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Abstract—5G-and-beyond cellular networks are set to enable
ultra-reliable, low-latency communications (URLLC), catering
to a wide range of applications such as real-time control and
extended reality (XR). For these URLLC applications, it is
crucial to ensure per-packet communication reliability and high
throughput. To this end, we propose a novel joint scheduling
and power control approach, denoted by PktR, that ensures
application-specific per-packet communication reliability as well
as high channel spatial reuse and high network throughput. PktR
is designed as a close-loop system, incorporating Gain-Ratio-
K (GRK) interference modeling, optimization, and transmit
power control mechanisms. PktR ensures predictable interference
control for receivers and fine-tunes transmit power at trans-
mitters in a highly agile manner. Our measurement studies
demonstrate for the first time the feasibility of ensuring per-
packet communication reliability in live cellular systems, by
showing that PktR ensures high per-packet communication SINR
(e.g., 20dB) and high success probability (e.g., 0.9) across diverse
network and environmental settings. Through local, distributed
coordination, PktR also outperforms state-of-the-art solutions
significantly. For instance, besides ensuring predictable guarantee
of required per-packet communication reliability in scenarios
where existing solutions are unable to provide such guarantees for
up to 31.01% of the network links, PktR improves the network
throughput by a factor up to 1.596.

I. INTRODUCTION

5G-and-beyond cellular network systems are increasingly

being explored for ultra-reliable, low-latency communications

(URLLC) in important domains such as industrial automa-

tion [1], [2], [3]. These applications demand a high level

of predictability in per-packet communication reliability to

ensure that data reaches their destinations within strict timing

constraints. Unpredictable packet loss introduces uncertainties

in communication reliability and timeliness, and it tends to

increase communication delay too, thus making it difficult

to support safety-critical, real-time industrial control applica-

tions. In extended reality (XR) applications and meta-universe

services [4], [5], reliable delivery of each packet enables

seamless, naturalistic 3D reconstruction of real-world scenes

(e.g., industrial processes), and unpredictable packet loss may

well lead to uncomfortable human experience [4], [6]. While

URLLC has been extensively studied in recent years, how

to ensure predicable per-packet communication reliability in

large-scale, multi-cell networks remains an open challenge.
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2212573, 2229654, and 2232461, NIFA award 2021- 67021-33775, and
PAWR Industry Consortium.

Major sources of packet loss in cellular systems are wireless

path loss, channel fading, and co-channel interference among

concurrent transmissions. Transmission power control is an

effective approach to addressing wireless path loss and channel

fading, and transmission scheduling is a basic mechanism to

control co-channel interference. The preliminary theoretical

investigation by Wang et al. [1] has highlighted the necessity

of joint scheduling and power control in achieving predictable

per-packet communication reliability. In particular, scheduling

can be leveraged to select a set of links where the neces-

sary communication reliability can be attained through proper

transmission power control; in the meantime, transmission

power control plays a crucial role in adapting to fading-

induced rapid fluctuations of channel conditions. Given the

non-local propagation of wireless signals in cellular networks,

the scheduling and transmission power control of individ-

ual links need to be coordinated. Effective scheduling and

transmission power control are challenging problems in large-

scale networks by themselves individually; how to develop

field-deployable joint scheduling and power control algorithms

to enable predictable per-packet communication reliability in

large-scale, dynamic cellular networks remains an unanswered

intellectual question, not to mention real-world demonstration

of running systems with guaranteed, predictably high per-

packet communication reliability.

Contributions. To ensure predictable per-packet communi-

cation reliability in URLLC, we design and implement the

PktR framework for joint scheduling and power control in

large-scale, multi-cell networks, and we make the following

contributions:

• Our PktR framework extends and transforms the prelim-

inary theoretical insight by Wang et al. [1] into a field-

deployable, two-timescale approach to joint scheduling

and power control in ensuring predictable per-packet

communication reliability in URLLC.

• The scheduling in PktR features the Gain-Ratio-K (GRK)

interference model which is suitable for developing field-

deployable distributed scheduling algorithms, and PktR

schedules cellular transmissions in large-scale networks

to statistically bound the receiver-side interference so

that there is a feasible transmission power to ensure

per-packet communication reliability along each link.

PktR scheduling effectively leverages stochastic geometry

and optimization to address complex interactions among979-8-3503-5171-2/24/$31.00 ©2024 IEEE



links and to predict interference dynamics for optimal

transmission scheduling.

• PktR scheduling is complemented by fast-timescale, per-

packet transmit power control to ensure both high net-

work throughput and application-specific per-packet com-

munication reliability. In particular, leveraging the Can-

telli’s inequality, PktR power control regulates the quan-

tiles of receiver-side SINRs, thus ensuring the required

receiver-side per-packet SINR.

• We implement PktR in the 5G open-source software

platform OpenAirInterface. We experimentally validate

the PktR design and implementation through the sandbox

platform in the ARA wireless living lab[7], and we

demonstrate for the first time the feasibility of ensuring

predictable per-packet communication reliability in live

cellular systems. In particular, our measurement study

shows that the distributed scheduling and power control

in PktR facilitates network-wide convergence, ensuring

the desired per-packet communication reliability across

the entire network. In addition, with local, distributed

coordination alone, PktR achieves remarkable network

throughput. In fact, it outperforms the state-of-the-art

physical-model-based scheduler while maintaining the

necessary per-packet communication reliability. For in-

stance, besides ensuring predictable guarantee of required

per-packet communication SINR in scenarios where ex-

isting solutions are unable to provide such guarantees for

up to 31.01% of the network links, PktR improves the

network throughput by a factor up to 1.596.

The rest of the paper is organized as follows. We summarize

related work in Section II, present the system model and

problem definition in Section III, present the PktR framework

in Section IV, present the OAI5G-based implementation of

PktR in Section V, evaluate the PktR framework in Section

VI, and make concluding remarks in Section VII.

