

Are H.M.M.s Useful?

You bet !!

- Robot planning + sensing when there's uncertainty
- Speech Recognition/Understanding

Phones \rightarrow Words, Signal \rightarrow phones

- Human Genome Project

Complicated stuff your lecturer knows nothing about.

- Consumer decision modeling
- Economics \& Finance.

Plus at least 5 other things I haven't thought of.

HMM Formal Definition

An HMM, λ, is a 5 -tuple consisting of

- N the number of states
- M the number
- $\left\{\pi_{1}, \pi_{2}, . . \pi_{N}\right\}$ The starting state probabilities previous example

Copyright © 2001-2003, Andrew W. Moore
Hidden Markov Models: Slide 11

Hidden Markov Models

Question 1: State Estimation
What is $\mathrm{P}\left(\mathrm{q}_{\mathrm{T}}=\mathrm{S}_{\mathrm{i}} \mid \mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{T}}\right)$
It will turn out that a new cute D.P. trick will get this for us.

- Question 2: Most Probable Path

Given $\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{T}}$, what is the most probable path that I took? And what is that probability?
Yet another famous D.P. trick, the VITERBI algorithm, gets this.

- Question 3: Learning HMMs:

Given $\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{T}}$, what is the maximum likelihood HMM that could have produced this string of observations?
Very very useful. Uses the E.M. Algorithm
Copyrighte 2001-2003, Andrew W. Moore
Hidden Markov Models: Slide

For a particular trial....	
Let T be the number of observatio	
T is also the number of states passed through	
$\mathrm{O}=\mathrm{O}_{1} \mathrm{O}_{2} . . \mathrm{O}_{\mathrm{T}}$ is the sequence of observations	
$Q=q_{1} q_{2} . . q_{T}$ is the notation for a path of states	
$\lambda=\left\langle\mathrm{N}, \mathrm{M},\left\{\pi_{\mathrm{i}}\right\},\left\{\mathrm{a}_{\mathrm{ij}}\right\},\left\{\mathrm{b}_{\mathrm{i}}(\mathrm{j})\right\}\right\rangle \quad$ is the specification of an HMM	

State Estimation S_{1} $\begin{aligned} & N=3 \\ & M=3 \\ & \pi_{1}=1 / 2 \end{aligned}$ $\pi_{2}=1 / 2$ $\pi_{3}=0$			Start randomly in state 1 or 2 Choose one of the output symbols in each state at random. Let's generate a sequence of		
			This is what the observer has to work with...		
$\begin{aligned} & a_{11}=0 \\ & a_{12}=1 / 3 \\ & a_{13}=1 / 3 \end{aligned}$	$\begin{aligned} & a_{12}=1 / 3 \\ & a_{22}=0 \\ & a_{32}=1 / 3 \end{aligned}$	$\begin{aligned} & a_{13}=2 / 3 \\ & a_{13}=2 / 3 \\ & a_{13}=1 / 3 \end{aligned}$			
				0	
		$b_{1}(Z)=0$		$\mathrm{O}_{1}=$	
$b_{1}(X)=1 / 2$	$b_{1}(Y)=1 / 2$ $b_{2}(Y)=1 / 2$			O_{2}	
$\mathrm{b}_{3}(\mathrm{X})=1 / 2$					
Copyright@ 2001-2003, Andrew W. Moore			Hidden Markov Models: Slide 20		

Prob. of a series of observations
What is $\mathrm{P}(\mathbf{O})=\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}\right)=$
$\mathrm{P}\left(\mathrm{O}_{1}=\mathrm{X}^{\wedge} \mathrm{O}_{2}=\mathrm{X}^{\wedge} \mathrm{O}_{3}=\mathrm{Z}\right)$?
Slow, stupid way:

The Prob. of a given series of observations, non-exponential-cost-style	
Given observations $\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{T}}$ Define	
$\alpha_{\mathrm{t}}(\mathrm{i})=\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}} \wedge \mathrm{q}_{\mathrm{t}}=\mathrm{S}_{\mathrm{i}} \mid \lambda\right)$	where $1 \leq t \leq T$
$\alpha_{\mathrm{t}}(\mathrm{i})=$ Probability that, in a random trial, - We'd have seen the first t observations - We'd have ended up in S_{i} as the t'th state visited.	
In our example, what is $\alpha_{2}(3)$?	
Coprignt 2001.2003 Andew W. Moore	Hidee Maxto Modess Stive 25

