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Abstract—Internet of Things (IoT) is a promising technology
that enables interconnecting billions of electronic devices over
communication networks. Multicasting is an essential service in
IoT which allows the IoT devices to disseminate common messages
more efficiently. Energy consumption is one of the main concerns
in designing and implementing IoT since the IoT devices are
expected to run for long periods of time using batteries in
general. Moreover, IoT devices that participate in forwarding
multicast messages excessively may deplete their energy sooner
than expected. In this paper, we proposed to employ Radio
Frequency (RF) energy harvesting technology with the IoT device
in order to wirelessly power multicast sessions. Each IoT device
that forwards a multicast message is compensated for the energy
consumed for transmission by energy transmitted from Energy
Transmitters (ETs).

We formulate an optimal operational strategy, where the
objective is to minimize the total transmitted energy from the
ETs. The problem is in the form of non-convex Mixed Integer
Nonlinear Problem, where there is no efficient way to solve the
problem optimally when the number of variables is relatively
large. Therefore, we first approximate the data rate function
with a concave lower bound function. Then, we decompose the
optimization problem using Generalized Bender Decomposition
(GBD) into: 1) Convex Nonlinear Program (NLP) and 2) Mixed
Integer Linear Program (MILP). Moreover, we employ Successive
Convex Programming (SCP) within GBD algorithm to iteratively
find a better approximation for the original problem. Our simula-
tion results show that GBD-SCP algorithm solves the optimization
problem more efficiently with a performance close to optimal.

Index Terms—Energy harvesting, power transfer, IoT, multi-
cast, routing, scheduling.

I. INTRODUCTION

In past few years, the data demand has increased rapidly
due to the increase in the number of users in cellular networks
and their applications. Multicast service in cellular networks
is an essential service, and it is expected that applications
demand for this service will increase further [1]. Multicast
service in cellular networks are typically designed for human
applications such as video content delivery. However, future
cellular networks will incorporate a huge number of small
Internet of Things (IoT) [2] devices that require supporting
multicast service as well.

IoT is a technology that enables electronic devices to observe
the surrounding environment, collect data and process it and
then react accordingly to perform a designated task [2]. IoT
devices in general are small devices equipped with limited
batteries to run for a long period of time. Therefore, these small
devices need to manage their energy consumption efficiently
to prolong their battery lifetimes and to avoid the cost of
batteries replacement. IoT devices involvement in excessive

multicast messages forwarding may deplete their batteries early.
Moreover, IoT devices may behave in selfish ways to avoid
collaborating with other IoT devices in forwarding the multicast
messages to prolong their battery lifetimes. Therefore, we
address these challenges in this paper to encourage the IoT
devices to collaborate while supporting their energy demand.

The authors in [3] proposed to use dedicated energy transmit-
ters since harvesting energy from the ambient energy resource
may not be sufficient. In [4], we proposed to use a cognitive
mobile base station to transmit data and energy to the IoT
such that we minimize the total consumed energy in mobility
and energy transfer. Moreover, the authors in [6] proposed to
utilize wireless energy transfer in cellular IoT where the goals
are enhancing energy and spectrum utilization. In this paper,
we propose energy harvesting-based multicast communication
for IoT devices in cellular networks. To incentivize the IoT
devices to participate in forwarding multicast messages, they
receive Radio Frequency (RF) energy transmitted wirelessly
from Energy Transmitters (ETs) to compensate for the energy
consumed in multicasting. The goal is to minimize the total
transmitted energy from the ETs such that multicast service
for IoT devices is wirelessly powered.

We organize this paper as follows. We describe the system
model in Section II, then we show how we formulate the
optimization problem in Section III. We propose a solution for
the optimization problem using GBD-SCP algorithm in Section
IV. Moreover, we present and discuss the simulation results in
Section V, then we conclude the paper in Section VI.