II. RELATED WORK

A. Interference control with scheduling in wireless networks

Extensive research has been conducted on addressing inter-

ference in cellular networks. For interference control in multi-

cell networks, scheduling has been studied as optimization

problems where factors such as energy efficiency, spectral

efficiency, user rate, and interference have been considered

[8], [9], [10]. These studies, however, did not consider ensur-

ing predictable per-packet communication reliability, and the

associated solutions also required global information across

networks which may well be challenging to acquire in large-

scale, dynamic network settings. Machine learning (ML) meth-

ods have also been employed to address scheduling problems

related to interference control [11], [12], [13]. While these

approaches leverage ML to make intelligent decisions, they

do not consider the specific constraints and requirements of

URLLC applications. Additionally, the performance of the

learned policies heavily relies on the number of training steps

applied and the quality of training data. Therefore, interference

control using factors optimization approach and ML methods

cannot ensure the predictable per-packet communication reli-

ability required by URLLC.

In addition to the previous approaches, interference model-

based methods play a crucial role in interference control for

URLLC. One such approach is presented by Feng et al. [14],

where they derived a probabilistic resource allocation scheme

utilizing channel statistical characteristics. Gorantla et al. [15],

[16] considered the interference model where up to K links

can be assigned to each subchannel in a multi-cell scenario

with multiple uplink subchannels. However, the aforemen-

tioned studies utilized inaccurate interference models, resulting

in degraded network capacity. Furthermore, their solutions are

non-local, meaning they may not be suitable for distributed

protocol design.

B. Power control in wireless networks

Power allocation has been extensively studied in URLLC. In

many cases, power allocation is jointly optimized with other

resource allocation methods to achieve overall performance

improvements. Several studies have explored the joint opti-

mization of power allocation with resource block assignment,

blocklength, user clustering, UAV positions, and other factors.

Fang et al. [17], Almekhlafi et al. [18], and Sui et al.

[19] have studied joint optimization of power allocation with

resource block assignment to enhance network throughput

and energy consumption. Ren et al. [20] considered the joint

optimization of power allocation and blocklength to minimize

the decoding error probability. Elhattab et al. [21] investigated

power allocation in conjunction with user clustering. These

optimization-based solutions aimed to achieve optimal energy

consumption, network throughput, decoding error probability,

and other performance metrics while ensuring the reliability

required by URLLC use cases. However, such optimization

approaches often suffer from high computational complexity,

as they require solving complex mathematical problems in

real-time. Additionally, they tend to rely on global information,

which introduces significant coordination overhead and can be

challenging to obtain in dynamic network settings.

III. PRELIMINARIES

System Model and Problem Specification. We investigate

cellular networks of multiple cells, where each cell consists

of a Base Station (BS) and multiple user equipment (UEs).

Within each cell, there are uplinks for transmissions from UEs

to the BS and downlinks for transmissions from the BS to

UEs. Our network architecture aligns with existing wireless

systems such as 3GPP cellular systems. In this context, a

fundamental resource allocation unit is a Resource Block

(RB) which represents a spectrum resource unit over a certain

time slot. For instance, with the 5G numerology 1 where the

subcarrier spacing is 30KHz, a RB consists of a sequence of

12 consecutive subcarriers in the frequency domain, and it can

occupy a time slot of 0.5ms in the time domain.

Our study focuses on joint scheduling and power control

of data transmissions at the MAC layer, with a particular



emphasis on managing interference. We consider one-hop data

transmissions between close-by nodes, although the network

itself is of large scale such that not every two nodes are within

communicate range of one another. We focus on URLLC

traffic, which has stringent reliability requirements. Given

these network and traffic characteristics, our study addresses

the online slot-scheduling and power control problem. That

is, at any given time, we aim to schedule a maximal subset

of links and control their transmission powers in a distributed

manner, allowing for concurrent transmissions while ensuring,

for each scheduled link, an application-specific lower bound

on the success probability of the receiver-side SINR being

no less than a threshold required by the application. Ensuring

the receiver-side SINR helps ensure per-packet communication

reliability, which is not only important for URLLC itself but

also helps reduce the need for retransmission and thus reduce

latency. Maximizing concurrent transmissions helps improve

network throughput, thus helping reduce latency too [22].

As we will see in the design of PktR, its approach to

joint scheduling and power control only involves distributed

coordination among close-by nodes, and the approach ensures

receiver-side SINR in the presence of network and environ-

mental dynamics and uncertainties such as those in wireless

channels. Therefore, PktR is applicable to large-scale wireless

networks with dynamic channels. As a first step towards

ensuring predictable per-packet communication reliability in

multi-cell URLLC networks, we focus on scenarios where

nodes are mostly immobile (e.g., in many private industrial

5G networks). For highly mobile networks, techniques such

as those leveraging cyber-physical dynamics models [23] may

be applied; their detailed study is an interesting future research

topic. Similarly, we focus on ensuring receiver-side SINR in

URLLC networks; the question of how to optimize MCS and

transmission rate for a given SINR is an interesting research

question but beyond the scope of this work.

Interference Model. For predictable interference control,

Zhang et al. [24] have identified the Physical-Ratio-K (PRK)

interference model that defines pair-wise interference relations

between close-by nodes only while ensuring mean communi-

cation reliability (i.e., mean receiver-side SINR) in the pres-

ence of background noise and real-world wireless complexities

such as multi-path fading and cumulative interference from

all concurrent transmitters in the network. However, the PRK

model [24] and existing studies on PRK-based scheduling

[25], [26], [23] have mainly focused on scenarios where

nodes’ transmission powers are fixed even though different

links can use different transmission powers. Accordingly, the

PRK interference model is based on receiver-side signal and

interference power, and scheduling is used to control the

receiver-side cumulative interference power. Given that trans-

mission power control directly impacts receiver-side signal

and interference power and for the purpose of decoupling

the impact of scheduling and transmission power control, the

PRK interference model needs to be refined to be applicable

to joint scheduling and power control. To this end, we observe

that, give a transmitter X and a receiver R, the receiver-side

signal/interference power SR = PX ×GX,R, where PX is the

transmission power at X and GX,R is the wireless channel

gain from X to R. Therefore, we propose to use a variant of

the PRK model based on wireless channel gain, denoted as

the Gain-Ratio-K (GRK) model. As shown in Figure 1, in the

GRK model, given a link L between the transmitter T and its

receiver R, a node C ′ is regarded as not interfering thus can

transmit concurrently with the transmission from T to R if

and only if the following holds:

