E}^{\int_{\mathbf{W},\mathbf{W}}T}$	0	Ç	2_{22}	•••	0	
$\mathbf{Q} = \mathbf{E} \{\mathbf{w} \mathbf{w}\}$:		÷	•••	÷	
	0		0	•••	Q_{mm}	
	E	0		0]		
	0	ε		0		
$\mathbf{P}_0 =$:	÷		:		
	0	0		ε		

Prediction Equations

$$\mathbf{x}_{k}^{-} = \mathbf{A}\mathbf{x}_{k-1} + \mathbf{B}\mathbf{u}_{k-1}$$

 $\mathbf{P}_{k}^{-} = \mathbf{A}\mathbf{P}_{k-1}\mathbf{A}^{T} + \mathbf{Q}$

Encoder, Gyro update							
\mathbf{Z}_k	=]	Hx	_k +	\mathbf{v}_k	$\mathbf{z} = [\epsilon]$	$[e_R, e_L, g]^T$	
	0	0	0	1	0		
H =	0	0 0	0 0	0 1/l	$\begin{vmatrix} 1 \\ -1/l \end{vmatrix}$		

Measurement Update

$$\mathbf{K} = \mathbf{P}_{k}^{-}\mathbf{H}^{T} \left(\mathbf{H}\mathbf{P}_{k}^{-}\mathbf{H}^{T} + \mathbf{R}\right)^{-1}$$

$$\mathbf{x}_{k} = \mathbf{x}_{k}^{-} + \mathbf{K}(\mathbf{z}_{k} - \mathbf{H}\mathbf{x}_{k}^{-})$$

$$\mathbf{P}_{k} = (\mathbf{I} - \mathbf{K}\mathbf{H})\mathbf{P}_{k}^{-}$$

Vision Update (velocity)

$$\mathbf{Z} = \mathbf{g}(\mathbf{X})$$

$$\mathbf{z} = \begin{bmatrix} v_v \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} 0.5(v_R + v_L) \\ (v_R - v_L)/l \end{bmatrix}$$

$$\mathbf{H} = \frac{\partial \mathbf{g}}{\partial \mathbf{x}}$$

$$\mathbf{H} = \begin{bmatrix} 0 & 0 & 0 & 0.5 & 0.5 \\ 0 & 0 & 1/l & -1/l \end{bmatrix}$$

Notes

- "Extended" KF because of angle in A matrix and full state in predicting visual observations
- A, B, H, Q, and R are sparse or diagonal, so should use special purpose coding for efficiency
- Dimensionality of inversion depends on number of sensors $(\mathbf{HP}_{\mu}^{-}\mathbf{H}^{T}+\mathbf{R})^{-1}$
- Different sampling rates can be handled with a variable length prediction and different Hs
- Need to measure gyro bias when stopped
- Need to handle slipping, vision glitches

What I would like to see

- Combine particle system and Kalman filter, so each particle maintains a simple distribution, instead of just a point estimate.
- More accurate modeling of belief state?
- More efficient?

Particle Filtering with EKF Particles

- Each particle is EKF, with weight.
- As particles overlap, merge them and add weights.
- As particles become infeasible, kill them.
- As particles become too certain, confuse them.
- Add new particles in empty spaces according to some prior.

UWash demos

- Need to change input u to be motor torques.
- This changes prediction step only.
- How do v_{R} and v_{L} depend on motor torques?

A Kalman Filter for a Rocket (1D)

Very Simple Dynamics

Kalman Filter (Dynamic)
$\mathbf{x}_{k+1} = \mathbf{A}\mathbf{x}_k + \mathbf{B}\mathbf{u}_k + \mathbf{w}_k$	$\mathbf{x} = \begin{bmatrix} x, \dot{x} \end{bmatrix}^T$
	$\mathbf{u} = \begin{bmatrix} F \end{bmatrix}^T$
$\mathbf{A} = \begin{bmatrix} 1 & dt \\ 0 & 1 \end{bmatrix}$	$\mathbf{B} = \begin{bmatrix} 0\\ dt / m \end{bmatrix}$