II. SYSTEM MODEL

We consider a set of IoT devices, S, that can transmit
multicast messages over a set of channels, C. These channels
are assigned to a group of regular cellular users, P , for uplink
transmission. The IoT devices transmits multicast messages
underlaying the uplink band of a cellular network. Therefore,
the IoT devices must keep their interference to the cellular users
below a threshold Γ. Forwarding multicast messages can be in
a form of multi-hop communication with Base Station (BS)
assistance if needed. We name the set of all IoT devices and
the BS S.

To incentivize the IoT devices to collaborate in forwarding
multicast messages, all IoT devices that consume energy for
multicast message transmissions will be compensated by en-
ergy transmitted wirelessly from a set of Energy Transmitters
(ETS). We assume that the IoT devices operate under harvest-
use-store mode [5], where they harvest energy and use it, and
only the remaining energy is saved in their batteries for future



use. Each Energy Transmitter (ET) can transfer energy to a
group of IoT devices located within its energy harvesting zone
over a set of channels, C. We assume that time is slotted into
|Z| slot, where Z is the set of time slots and T is the duration
of each slot.
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Fig. 1: Transmitted energy vs number of ETs.

Fig. 1 shows a scenario where IoT 1 transmits a multicast
message to IoT 2 and IoT 3. The base station receives the
multicast message from IoT 1 and forwards it to the destination
IoT devices (i.e. IoT 2 and IoT 3). On the other hand, IoT 4
sends its multicast message directly to the destinations, which
are IoT 5 and IoT 6. ET 1 and ET 2 transmit energy to IoT
1 and IoT 4, respectively, to compensate them for the energy
consumed in the multicast messages transmissions. IoT 1 and
IoT 4 need to keep their interference to the transmissions of
the regular cellular users (i.e. UE 1 and UE 2) under a certain
threshold, Γcell.

We assume that each IoT device is equipped with a single
radio. Let PLc be the path loss constant for channel c, PLe
be the path loss exponent, αc and βc be fast and slow fading
gains for channel c, respectively, At and Ar be transmitting and
receiving antenna gains, respectively, and dij be the distance
between node i and node j. Hence, we can calculate the gain
of channel c between node i and node j as follows:

Gcij = PLc αc βc At Ar d
−PLe
ij (1)

For IoT devices, we consider omnidirectional antennas where
At = Ar = 1. On the other hand, ET uses directional antennas
with antenna azimuth angles φ and elevation angles φ, in
degree. Therefore, we can approximate At by [7]

At ≈
30, 000

φ φ
(2)

Let P txi (c, z) be the transmission power of IoT device i over
channel c and during time slot z. Hence, the signal to noise
plus interference ratio for the signal transmitted by IoT device
i and received by IoT device j over channel c and during slot
z is given by

γij(c, z) =
P txi (c, z) Gcij∑

q∈S\i P
tx
q (c, z) Gcqj +Nj

. (3)

where Nj =
∑
r∈P P

cell
r (c, z) Gcrj + N0W and P cellr (c, z)

is transmission power of the rth cellular users to the BS over
channel c and during slot z, N0 is the noise spectral density and
W is the channel bandwidth. Accordingly, we can calculate the
data rate of the transmission from IoT device i to IoT device
j over channel c and during time slot z as follows:

Rij(c, z) = W log2

(
1 + γij(c, z)

)
(4)

We define a binary indicator function Hcei which equals one
when IoT device i is located within the energy harvesting zone

of the eth ET, ETe, that transfer energy over channel c. Thus,
Hcei is defined as follows:

Hcei =

{
1, dei ≤

(
PET
maxPLc αc βc At Ar

ΓEH

) 1
PLe

0, otherwise.
(5)

where PETmax is maximum transmission power for each ET and
ΓEH is energy harvesting threshold for minimum input power
that enables the IoT device to harvest energy.