GC′,R <
GT,R

KT,R,γT,R

, (1)

where GC′,R and GT,R is the average channel gain from C ′

and T to R, respectively. KT,R,γT,R
is the minimum real

number chosen such that, in the presence of channel fading,

cumulative interference from all concurrent transmitters, and

power control strategies at individual links, the per-packet

communication reliability required by application, γT,R, is

R CT
C 

Exclusion Region

Fig. 1. GRK interference
model

satisfied. The GRK model defines,

for each link (T,R), an exclusion

region ET,R,γT,R
around the re-

ceiver R such that a node C ∈
ET,R,γT,R

will not transmit con-

currently if and only if GC,R ≥
GT,R

KT,R,γT,R

. As we will show in

Section VI, the GRK model en-

ables effective joint scheduling and

power control for ensuring per-

packet communication reliability.

IV. PKTR DESIGN

A. Overview

The theoretical investigation by Wang et al. [1] has shown

the necessity of joint scheduling and power control in achiev-

ing predictable per-packet communication reliability, but it left

open the questions of whether it is feasible and how to develop

field-deployable joint scheduling and power control algorithms

that can ensure predictable per-packet communication reliabil-

ity in cellular network systems using the software and hard-

ware platforms available today. Key open challenges include

complex interactions among the scheduling and transmission

power control decisions across individual links, complex and

fast-varying dynamics of wireless channels and interference,

and real-world implementation of novel algorithms subject to

the current 3GPP standards on cellular systems. We address

these open systems challenges and validate the theoretical

insight of Wang et al. [1] in this work.

To decouple the design of scheduling and power control

policies and to decouple the interactions across different links,

we leverage the two timescales of scheduling and power

control decisions at the MAC and PHY layers respectively, and

we propose the following framework. The adaptation of the

GRK model parameter K... (as defined in section III) happens

at a relative slower timescale (e.g., tens/hundreds of time



slots and at a timescale of sub-seconds/seconds) so that GRK-

based transmission scheduling can control the statistics of the

receiver-side interference to ensure the existence of a feasible

power control strategy required for a certain per-packet com-

munication reliability. In the meantime, the transmission power

along each link is controlled on a per-packet basis and at a

timescale of milliseconds/sub-milliseconds (e.g., each time

slot) to adapt to fast-varying channel fading and instantaneous

receiver-side interference.

he aforementioned framework for joint scheduling and

power control is denoted as PktR and is shown in Figure 2.

As the individual data packets are transmitted, receivers col-

lect interference and channel statistics (shown as “Receiver

measurement”). In the meantime, base stations collect network

information such as average transmission power and path loss

(shown as “Network info maintenance”). These information

is used to adapt the GRK model parameter K... and data

transmission power (shown as “K-Adaptation” and “Power

control” respectively). The GRK model parameters of close-

by links are shared among one another through “Protocol

Signaling”, and they are used to enable “TDMA scheduling”

of individual packet transmissions. TDMA scheduling can use

any well-established algorithm such as that from PRK-based

scheduling [26], [25], and we will discuss PktR implementa-

tion details such as protocol signaling and network information

maintenance in Section V. In what follows, we elaborate on

the design of two key PktR components — power control and

K-Adaptation.

B. IPC: per-packet instantaneous power control

Ensuring per-packet communication reliability can be trans-

lated into finding a feasible SINR regime that guarantees

the delivery reliability on a per-packet basis. In particular,

for a link L of transmitter T and receiver R, it can be

expressed as a success probability requirement as follows:

Prob {SINRL ⩾ γT,R} ⩾ βL, where SINRL is the SINR at

the receiver of link L, γT,R is the receiver-side SINR threshold

to satisfy a communication reliability requirement, and βL is a

lower bound on the probability guarantee of SINRL ⩾ γT,R

to meet the need of a given URLLC application.

TDMA scheduling

Protocol Signaling

cross-link interference relation

K-Adaptation

GRK model parameter 

 𝐾!,#,$!,#(𝑡)

Network info 

maintenance

network statistics(e.g., average 

transmission power, path loss)

Power control

transmission power 𝑃!(𝑡)

Receiver 

measurement

interference & channel gain feedback

Data Packet

Transmission

set of concurrent

transmission links

Control Plane Data Plane

Fig. 2. PktR framework for joint scheduling and power control

Based on the mathematical analysis in our technical report

[27], the success probability requirement implies the following

condition:

PT (t) ⩾ GT,R(t) + IR(t) + γT,R + σL

√

βL

1− βL

, (2)

where PT (t) is the transmission power of the transmitter T at

time instant t, GT,R(t) is the average channel gain between the

transmitter T and receiver R, σL is the standard deviation of

(SR − IR) with SR being the receiver-side data signal power,

IR(t) is the average receiver-side interference power at time

instant t, and is determined by IR(t+ 1) = cIR(t) + (1 −
c)IR(t + 1). The parameter c of the exponentially-weighted-

moving-average (EWMA) filter in the constraint represents a

weighting factor that governs the balance between stability

and agility in estimating the measured interference. The term

GT,R(t) + IR(t) + γT,R is the minimum transmission power

required to achieve the mean target SINR γT,R, and the term

σL

√

βL

1−βL
is derived from Cantelli’s inequality [28] to ensure

the required success probability. Since higher transmission

power along a link means larger interference to other links in

the network and thus reduced network throughput [1], PktR

uses the minimum transmission power that satisfies Inequality

(2), that is, the right-hand-side (RHS) of (2), and we denote

this method as Instantaneous-reliability Power Control (IPC).

The statistics of GT,R(t), IR, and SR in equation (2) can be

collected at fast timescales, thus the IPC method enables fast-

timescale, per-packet adaptation of the transmission power to

in-situ channel and interference conditions.

Let Pmax be the maximum transmission power feasible for

the transmitter of link L, (2) implies the following:

E
max[IR] = Pmax −GT,R(t)− γT,R − σL

√

βL

1− βL

, (3)

where E
max[IR] is the maximum expected interference power

for which the PktR transmission power control can guarantee

the minimum required SINR γT,R. Therefore, Emax[IR] is a

constraint when controlling receiver-side interference through

the adaptation of GRK interference model.