Easy Question

We can cheaply compute
$\alpha_{\mathrm{t}}(\mathrm{i})=\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}} \wedge \mathrm{q}_{\mathrm{t}}=\mathrm{S}_{\mathrm{i}}\right)$
(How) can we cheaply compute

$$
\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}}\right) \quad ?
$$

(How) can we cheaply compute

$$
\mathrm{P}\left(\mathrm{q}_{\mathrm{t}}=\mathrm{S}_{\mathrm{i}} \mid \mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}}\right)
$$

Easy Question

We can cheaply compute
$\alpha_{\mathrm{t}}(\mathrm{i})=\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}} \wedge \mathrm{q}_{\mathrm{t}}=\mathrm{S}_{\mathrm{i}}\right)$
(How) can we cheaply compute

$$
\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} \ldots \mathrm{O}_{\mathrm{t}}\right) \quad ? \sum_{i=1}^{N} \alpha_{t}(\mathrm{i})
$$

(How) can we cheaply compute

Copyright@ 2001-2003, Andrew W. Moore Hidden Markov Models: Slide 30

Most probable path given observations
What's most probable path given $O_{1} O_{2} \ldots O_{T}$, i.e.
What is $\underset{Q}{\operatorname{argmax}} \mathrm{P}\left(Q \mid O_{1} O_{2} \ldots O_{T}\right)$?
Slow, stupid answer :

$$
\begin{aligned}
& \underset{Q}{\operatorname{argmax}} \mathrm{P}\left(Q \mid O_{1} O_{2} \ldots O_{T}\right) \\
= & \underset{Q}{\operatorname{argmax}} \frac{\mathrm{P}\left(O_{1} O_{2} \ldots O_{T} \mid Q\right) \mathrm{P}(Q)}{\mathrm{P}\left(O_{1} O_{2} \ldots O_{T}\right)} \\
= & \underset{Q}{\operatorname{argmax}} \mathrm{P}\left(O_{1} O_{2} \ldots O_{T} \mid Q\right) \mathrm{P}(Q)
\end{aligned}
$$

Efficient MPP computation

We're going to compute the following variables:
$\delta_{t}(i)=\max _{q_{1} q_{2} . . q_{t-1}} P\left(q_{1} q_{2} . . q_{t-1} \wedge q_{t}=s_{i} \wedge O_{1} \ldots o_{t}\right)$
$=$ The Probability of the path of Length $t-1$ with the maximum chance of doing all these things: ...OCCURING
and
..ENDING UP IN STATE S and ..PRODUCING OUTPUT $\mathrm{O}_{1} \ldots \mathrm{O}_{\mathrm{t}}$
DEFINE: $\quad \mathrm{mpp}_{\mathrm{t}}(\mathrm{i})=$ that path
So: $\quad \delta_{t}(\mathrm{i})=\operatorname{Prob}\left(\mathrm{mpp}_{\mathrm{t}}(\mathrm{i})\right)$

Copyright@ 2001-2003, Andrew W. Moore

Inferring an HMM

Remember, we've been doing things like

$$
\mathrm{P}\left(\mathrm{O}_{1} \mathrm{O}_{2} . . \mathrm{O}_{\mathrm{T}} \mid \lambda\right)
$$

That " λ " is the notation for our HMM parameters.
Now We have some observations and we want to estimate λ from them.