III. PROBLEM FORMULATION

Let Xi(c, z) and Hi(c, z) be binary variables equal one only
if IoT device i transmits data or harvest energy, respectively,
over channel c and during slot z. Similarly, the binary variables
Xij(c, z) and Hei(c, z) equal one only if IoT device i transmits
data to a receiver j or harvest energy from ETe, respectively,
over channel c and during slot z. Since we assumed that the
IoT device has a single radio, it can only transmit, receive or
harvest energy at a time. Therefore,∑

c∈C

[
Xi(c, z) +

∑
∀k∈S

Xki(c, z)
]

+
∑
c∈C

Hi(c, z) ≤ 1,

∀i ∈ S, z ∈ Z.
(6)

Let fyij(c, z) be a variable representing the data flow destined
for destination y ∈ d, in bits, from transmitter i to receiver j
over channel c and during slot z. Hence, Xij(c, z) equals one
only if there is a data flow from i to j over channel c and during
slot z, i.e. 0 < fyij(c, z). Therefore, we have the following:

Xij(c, z) ≤
|d|∑
y=1

fyij(c, z), ∀i ∈ S, j ∈ S,∀c ∈ C, z ∈ Z. (7)

fyij(c, z)

v
≤ Xij(c, z), ∀i ∈ S, j ∈ S, c ∈ C, y ∈ d, z ∈ Z. (8)

where v is the multicast message size, in bits.
Since the solutions of Xi(c, z) and Xij(c, z) depend on each

other, Xi(c, z) equals one only if ∃ Xij(c, z) = 1. Thus, we
have

Xi(c, z) ≤
∑
j∈S

Xij(c, z), ∀i ∈ S, c ∈ C, z ∈ Z. (9)

and ∑
j∈S Xij(c, z)

|S|
≤ Xi(c, z),∀i ∈ S, c ∈ C, z ∈ Z. (10)

Similarly for Hi(c, z), we have the following:

Hi(c, z) ≤
∑

e∈ETS
Hei(c, z), ∀i ∈ S, c ∈ C, z ∈ Z. (11)∑

e∈ETS Hei(c, z)

|ETS|
≤ Hi(c, z), i ∈ S, c ∈ C, z ∈ Z. (12)

Let Γ be a signal strength threshold for successful reception
of a signal. Hence, γij(c, z) is lower bounded by Γ as follows:

ΓXij(c, z) ≤ γij(c, z), ∀i ∈ S, j ∈ S, c ∈ C, z ∈ Z. (13)

The flow over each link cannot be greater that the maximum
number of bits that can be transmitted. Therefore,
fyij(c, z) ≤ Rij(c, z)T, ∀i ∈ S, j ∈ S, y ∈ d, c ∈ C, z ∈ Z. (14)
Transmission power of the IoT device is zero when it is not

transmitting, i.e.,
P txi (c, z) ≤ P txmaxXi(c, z), ∀i ∈ S, c ∈ C, z ∈ Z. (15)

where Pmax is the maximum transmission power.



To route a multicast message of size v bits from a source s
to a set of destination d, we have

|Z|∑
z=1

∑
c∈C

∑
i∈S\s

fyis(c, z) = 0, ∀y ∈ d. (16)

|Z|∑
z=1

∑
c∈C

∑
j∈S\y

fyyj(c, z) = 0, ∀y ∈ d. (17)

|Z|∑
z=1

∑
c∈C

∑
j∈S\s

fysj(c, z) = v, ∀y ∈ d. (18)

|Z|∑
z=1

∑
c∈C

∑
i∈S\y

fyiy(c, z) = v, ∀y ∈ d. (19)

and |Z|∑
z=1

∑
c∈C

∑
n∈S\y

fyni(c, z) =

|Z|∑
z=1

∑
c∈C

∑
j∈S\s

fyij(c, z),

∀i ∈ S\(s ∪ y), ∀y ∈ d.