C. K-Adaptation

Towards predictable interference control for a link L of

transmitter T and receiver R, the parameter KT,R,γT,R
of

the GRK model needs to be instantiated according to in-situ,

potentially unpredictable network and environmental condi-

tions. In particular, if the receiver-side SINR is below (or

above) γT,R, KT,R,γT,R
needs to be increased (or decreased)

so that the concurrent transmissions around the receiver R are

decreased (or increased) accordingly, to control the receiver-

side interference at an appropriate level. For convenience, we

denote this mechanism as K-Adaptation. The choice of the

GRK model parameter K... impacts not only the local state of

a link (e.g., communication reliability) but also the overall

network throughput. A link can try to increase its K... to

increase the receiver-side SINR, but this will decrease the



network throughput. To strike an optimal balance between

these competing metrics, we focus on precise control of

receiver-side interference. In particular, we aim at optimal

interference power control at the receiver side so as to meet

the SINR requirements while maximizing concurrent commu-

nications. In what follows, we elaborate on the approach to

K-Adaptation, starting with the definition of the states and

their evolution equations.

State. PktR models the in-situ instantaneous interference

at the receiver R at time instant t, denoted by IR(t), as the

state variable. Then IR(t + 1) = IR(t) + ∆IR(t) + ∆IU (t),
where ∆IR(t) and ∆IU (t) are the changes in the receiver-

side interference introduced by nodes within and outside the

exclusion region, respectively, due to the change of the GRK

model parameter from t to t + 1. ∆IU (t) is treated as a

disturbance to the system with mean value µu, and ∆IU (t)
tends to be uncorrelated with ∆IR(t). Therefore, the time

dynamics of receiver-side interference is modeled as dIR(t+
1) = ∆IR(t) + ∆IU (t). In addition, we also take the β-th

quantile value of the receiver side SINR Q
β

SINRR(t) as a state

variable, and Q
β

SINRR(t+1) = Q
β

SINRR(t) + ∆SINRR(t),

with ∆SINRR(t) being the change of Q
β

SINRR(t) due to the

change of the GRK model parameter from t to t + 1.

Control variable & cost function. Given the probabilistic

nature of wireless communications, the link SINR is expected

to be inherently random. Therefore, the receiver R adapts

KT,R,γT,R
to control SINR(t) to be as close to the target

SINR γT,R as possible. In K-Adaptation, each link L with

transmitter T and receiver R computes the desired change of

receiver-side interference power ∆IR(t) at a time slot t. If

∆IR(t) < 0 (or ∆IR(t) > 0), it increases (or decreases)

KT,R,γT,R
such that the sum of the expected interference

power from all the nodes newly added to (or removed from)

the exclusion region ERT,R,γT,R
is no less (or no more) than

|∆IR(t)|. Therefore, we treat ∆IR(t) as the control variable

of the system.

In order to control the interference to satisfy the SINR

success probability requirement, the tail distribution of SINR

has to be considered. From Equation (2), we know that the

SINR success probability requirement implies the following

condition: E[IR(t)] ≤ E[SR(t)] − γT,R − σL

√

β
1−β

, where

SR(t) is the received power at time slot t. Therefore, we

can treat the right-hand side of the above equation as the

target interference, and try to control the expected interference

E[IR(t)] to be as close to the desired target as possible. More

formally, the control design at time t is a model predictive

control problem as follows:

min (IR(t+ 1)− E[SR(t+ 1)] + γT,R + σL

√

β

1− β
)2

s.t. IR(t+ 1) = cIR(t) + (1− c)IR(t+ 1),
(4)

where E[SR(t + 1)] is the expected receive signal power at

time slot t + 1 (denoted by SR(t+ 1)), IR(t+ 1) and IR(t)
are the measured average value of interference at time t+1 and

t respectively, and IR(t+ 1) is the instantaneous interference

power at time t + 1. From the objective function and the

constraint, we have

E[(IR(t+ 1)− SR(t+ 1) + γT,R + σL

√

β

1− β
)2]

= E[(cIR(t) + (1− c)IR(t+ 1)− SR(t+ 1) + γT,R + σL

√

β

1− β
)2]

= E[(cIR(t) + (1− c)(IR(t) + ∆IR(t) + ∆IU (t))− SR(t+ 1)+

γT,R + σL

√

β

1− β
)2]

= E[(cIR(t) + (1− c)(IR(t) + ∆IR(t) + µu)− SR(t+ 1)+

γT,R + σL

√

β

1− β
)2].

We need cIR(t)+(1−c)(IR(t)+∆IR(t)+µu)−SR(t+ 1)+

γT,R+σL

√

β
1−β

= 0 to minimize the objective. Accordingly,

we have

∆IR(t) =
SR(t + 1) − γT,R − σL

√

β
1−β

− cIR(t) − (1 − c)IR(t)

1 − c
− µu

=
SR(t + 1) − γT,R − σL

√

β
1−β

− cIR(t) + cIR(t − 1) − IR(t)

1 − c

− µu

=
SR(t + 1) − γT,R − σL

√

β
1−β

− (c + 1)IR(t) + cIR(t − 1)

1 − c
− µu.

(5)

Furthermore, we let

∆SINRR(t) = γL −Q
βL

SINRR(t). (6)

Thus ∆SINRR(t) denotes the difference between ground

truth βL-th quantile value of SINR and the target SINR.

Based on the above analysis, for a link L with transmitter

T and receiver R, we develop Algorithm 1 for computing the

optimal control ∆IR(t). Firstly, each link updates its estimates

of IR(t), IR(t− 1), SR(t+ 1), σL, and µu using methods

similar to those in [25]. Then, base stations calculate the value

of Emax[IR]. Then, base stations calculate the value of ∆IR(t)
for all links in its cell, subject to the constraint imposed by

E
max[IR] (line 5).

