
1

An extended Kalman filter for a
mobile robot

© Chris Atkeson 2004

A mobile robot (base)

x

y

l

θ

VR

VL

l

θ

VR

VL

Right wheel velocity

Left wheel velocity

Angle to X axis
Distance between wheels

Sensors: Encoder, Gyro, Vision Zooming In On Previous Slide

Kinematics

kLRkk dtvvxx θsin)(5.01 +−=+

kLRkk dtvvyy θcos)(5.01 ++=+

dt
l

vv LR
kk

−
+=+ θθ 1

2
, LR

tot
LR vvv

l
vv +

=
−

=θ&

Extended Kalman Filter (Kinematic)
[]TLR vvyx ,,,, θ=x

[]TLR cc ,=u

1−
−=

kkk RRR eec
1−

−=
kkk LLL eec

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

=

10000
01000

//100
cos5.0cos5.0010
sin5.0sin5.0001

ldtldt
dtdt
dtdt

kk

kk

θθ
θθ

A

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

10
01
00
00
00

B

kkkk wBuAxx ++=+1

2

Process Noise and Initial Variance

{ }
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

mm

T

Q

Q
Q

L

MLMM

L

L

00

00
00

22

11

wwEQ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

ε

ε
ε

L

MLMM

L

L

00

00
00

0P

Prediction Equations

QAAPP

BuAxx

+=

+=

−
−

−−
−

T
kk

kkk

1

11

Encoder, Gyro update

[]TLR gee ,,=z

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

ll /1/1000
10000
01000

H

kkk vHxz +=

Measurement Noise

{ }
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

nn

T

R

R
R

L

MLMM

L

L

00

00
00

22

11

vvER

Measurement Update

() 1−−− += RHHPHPK T
k

T
k

() −

−−

−=

−+=

kk

kkkk

PKHIP

HxzKxx)(

Vision Update (velocity)
)(xgz =

x
gH
∂
∂

=

⎥
⎦

⎤
⎢
⎣

⎡
−
+

=⎥
⎦

⎤
⎢
⎣

⎡
=

lvv
vvv

LR

LRv

/)(
)(5.0

θ&
z

⎥
⎦

⎤
⎢
⎣

⎡
−

=
ll /1/1000

5.05.0000
H

3

Vision Update (landmark at (xL,yL))
)(xgz =

x
gH
∂
∂

=

⎥
⎦

⎤
⎢
⎣

⎡
−
−

⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
=

yy
xx

y
x

L

L

v

v

)cos()sin(
)sin()cos(

θθ
θθ

z

⎥
⎦

⎤
⎢
⎣

⎡
−−−−−
−+−−−−

=
00)sin()()cos()()cos()sin(
00)cos()()sin()()sin()cos(

θθθθ
θθθθ

yyxx
yyxx

LL

LLH

SLAM
• SLAM (Simultaneous Localization and Mapping) puts

landmark locations as part of state to be estimated in
the EKF.

• Prediction step is trivial (landmark doesn’t move)
• Measurement example below.
• Many landmarks means you have a very large state

vector.
• Current research is addressing how to handle this

well.

[]TLL yxyx ,,,, θ=x

⎥
⎦

⎤
⎢
⎣

⎡
−−−−−−

−+−−−−
=

)cos()sin()sin()()cos()()cos()sin(
)sin()cos()cos()()sin()()sin()cos(
θθθθθθ
θθθθθθ

yyxx
yyxx

LL

LLH

Notes
• “Extended” KF because of angle in A matrix

and full state in predicting visual observations
• A, B, H, Q, and R are sparse or diagonal, so

should use special purpose coding for efficiency
• Dimensionality of inversion depends on number

of sensors
• Different sampling rates can be handled with a

variable length prediction and different Hs
• Need to measure gyro bias when stopped
• Need to handle slipping, vision glitches

() 1−− +RHHP T
k

What I would like to see

• Combine particle system and Kalman
filter, so each particle maintains a simple
distribution, instead of just a point
estimate.

• More accurate modeling of belief state?
• More efficient?

Particle Filtering with EKF Particles

• Each particle is EKF, with weight.
• As particles overlap, merge them and add

weights.
• As particles become infeasible, kill them.
• As particles become too certain, confuse

them.
• Add new particles in empty spaces

according to some prior.

• UWash demos

4

What If You Took Into Account the
Mobile Robot Dynamics?

• Need to change input u to be motor
torques.

• This changes prediction step only.
• How do vR and vL depend on motor

torques?

A Kalman Filter for a Rocket (1D)

Very Simple Dynamics

Dynamics

xmF &&=

m
Fdtxx kk +=+ && 1

So

Kalman Filter (Dynamic)

[]Txx &,=x

[]TF=u

⎥
⎦

⎤
⎢
⎣

⎡
=

10
1 dt

A ⎥
⎦

⎤
⎢
⎣

⎡
=

mdt /
0

B

kkkk wBuAxx ++=+1