(20)

where flow bifurcation is allowed.
The IoT device must avoid causing harmful interference to the

transmissions of the regular cellular users. Therefore,

Γcell Xcell
k (c, z) ≤ P cellk (c, z)Gckb∑

i∈S P
tx
i (c, z) Gcib +N0W

∀k ∈ P, c ∈ C, z ∈ Z.
(21)

where Γcell is a threshold of the maximum allowable interference to
the regular cellular users and Xcell

k (c, z) is a parameter equals one
when the regular cellular user k transmits to the BS over channel c
and at time slot z and zero otherwise.

Let Etxi (z) and EHi (z) be the total energy consumed and harvested
by IoT i during slot z, respectively, which are given by

Etxi (z) =
∑
c∈C

P txi (c, z)T. (22)

and
EHi (z) =

∑
c∈C

∑
k∈ETS

TηPETki (c, z)Gcki. (23)

where PETki (c, z) is the transmission power of ETk to IoT device i
over channel c and during slot z, and η is energy harvesting efficiency.
Moreover, PETei (c, z) equals zero if the IoT device i is not scheduled
for receiving energy from ETe over channel c and during slot z.
Hence,

PETei (c, z) ≤ PETmaxHei(c, z),
∀e ∈ ETS,∀i ∈ S,∀c ∈ C, z ∈ Z.

(24)

To incentivize IoT devices to forward the multicast message, ETs
send amount of energy to each IoT participating in forwarding the
multicast message such that the total received energy is not less than
the total consumed energy in multicast message transmission, i.e.,

|I|∑
z=1

Etxi (z) ≤
|I|∑
z=1

EHi (z), ∀i ∈ S. (25)

Let ΓEH be the minimum input power to the energy harvester of
the IoT device to be able to harvest energy. Accordingly, IoT devices
require that the received signal is greater that ΓEH to enable them to
harvest energy. Therefore,

ΓEHHei(c, z) ≤ PETei (c, z)Gcei,

∀e ∈ ETS,∀i ∈ S,∀c ∈ C, z ∈ Z.
(26)

Furthermore, successful energy harvesting necessitates that the IoT
device is located within an energy harvesting zone of an ET, i.e.,

Hei(c, z) ≤ Hcei, ∀e ∈ ETS, i ∈ S,∀c ∈ C, z ∈ Z. (27)

Let BLiniti and BLmaxi be initial and maximum battery level of
the IoT device, respectively. Battery level of IoT device i during slot
z, BLi(z), is defined as follows:

BLi(1) = BLiniti , ∀i ∈ S. (28)
BLi(z) = BLi(z − 1)− Etxi (z) + EHi (z)

∀i ∈ S, z ∈ Z\1.
(29)

Since the battery level cannot exceed its maximum capacity or be
negative, we have,

0 ≤ BLi(z) ≤ BLmaxi ∀i ∈ S, z ∈ Z\1. (30)
Moreover, the IoT device can transmit only if its battery level is not
less than a certain threshold, BLmin. Hence,

Xi(c, z) ≤
BLi(z)

BLmin
, ∀i ∈ S, c ∈ C, z ∈ Z. (31)

The objective is to minimize the total transmitted energy from all
ETs. Therefore, we formulate the optimization problem as follows:

P1 : Minimize :
∑

e∈ETS

∑
i∈S

∑
c∈C

|I|∑
z=1

PETei (c, z) T (32)

Subject to:
Constraints (6-21), (24-31).

Xi(c, z), Xi,j(c, z), Hi(c, z), Hei(c, z) ∈ {0, 1},
∀i ∈ S, j ∈ S, e ∈ ETS, c ∈ C, c ∈ C, z ∈ Z.

(33)

0 ≤ fyij(c, z) ≤ v, ∀i, j ∈ S, y ∈ d, c ∈ C, z ∈ Z. (34)

0 ≤ P txi (c, z) ≤ P txmax, ∀i ∈ S, c ∈ C, z ∈ Z. (35)

0 ≤ PETei (c, z) ≤ PETmax,
∀e ∈ETS, i ∈ S, c ∈ C, z ∈ Z.