Algorithm 1 Compute optimal control ∆IR(t)

1: Update IR(t), IR(t− 1), SR(t+ 1) and σL;

2: Calculate E
max[IR] based on (3);

3: Calculate ∆IR(t) using (5);

4: if IR(t) + ∆IR(t) > E
max[IR] then

5: ∆IR(t) = E
max[IR]− IR(t);

6: end if

From ∆IR(t) to KT,R,γT,R
(t + 1). After the re-

ceiver R computes the control input ∆IR(t) at time in-

stant t according to Algorithm 1, R needs to compute

KT,R,γT,R
(t+1) so that, when the GRK model parameter is

min{KT,R,γT,R
(t),KT,R,γT,R

(t + 1)}, the expected interfer-

ence introduced to R by the nodes in either ERT,R,γT,R
(t) or

ERT,R,γT,R
(t + 1) but not in both is as close to |∆IR(t)| as



possible. To this end, we define, for each node C which may

fall within the exclusion region of R, the expected interference

to R as E[IC,R(t)] = E[αC(t)]E[PC(t)]GC,R, where E[αC(t)]
is the expected probability for C to transmit data packets

at time t, E[PC(t)] is the expected transmission power at

C, and GC,R is the average channel gain between C and

R. Suppose that there are Nactive(t) number of transmitters

active at time slot t with the total number of nodes N , then

we have E[αC(t)] =
E[Nactive(t)]

N
=

E[λ∗

v(t)]
λ

, where λ is the

node density, E[λ∗
v(t)] is the expected value of the active node

intensity of the network.

Deriving the closed-form expression of E[λ∗
v(t)] falls into

the domain of thinning process in stochastic geometry, which

refers to a procedure where events or items are selectively

removed or retained based on certain criteria.1 In our case,

the transmitters C inside the exclusive region cannot transmit

concurrently with the transmitter T as shown in Figure 1,

therefore, transmitters C have to be removed at time slot t,

while transmitters T should be retained at time slot t. Then,

we derive the intensity of the thinning process associated with

GRK-based scheduling, and the calculation of E[λ∗
v(t)] is as

follows:

Theorem 1. The density λ∗
v of the thinning process of con-

current transmitters computes as follows:

E[λ∗

v] =
1− exp(−c(t+ 1)λ)

c(t+ 1)
, (7)

where c(t + 1) = πE[d∗
ER

]
2

+ (πl2 + 2πE[d∗
ER

]l) ∗

∫ l

0

2 arccos
l2+L′2+2E[d∗

ER
](t+1)∗L′

2lE[d∗
ER

](t+1)+L′)

360l dL′, l is the expected link

length, λ is the density of the spatial Poisson process repre-

senting the cellular network under consideration, E[d∗
ER

] is the

expected value of the radius of ERT,R,γT,R
at the equilibrium

point.

Proof. Proof can be found in the technical report [27].

GRK model adaptation. Considering the discrete nature of

node distribution in space and the requirement on satisfying

the minimum SINR threshold γT,R, we propose the following

rule for computing KT,R,γT,R
(t+ 1):

• When ∆IR(t) = 0, let KT,R,γT,R
(t+1) = KT,R,γT,R

(t).
• When ∆IR(t) < 0, interference is not well bounded (i.e.,

need to expand the exclusion region), let ERT,R,γT,R
(t+

1) = ERT,R,γT,R
(t), then keep adding nodes not already

in ERT,R,γT,R
(t+1), in the non-increasing order of their

wireless channel gain to R, into ERT,R,γT,R
(t+ 1) until

the node B such that adding B into ERT,R,γT,R
(t + 1)

makes
∑

C∈ERT,R,γT,R
(t+1)\ERT,R,γT,R

(t) E[I(C,R, t)] ≥

|∆IR(t)| for the first time. Then let KT,R,γT,R
(t+ 1) =

GT,R

GB,R
.

• When ∆IR(t) > 0, we further differentiate the following

situations:

1Even though the topology of a given network is fixed, the spatial
distribution of concurrent transmitters is stochastic over time.

– ∆SINR(t) < 0: interference is well-bounded; the

exclusion region remains the same, and the trans-

mission power is controlled to further reduce SINR

towards the target.

– ∆SINR(t) > 0 and ∆IR(t) > ∆SINR(t):
interference is over-bounded (i.e., need

to shrink the exclusion region); let

ERT,R,γT,R
(t + 1) = ERT,R,γT,R

(t), then

keep removing nodes out of ERT,R,γT,R
(t + 1),

in the non-decreasing order of their wireless

channel gain to R, until the node B such that

removing any more node after removing B makes
∑

C∈ERT,R,γT,R
(t)\ERT,R,γT,R

(t+1) E[I(C,R, t)] >

∆IR(t) − ∆SINR(t) for the first time. Then let

KT,R,γT,R
(t+ 1) =

GT,R

GB,R
.

– ∆SINR(t) > 0 and ∆IR(t) < ∆SINR(t): inter-

ference is well-bounded, and power control alone is

enough to guarantee the SINR requirements.

V. PKTR IMPLEMENTATION

5G-compliant implementation. The PktR framework can

be integrated within the existing 5G standards of the 3GPP

cellular architecture. Here we present our strategy for im-

plementing PktR in the standard-compliant, open-source 5G

software platform OpenAirInterface [29]. The system architec-

ture of PktR is depicted in Figure 3. For network information

maintenance, the gNB collects data from nearby gNBs at a

relatively low frequency and from UEs in the cell for every

slot. The sharing of network information is achieved through

protocol signaling using a real-time dedicated UDP socket.

Additionally, we define a custom message “PktR-Signal” to

convey the necessary information among gNBs. To incorporate

the PktR framework into OpenAirInterface, we make targeted

modifications to the MAC and PHY components of the plat-

form without changing the current 5G standard. The current

OAI MAC scheduling framework is composed of the downlink

scheduling nr_fr1_dlsch_preprocessor and the up-

link scheduling nr_fr1_ulsch_preprocessor, which

are executed in the gNB, and called every slot. We extend

the MAC scheduler pre-processor with PktR functions. For

every period T , the gNB calculates the optimal control variable

∆IR(t), and then utilizes the K-Adaptation mechanism to

compute the GRK model parameter K for each UE within its

Is current slot % T =  0

Optimal control
Determine GRK 

model parameter K

OAI MAC 
scheduler

Per-packet Instantaneous 

adaptation of TX power 

𝑃!(𝑡)

Network statistics(e.g., 

average transmission 

power, path loss)

Receiver 

measurement

no

yes

∆𝐼!(𝑡)

Statistic value of 

Path loss and 

interference

Fig. 3. PktR implementation architecture
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the interference



relation is generated, PktR calls the standard-compliant

uplink and downlink scheduler pf_ul and pf_dl, which

implement the ONAMA scheduling algorithm [30] to make

scheduling decisions. The whole computation of scheduling

is based on pipelined precomputation. This means that at time

instant t, all nodes calculate the status of time instant t+M .