AS USUAL: We could use
(i) MAX LIKELIHOOD $\lambda=\operatorname{argmax} \mathrm{P}\left(\mathrm{O}_{1} . . \mathrm{O}_{\mathrm{T}} \mid \lambda\right)$
(ii) BAYES

Work out $P\left(\lambda \mid O_{1} . . O_{T}\right)$
and then take $E[\lambda]$ or $\max ^{P}\left(\lambda \mid O_{1} \ldots O_{T}\right)$
Copyright © 2001-2003, Andrew W. Moore

Max likelihood HMM estimation
Define
$Y_{t}(i)=P\left(q_{t}=S_{i} \mid O_{1} O_{2} \ldots O_{T}, \lambda\right)$
$\varepsilon_{t}(i, j)=P\left(q_{t}=S_{i} \wedge q_{t+1}=S_{j} \mid O_{1} O_{2} \ldots O_{T}, \lambda\right)$
$\gamma_{t}(i)$ and $\varepsilon_{t}(i, j)$ can be computed efficiently $\forall i, j, t$
(Details in Rabiner paper)
$\sum_{t=1}^{T-1} \gamma_{t}(i)=\begin{aligned} & \text { Expected number of transitions } \\ & \text { Exp }\end{aligned}$
$\sum_{t=1}^{T-1} \varepsilon_{t}(i, j)=\begin{aligned} & \text { Expected number of transitions from } \\ & \text { state } \mathrm{i} \text { to state } \mathrm{j} \text { during the path }\end{aligned}$
Copyright © 2001-2003, Andrew W. Moore Hidden Markov Modeels: Slide 40

EM for HMMS
If we knew λ we could estimate EXPECTATIONS of quantities such as Expected number of times in state i Expected number of transitions $\mathrm{i} \rightarrow \mathrm{j}$
If we knew the quantities such as Expected number of times in state i Expected number of transitions $\mathrm{i} \rightarrow \mathrm{j}$ We could compute the MAX LIKELIHOOD estimate of $\lambda=\left\langle\left\{\mathrm{a}_{\mathrm{ij}}\right\},\left\{\mathrm{b}_{\mathrm{i}}(\mathrm{j})\right\}, \pi_{\mathrm{i}}\right\rangle$
Roll on the EM Algorithm...
Copyrighe © 2001-2003. Andrew w . Moore

EM 4 HMMs

1. Get your observations $\mathrm{O}_{1} \ldots \mathrm{O}_{\mathrm{T}}$
2. Guess your first λ estimate $\lambda(0), k=0$
$k=k+1$
3. Given $\mathrm{O}_{1} \ldots \mathrm{O}_{\mathrm{T}}, \lambda(\mathrm{k})$ compute $Y_{\mathrm{t}}(\mathrm{i}), \varepsilon_{\mathrm{t}}(\mathrm{i}, \mathrm{j}) \quad \forall 1 \leq \mathrm{t} \leq \mathrm{T}, \quad \forall 1 \leq \mathrm{i} \leq \mathrm{N}, \quad \forall 1 \leq \mathrm{j} \leq \mathrm{N}$
4. Compute expected freq. of state i, and expected freq. $i \rightarrow j$
5. Compute new estimates of $\mathrm{a}_{\mathrm{i} j}, \mathrm{~b}_{\mathrm{j}}(\mathrm{k}), \pi_{\mathrm{i}}$ accordingly. Call them $\lambda(k+1)$
6. Goto 3 , unless converged.

- Also known (for the HMM case) as the BAUM-WELCH algorithm.

Copyright © 2001-2003, Andrew W. Moore
Hidden Markov Models: Slide 43

Bad News

- There are lots of local minima

Good News

- The local minima are usually adequate models of the data.

Notice

- EM does not estimate the number of states. That must be given.
- Often, HMMs are forced to have some links with zero probability. This is done by setting $\mathrm{a}_{\mathrm{ij}}=0$ in initial estimate $\lambda(0)$
- Easy extension of everything seen today: HMMs with real valued outputs

data. - EM does not estimate the number of states. That must be given. - Often, HMMs are forced to have some links with zero probability. This is done by setting $\mathrm{a}_{\mathrm{ij}}=0$ in initial estimate $\lambda(0)$ - Easy extension of everything seen today: HMMs with real valued outputs

What You Should Know

- What is an HMM ?
- Computing (and defining) $\alpha_{t}(i)$
- The Viterbi algorithm
- Outline of the EM algorithm
- To be very happy with the kind of maths and analysis needed for HMMs
- Fairly thorough reading of Rabiner* up to page 266* [Up to but not including "IV. Types of HMMs"].
*L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," Proc. of the IEEE, Vol.77, No.2, pp.257--286, 1989.
- Easy extension of everything seen today: HMMs with tputs