(36)

IV. GENERALIZED BENDERS DECOMPOSITION WITH
SEQUENTIAL CONVEX PROGRAMMING (GBD-SCP)

In section III, the formulated problem is a Mixed Integer Nonlinear
Program (MINLP), which is NP-Hard problem [8]. Moreover, the
problem is considered non-convex MINLP, and there is no efficient
method to solve the problem optimally. To facilitate finding a solution
for the optimization problem, we first find a concave lower bound
for equation (4) to approximate the data rate function. Then, we
employ Successive Convex Programming (SCP) within Generalized
Bender Decomposition (GBD) algorithm [9] to solve problem P1. In
GBD, we decompose problem P1 into a Primal Problem (convex Non
Linear Program (NLP)) and a Master Problem (Mixed Integer Linear
Program (MILP)). Then, we solve these subproblems iteratively until
converging to a certain solution.

To derive a concave lower bound for equation (4), we rewrite the
data rate function as follows:

Rij(c, z) = W log2

(
1 +

P txi (c, z) Gcij∑
q∈S\i P

tx
q (c, z) Gcqj +Nj

)
= W log2

(∑
q∈S

P txq (c, z) Gcqj +Nj
)
−

W log2

( ∑
q∈S\i

P txq (c, z) Gcqj +Nj
)

︸ ︷︷ ︸
, R̂ij(c,z)

(39)

Then, we find an upper bound for R̂ij(c, z) using its first-order Taylor
approximation around a point P̃i(c, z) as follows:

R̂ij(c, z) ≤W log2

( ∑
q∈S\i

P̃q(c, z) G
c
qj +Nj

)
+

∑
q∈S\i

WGcqj log2(e)[P txi (c, z)− P̃i(c, z)]
[
∑
r∈S\i P̃r(c, z) G

c
rj +Nj ]

, R̃upij (c, z)

(40)



L
(
Xi(c, z), Xij(c, z), Hi(c, z), Hei(c, z), f

y(k)
ij (c, z), P

tx(k)
i (c, z), P

ET (k)
ei (c, z)

)
=

∑
ẽ∈ETS

∑̃
i∈S

∑̃
c∈C

|I|∑̃
z=1

P
ET (k)

ẽ̃i
(c̃, z̃) T+

λk(i, j, c, z)
(
Xij(c, z)−

|d|∑
q=1

f
q(k)
ij (c, z)

)
+ Λk(i, j, y, c, z)

(
f
y(k)
ij (c,z)

v
−Xij(c, z)

)
+ Θk(i, , z)

(
Xi(c, z)− BLi(z)

(k)

BLmin

)
+

Ωk(e, i, c, z)
(
P
ET (k)
ei (c, z)− PETmax Hei(c, z)

)
+ θk(i, j, y, c, z)

(
f
y(k)
ij (c, z)−Xij(c, z) R

(k)
ij (c, z) T

)
+

ωk(i, c, z)
(
P
tx(k)
i (c, z)− P txmaxXi(c, z)

)
+ ψk(e, i, c, z)

(
ΓEHHei(c, z)− PET (k)

ei (c, z)Gcei

)
+

ζk(i, j, c, z)
(

ΓXij(c, z)
[ ∑
q∈S\i

P
tx(k)
q (c, z)Gcqj + αij

]
− P tx(k)

i (c, z)Gcij

)
.