Therefore, when time reaches slot t + M , a node simply

looks up the precomputed status and decides to transmit or

not. In the PHY layer, the transmitters apply instantaneous

power control in the function nr_generate_pdsch

of OAI gNB and nr_ue_ulsch_procedures of OAI

UE, using receiver measurements and control channels

to determine appropriate transmission power levels. More

detailed information about the PktR implementation can be

found in the technical report [27]. The source code of PktR

can be found at [31].

Light-weight control signaling. Control messages are used

for two main purposes. The first is for BS-UE coordina-

tion. This involves real-time feedback of the receiver-side

interference and the standard deviation of per-packet SINR,

which are essential for determining the power control policy.

It takes 4 bytes to transmit these two parameters for each

transmission. The second is for inter-BS coordination. These

messages contain network statistics such as the average trans-

mission power, path loss, and exclusion region (ER) size. The

control messages for updating the aforementioned statistics are

exchanged at relatively low frequencies as compared with the

frequency of data packet exchange, thus the incurred overhead

is not high. For instance, the control message for exchanging

the GRK parameter K takes 2 bytes, including the UE’s ID

and its corresponding parameter K. This exchange occurs only

when K-adaptation happens every 30 ms. BSes also exchange

information on link scheduling status required by the PktR

ONAMA scheduling algorithm. At each time slot, it takes 2

bytes to exchange the scheduling status for each UE, including

the UE’s ID, transmission time, and transmission status. In

our setting, we pre-compute 4 slots’ transmission statuses.

Therefore, the per-UE control message overhead for inter-BS

coordination at each time slot is 8 + O(t) bytes, where the

term O(t) denotes the type of control message overhead that

is incurred at rather low frequency.

Computational and energy overhead. The computational

and energy overhead primarily arises from the calculations

of transmission power (Equation 2), ∆IR (Equation 5), and

spatial density of concurrent transmitters (Equation 7). The

calculations of transmission power and ∆IR (i.e., Equations 2

and 5 respectively) are based on closed-form solutions, thus

the per-link computational overhead tends to be low and the

computational overhead at each BS is proportional to the

number of nodes in the associated cell. For Equation 7, we can

employ numerical integration techniques, such as the Trape-

zoidal Rule, to simplify the computation, effectively breaking

it down into multiple closed-form solutions. Consequently,

the computational overhead remains low and proportional to

the number of nodes in a cell. The lightweight computation

also makes the computational energy overhead low. Energy

overhead is also introduced by control messages. Given the

light-weight control signaling discussed earlier in the section,

such control message energy overhead tends to be low too.

VI. MEASUREMENT EVALUATION

We have implemented PktR in the open-source 5G software

platform OpenAirInterface. Here we use the software-defined

radios of the ARA sandbox [7] to validate the design and

implementation of PktR with real-world systems platforms.

A. Network settings in ARA sandbox

To validate the feasibility and effectiveness of the

PktR framework, we implement PktR in the 5G-compliant,

2022.w51 version of OpenAirInterface (OAI5G) and evaluate

its behavior in the ARA sandbox using the USRP B210

software-defined radios (SDRs). The network consists of 28

SDRs deployed in an indoor office area of 6m × 6.6m.

As shown in Figure 4, we uniform-randomly distribute UEs

across 5 cells, with each cell containing 4 to 6 UEs. The

transmission is in the time-division-duplex (TDD) mode, and

we use numerology 1 with 106 physical resource blocks and

12 symbols, corresponding to a channel bandwidth of 30 MHz.

The modulation schedme supported by OAI5G is QPSK; we

consider three SINR thresholds of 11 dB, 14 dB, 17 dB,

and 20 dB, which correspond to block error rates (BLER)

of approximately 0.1, 0.05, 0.02, and 0.01 respectively. The

SINR guarantee success probability threshold considered in

the experiments is 0.9. Data traffic is generated using iPerf

UDP packets, each 208 bytes in size. The overall network

settings are shown in Table I.

Fig. 4. ARA sandbox Fig. 5. ARA sandbox, with gNBs
and UEs marked in orange and blue
colors respectively

B. Methodology

Towards understanding the benefits of PktR in joint schedul-

ing and power control for predictable per-packet communica-

tion reliability guarantee, we comparatively study PktR with

CCSAA [15], [16], PRKS [25], and a variant of PktR. More

specifically, we implement in OAI5G the following distributed

scheduling protocols and comparatively study their behavior

with PktR:

• CCSAA: The cardinality-constrained subchannel assign-

ment algorithm (CCSAA) [15], [16] addresses the chal-

lenge of assigning up to K number of links per subchan-

nel within a multi-cell environment. It employs the SINR



TABLE I
NETWORK SETTINGS

Network size 6m× 6.6m
Number of cells 5

Number of UEs in a cell 4-6
Transmission mode TDD

Numerology 1
Bandwidth 30MHz

Number of resource blocks 106
Number of symbols 12

Packet size iPerf packets of 208 bytes each
MCS value and Modulation 0-9 and QPSK

SINR threshold γ 11dB, 14dB, 17dB, 20dB
SINR success probability β 0.9

interference model [24] in resource management, trying

to ensure reliable communications while improving chan-

nel spatial reuse. However, CCSAA does not adaptively

adjust the number of concurrent transmissions, making

it difficult to ensure per-packet communication reliability

in unpredictable network and environmental conditions.

• PRKS: PRKS [25] employs a control-theoretic approach

to instantiating the PRK interference model in dynamic,

uncertain network settings, and it can enable predictably

high mean-link-reliability (e.g., 95%) by controlling co-

channel interference in link transmission scheduling.

However, PRKS does not consider joint scheduling and

power control towards ensuring per-packet communica-

tion reliability.

• GRKS with channel inversion power control (GRKS-CI):

Same as PktR, the GRK interference model and PktR

scheduling framework are used in transmission schedul-

ing. However, power control is through the channel-

inversion method, a technique employed in the 4G and 5G

standards [32] where the transmit power is controlled to

be inversely proportional to the channel gain. When the

channel gain is low, the transmit power is increased to

compensate for the weaker signal. Conversely, when the

channel gain is high, the transmit power is decreased to

conserve power and reduce interference to other users.

GRKS-CI is used to evaluate the benefits of the IPC

power control method in PktR.

C. Behavior of PktR

For the SINR requirements of 11, 14, 17, and 20 db,

Figure 6 presents the boxplots illustrating the receiver-side,

per-packet SINR distributions for all the links in the ARA

sandbox. The 10 percentiles for the receiver SINRs are 11.98

dB, 15.03 dB, 17.87 dB, and 20.94 dB respectively. Further-

more, Figure 7 shows the detailed distributions of per-packet

SINRs through the complementary cumulative distribution

functions (C-CDFs). For a success probability requirement

β set as 0.9, it is evident that PktR ensures the required

per-packet SINR through predictable interference control and

transmission power adaptation.

Figures 8 shows the GRK model parameters K for different

SINR requirements. PktR achieves the desired SINR by dy-

namically adjusting the GRK model parameter, which directly

influences the size of the exclusion region (ER) surrounding

each receiver. In particular, the GRK model parameter in-

creases alongside the SINR requirements, effectively limiting

concurrent transmissions and interference from nearby nodes.
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For γ = 11dB, there are 6 links whose ERs do not include

all other nodes. For γ = 14dB, there are 4 links whose ERs do

not include all other nodes. For γ = 17dB and γ = 20dB, all

links within the sandbox must include all the other links within

their ERs, thus the parameters K are the same for the cases

of γ = 17dB and γ = 20dB. Despite this, the performance

of PktR on these two cases differs due to the varying SINR

distributions shown in Figure 6, which are accomplished

by the power control policy shown as Figure 9. We have

validated the use of Equation (7) across various settings. At

γ = 17dB and γ = 20dB, the theoretical active node intensity

is 0.0354, compared to the experimental value of 0.043. At

γ = 14dB, theory predicts 0.0378 versus an observed 0.045,

and at γ = 11dB, the theoretical and experimental values

are 0.041 and 0.046, respectively. The discrepancies between

theoretical predictions and experimental results stem primarily

from the model’s reliance on random stochastic geometry

without considering the boundary constraints, while the testbed

is a fixed topology within a limited space.

Despite the distributed nature of PktR, the individual con-

trollers converge to a state where the desired SINR is satisfied.

To illustrate this behavior, Figure 10 shows the temporal

evolution of the uplink SINR for a typical link when the SINR

requirement is 11 dB. Initially, the link’s SINR is stable around

10 dB. As other links began transmitting data, this link’s SINR

quickly drops to approximately 7 dB. In response, instan-

taneous power control increase the TX power to boost the

SINR. After about 30 transmissions, K-adaptation completes,

stabilizing the interference levels. Despite this stabilization,

significant fluctuations in SINR during this period require con-

tinued high transmission power, maintaining elevated temporal

TX power and SINR levels until around the 60th transmission.

Thereafter, the transmission power gradually declines until it

stabilizes around the 70th transmission, at which point the

SINR also stabilizes. In our configuration, the GRK model

parameter is adjusted once every three frames, or every 30

ms. This particular link transmits in every 0.5 ms uplink

slot, and with each 10 ms frame containing 6 uplink slots,

approximately 5 frames are required to stabilize interference.
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In general, link SINRs converge quickly in PktR, as shown

in Table II, where the settling time is defined as the time

TABLE II
SETTLING TIME OF LINK SINR

SINR threshold Mean(msec) 95% CI

γ = 11 97.24 (94.23, 100.25)
γ = 14 102.48 (98.00, 106.96)
γ = 17 107.58 (103.23, 111.93)
γ = 20 104.26 (100.87, 107.64)

required for a link to reach its steady state where SINR

requirement is met. For γ = 11dB, the mean settling time is

97.24 ms with a confidence interval (CI) of (94.23, 100.25).
A slightly longer convergence time is observed for γ = 14dB,

with a mean of 102.48 ms and a CI of (98.00, 106.96),
and γ = 17dB, with a mean of 107.58 ms and a CI of

(103.23, 111.93). This increase is attributed to the fact that,

for γ = 14dB and γ = 17dB, there are more links interfering

with one another than the case of γ = 11dB, necessitating

a longer duration to adjust the parameter K, which in turn

extends the convergence time. Therefore, the increased ER size

requires more time to achieve convergence. For γ = 20dB, the

mean settling time is 104.26 ms with a CI of (100.87, 107.64).
Despite maintaining the similar K value as in the case of

γ = 17, the larger γ reduces the value of ∆IR. According to

the K-adaptation rule, a smaller ∆IR results in more nodes

being added to the exclusion region at the same time, thereby

reducing the time required for K-adaptation.

D. Comparative study

Figure 11 illustrates, for different protocols, the ratios of

transmissions in which the per-packet SINR meets or exceeds

the required threshold. PktR consistently achieves high satis-

faction ratios for all the links in a predictable manner. They

are followed by GRKS-CI, PRKS, and CCSAA. For instance,

when the SINR requirement is 20dB, PktR’s SINR satisfac-

tion ratio is 96.34%, while CCSAA only achieve 31.01%.

Additionally, the figure includes 95% confidence intervals for

all protocols, demonstrating the stable performance of PktR

across repeated experiments. In contrast, protocols such as

PRKS and CCSAA fail to ensure the required per-packet

SINR. This decrease in satisfaction ratio is due to the escalat-

ing levels of co-channel interference, which are not effectively

managed by the PRKS and CCSAA interference models.