(37)

L̂
(
Xi(c, z), Xij(c, z), Hi(c, z), Hei(c, z), f

y(l)
ij (c, z), P

tx(l)
i (c, z), P

ET (l)
ei (c, z)

)
= λ̂l(i, j, c, z)

(
Xij(c, z)−

∑|d|
q=1 f

q(l)
ij (c, z)

)
+Λ̂l(i, j, y, c, z)

(
f
y(l)
ij (c,z)

v
−Xij(c, z)

)
+ Θ̂l(i, c, z)

(
Xi(c, z)− BLi(z)

(l)

BLmin

)
+ Ω̂l(e, i, c, z)

(
P
ET (l)
ei (c, z)− PETmax Hei(c, z)

)
+θ̂l(i, j, y, c, z)

(
f
y(l)
ij (c, z)−Xij(c, z) R

(l)
ij (c, z) T

)
+ +ψ̂l(e, i, c, z)

(
ΓEHHei(c, z)− PET (l)

ei (c, z)Gcei

)
ω̂l(i, c, z)

(
P
tx(l)
i (c, z)− P txmaxXi(c, z) + ζ̂l(i, j, c, z)

(
ΓXij(c, z)

[∑
q∈S\i P

tx(l)
q (c, z)Gcqj + αij

]
− P tx(l)

i (c, z)Gcij

))
. (38)

From equation (40), we can approximate the data rate function by its
concave lower bound, Rij(c, z), as follows:

Rij(c, z) ,W log2

(∑
q∈S

P txq (c, z)Gcqj +Nj
)
− R̃upij (c, z) (41)

Note: We use + superscript on the binary variable in this paper to
show that the binary variable value is fixed. In addition, we use (k) and
(l) superscripts on the continuous variable to show that the continuous
variable value is fixed after solving the primal and feasibility problems,
respectively, in the kth and lth times, respectively.
A. Primal Problem

In the primal problem, we fix all binary variables and approximate
the data rate function by its concave lower bound function, i.e.
equation Rij(c, z). The goal of solving the primal problem is to find
an upper bound for the solution given by GBD-SCP algorithm. The
resulting optimization problem is in a form of a convex NLP, and it
is formulated as follows:

P2.1 : Minimize :

π =
∑

e∈ETS

∑
i∈S

∑
c∈C

|I|∑
z=1

PETei (c, z) T
(42)

Subject to:
Constraints (16-21), (25), (28-30) and (34-36).

X+
ij(c, z)−

|d|∑
y=1

fyij(c, z) ≤ 0,

∀i ∈ S, j ∈ S, c ∈ C, z ∈ Z.

(43)

fyij(c, z)

v
−X+

ij(c, z) ≤ 0,

∀i ∈S, j ∈ S, c ∈ C, y ∈ d, z ∈ Z.
(44)

P txi (c, z)− P txmaxX+
i (c, z) ≤ 0, ∀i ∈ S, c ∈ C, z ∈ Z. (45)

PETei (c, z)− PETmax H+
i (c, z) ≤ 0,

∀e ∈ ETS, i ∈ S, c ∈ C, z ∈ Z.
(46)

fyij(c, z)−X
+
ij(c, z) Rij(c, z) T ≤ 0,

∀i ∈ S, j ∈ S, y ∈ d, c ∈ C, z ∈ Z.
(47)

X+
i (c, z)− BLi(z)

BLmin
≤ 0,∀i ∈ S, c ∈ C, z ∈ Z. (48)

Γ X+
ij(c, z)

[ ∑
q∈S\i

P txq (c, z) Gcqj + αij
]
− P txi (c, z) Gcij ≤ 0

∀i ∈ S, j ∈ S, c ∈ C, z ∈ Z.
(49)

ΓEHH+
ei(c, z)− P

ET
ei (c, z)Gcei ≤ 0,

∀e ∈ ETS, i ∈ S, c ∈ C, z ∈ Z.
(50)

B. Feasibility Problem
The master problem uses Lagrange multipliers associated with the

constraints (43-50) in the primal problem to get a lower bound for the
solution of GBD-SCP algorithm. However, when the solution of the
primal problem is not feasible, GBD-SCP uses Lagrange multipliers
for the feasibility problem instead. Feasibility problem is similar to
the primal problem except the following: 1) We introduce upper
bound variables for the constraints associated with constraints (43-
50) in the primal problem, and 2) The objective function for the
feasibility problem is minimizing the summation of all these upper
bound variables.

C. Master Problem
The goal of solving the master problem is to get a lower bound for

the solution of GBD-SCP algorithm. In the master problem, we fix all
continuous variables and solve the problem as an MILP. Let Φ(k) and
Φ̂(l) be the sets of Lagrange multipliers associated with the constraints
(43-50) in the primal problem and the corresponding constraints in
the feasibility problems, respectively, after solving them for the kth

and lth times, respectively. Hence, Φ(k) and Φ̂(l) are defined, respec-
tively as follows: Φ(k) = {λk(i, j, c, z), Λk(i, j, y, c, z), ωk(i, c, z),
Ωk(e, i, c, z), θk(i, j, y, c, z), Θk(i, c, z), ζk(i, j, c, z), ψk(e, i, c, z)},
and Φ(l) = {λ̂l(i, j, c, z), Λ̂l(i, j, y, c, z), ω̂l(i, c, z), Ω̂l(e, i, c, z),
θ̂l(i, j, y, c, z), Θ̂l(i, c, z), ζ̂l(i, j, c, z) , ψ̂l(e, i, c, z)}, ∀i ∈ S, j ∈ S,
e ∈ ETS, y ∈ d, c ∈ C, c ∈ C, z ∈ Z, 1 ≤ n ≤ k. The
support functions in equation (37) and (38) are defined in term of the
aforementioned Lagrange multipliers and the binary variables. Hence,
the master problem can be formulated to find a lower bound for GBD-
SCP as follows:

P2.2 : Minimize : µ (51)
Subject to:

Constraints (6), (9-12), (27), (33).

L
(
Xi(c, z), Xij(c, z), Hi(c, z), Hei(c, z), f

y(n)
ij (c, z),

P
tx(n)
i (c, z), P

ET (n)
ei (c, z)

)
≤ µ

∀i ∈ S, j ∈ S,e ∈ ETS, y ∈ d, c ∈ C, c ∈ C, z ∈ Z, 1 ≤ n ≤ k.
(52)

L̂
(
Xi(c, z), Xij(c, z), Hi(c, z), Hei(c, z), f

y(q)
ij (c, z),

P
tx(q)
i (c, z), P

ET (q)
ei (c, z)

)
≤ 0

∀i ∈ S, j ∈ S,e ∈ ETS, y ∈ d, c ∈ C, c ∈ C, z ∈ Z, 1 ≤ q ≤ l.
(53)



Algorithm 1: Generalized Benders Decomposition
with Sequential Convex Programming (GBD-SCP)

1 Select initial fixed values for the binary variables and
P̃i(c, z), solve problem P2.1 successively using
Algorithm 2, and let its solution and the corresponding
Lagrange multipliers set be π(1) and Φ(1), respectively.

2 Set k = 1, l = 0, UB = π(1).
3 Set P̃i(c, z) = P tx∗i (c, z) and fix all continuous variables.
4 Solve problem P2.2.
5 Let the solution of P2.2 be µ∗, and set LB = µ∗.
6 if (UB − LB) < ε then
7 Terminate.
8 else
9 P̃i(c, z) = P tx∗i (c, z)X∗i (c, z).

10 Fix all binary variables.

11 Solve problem P2.1 successively using Algorithm 2, and
let the solution be π(k).

12 Find the Lagrange multipliers set, Φ(k), if π(k) is feasible.
13 if (π(k) is feasible) then
14 UB = min(UB, π(k)).
15 if (UB − LB) < ε then
16 Terminate.
17 else
18 k = k + 1. P̃i(c, z) = P tx∗i (c, z).