Specifically, CCSAA schedules a fixed number of K links per

subchannel during each slot and schedules concurrent links

while attempting to control interference based on estimated

interference. Consequently, if CCSAA schedules K links that

are located far apart and cause negligible interference, their

per-packet SINR is likely to be satisfied. However, when

CCSAA schedules K links that result in non-negligible mu-

tual interference, their per-packet SINR cannot be adequately

fulfilled. In terms of PRKS, it only needs to satisfy the

average communication reliability, resulting in a smaller ER

size and increased concurrent transmissions. More specifically,

Figure 12 shows the mean ER size in PRKS and PktR. PRKS

has a smaller ER size, which can be attributed to the fact

that PRKS only needs to guarantee the mean per-link SINR.

As a result, PRKS has less stringent requirements compared to

PktR, allowing for a smaller ER size. However, PktR considers

Cantelli’s inequality and accounts for the impact of the tail

distribution when calculating the value of ∆IR(t). While some

nodes may not significantly affect the mean SINR, they can

impact the per-packet SINR and reduce the SINR success

probability. PktR can include such nodes in the ER, ensuring

the success probability is fulfilled.

Next, we analyze the performance of the IPC policy. We

observed that the per-packet SINR satisfaction ratio of PktR is

higher than that of GRKS-CI. Both policies were implemented



14 17 20 14

SINR requirement (dB)

0

0.2

0.4

0.6

0.8

1

1.2
S

IN
R

 s
a

ti
s

fa
c

ti
o

n
 r

a
ti

o
PktR

CCSAA

PRKS

GRKS-CI

Fig. 11. SINR requirement satisfaction ratios
in different protocols

11 14 17 20

SINR requirement (dB)

0

5

10

15

20

25

30

M
e

a
n

 E
R

 s
iz

e

PktR

PRKS

Fig. 12. Mean ER size in different protocols

11 14 17 20

SINR requirement (dB)

0

1

2

3

4

5

6

7

M
e
a
n

 T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

PktR

CCSAA

PRKS

GRKS-CI

Fig. 13. Mean network throughput

0 10 20 30 40 50 60 70 80 90 100

Number of transmissions

-109

-108

-107

-106

-105

-104

-103

-102

-101

-100

V
a
lu

e
 (

d
B

m
)

Temporal TX power

IPC

CI

Fig. 14. Temporal transmission power: γ = 11dB

using the PktR framework for scheduling. Specifically, we

compare the transmission power of IPC with that of Channel

Inversion Power Control (CI) for the same receiver, as shown

in Figure 14. We see that the variance of IPC is greater than

that of CI. This is because the output power of IPC takes

into account the feedback of instantaneous interference in

addition to channel gain. As the interference varies, the output

power of IPC adapts to these changes. On the other hand, CI

solely considers the varying channel gain and does not take

interference feedback into account. Furthermore, the overall

transmission power of IPC is higher than that of CI. This can

be attributed to the utilization of Cantelli’s inequality in IPC

(see technicical report [27]), which controls the quantile value

of the transmission power. Considering that the value of σ for

this time interval is approximately 0.73 and β is set at 90%, the

term σ
√

β
1−β

in Formula (2) evaluates to 2.19. Consequently,

the overall transmission power of IPC surpasses that of CI, as

IPC aims to achieve a higher SINR satisfaction ratio. Based on

the above observations, it is evident that CI does not control

the quantiles of the transmission power and does not adjust it

based on interference. As a result, the system fails to achieve

a high SINR satisfaction ratio, as reflected in Figure 11.

For network throughput, Figure 13 shows the mean value

of the aggregate communication throughput across all the

links in different protocols. We see that PktR, GRKS-CI,

and PRKS achieve similar throughput, followed by CCSAA.

For instance, when the SINR requirement is 20 dB, PktR’s

throughput is 4.82 Mbits per second, while CCSAA only

achieves 3.02 Mbits per second. Although PktR, GRKS-

CI, and PRKS achieve similar throughput, their performance

varies with different SINR requirements. GRKS-CI applies the

same GRK interference model as PktR, resulting in similar

number of concurrent transmission links to PktR. However,

since CI power control cannot achieve as high SINR as

PktR, the throughput is slightly lower than PktR in each

scenario. PRKS achieves a much higher number of concurrent

transmissions than PktR when the SINR requirement is 11 dB

and 14 dB, due to its smaller ER size as shown in Figure 12.

This results in a higher overall throughput, in part due to

the inherent tradeoff between reliability and throughput in

wireless networks [24]. As the SINR requirement increases,

the overall throughput of PktR improves and surpasses other

solutions for two main reasons. First, the ER size for PRKS

becomes comparable to that of PktR, resulting in the same

number of concurrent transmission links and transmission

opportunities. Second, a higher per-packet SINR ensures a

significantly stronger data signal relative to interference and

noise, which leads to increased per-packet reliability and is

the primary driver of throughput improvement. Since other

solutions cannot achieve the same high SINR as PktR, their

throughput remains lower as the SINR threshold continues to

rise. The impact of high SINR on throughput is even more

pronounced when advanced modulation schemes are applied,

where PktR can significantly outperform other solutions. High

SINR, communication reliability, and throughput help reduce

communication latency, as shown by Meng et al. [22].

VII. CONCLUDING REMARKS

We have introduced the field-deployable framework PktR

for ensuring predictable communication reliability in cellular

networks on a per-packet basis. To maximize communication

throughput while maintaining per-packet communication reli-

ability, PktR incorporates Gain-Ratio-K (GRK) interference

modeling, optimization, and transmit power control mech-

anisms. This comprehensive approach allows for efficient

utilization of network resources. We have implemented PktR

using the open-source 5G platform OpenAirInterface, and we

have validated the design and implementation of PktR through

extensive measurement studies using real-world hardware and

the sandbox of the ARA wireless living lab. The measure-

ment results demonstrate that PktR ensures predictably high

per-packet communication reliability while achieving a high

network throughput. To the best of our knowledge, this is the

first work demonstrating the feasibility of ensuring predictable

per-packet communication reliability in multi-cell wireless

networks of real-world hardware and software systems.
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