19 else
20 Solve the feasibility problem.
21 Find the Lagrange multipliers set, Φ̂(l).
22 P̃i(c, z) = P tx∗i (c, z), and fix all continuous variables.
23 l = l + 1.

24 Go to step 4.

Algorithm 2: Sequential Convex Programming (SCP)

1 r = 1, Π(0) =∞
2 while (r 6= Max iterations) do
3 Solve problem P2.1, and let its solution be Π(r).
4 if (The solution is feasible) then
5 if (Π(r−1) −Π(r) > δ) then
6 Let P̃i(c, z) = P tx∗i (c, z) and r = r + 1.
7 else
8 Set π(k) = Π(r) and terminate.

9 else
10 Terminate.

D. GBD-SCP Algorithm Description
Algorithm 1 shows the steps used to solve the optimization problem

iteratively using GBD and SCP. First, we select initial values for
the binary variables and P̃i(c, z), then GBD-SCP solves the primal
problem using SCP which is described in Algorithm 2. Without loss
of generality, we assume that we can find initial values of the binary
variables that lead to a feasible solution for problem P2.1. We solve a
problem that minimizes the sum of the binary variables subject to all
linear constraints in problem P1 that are related to the binary and flow
variables. Then, we select the solutions of the binary variables as initial
values for the binary variables in GBD-SCP algorithm. Moreover,
the initial value of P̃i(c, z) is the maximum transmission power.
Accordingly, GBD-SCP finds the solution of problem P2.1, π(1), and
the corresponding Lagrange multipliers set Φ(1). If we cannot find

initial values that lead to a feasible solution for the primal problem,
then we need to solve the feasibility problem after that to get the
Lagrange multipliers set Φ̂(1) and increase l counter by 1.

GBD-SCP initializes the counters k and l and the upper bound
UB as shown in step 2. In steps 3-4, GBD-SCP updates the value of
P̃i(c, z), fixes the continuous variables and solves problem P2.2. In
steps 5-10, GBD-SCP selects the solution of P2.2 as a lower bound,
LB, and it terminates if the difference between UB and LB is less
than ε. Otherwise, GBD-SCP updates P̃i(c, z) and fixes all binary
variables.

In steps 11-12, GBD-SCP solves P2.1 using SCP, and hence, find
the Lagrange multipliers set Φ(k) and the solution of P2.1, π(k). If
the solution of P2.1 is feasible, GBD-SCP updates the upper bound
value as shown in steps 11-12. In steps 15-18, GBD-SCP increases the
counter k and updates the value of P̃i(c, z) if the difference between
UB and LB is greater than or equal to ε, and it terminates otherwise.
If the solution of P2.1 is not feasible, GBD-SCP solves the feasibility
problem to find the Lagrange multipliers set Φ̂(l) as shown in steps
20-21. Then, it updates P̃i(c, z), fixes the continuous variables and
increases the counter l in steps 22-23. The algorithm iterates until the
termination condition is met. It is shown in [9] that GBD algorithm
terminates in a finite number of steps.

V. SIMULATION RESULTS

In this section, we present simulation results for our proposed
work to minimize total transmitted energy for ETs to IoT devices
in cellular networks. We use SCIP [10], IPOPT [11] and CPLEX [12]
under (GAMS) [13] to solve problems P1, P2 and P3, respectively.
SCIP employs a spatial branch-and-bound algorithm to solve convex
and non-convex MINLP optimally [10]. Cellular and Iot devices are
uniformly distributed, and we use two network sizes in the simulation.
Unless specified otherwise, the network sizes are: 1) Small network:
consists of 9 ETs operating over 2 channels, 10 IoT and 5 cellular
devices operating over 2 channels and 3 destinations for the multicast
session and 2) Large network: consists of 25 ETs operating over 5
channels, 15 IoT and 8 cellular devices operation over 5 channels and
5 destinations for the multicast session.

We compare the performance of GBD-SCP with optimal solution
when the network size is small due to difficulty of obtaining the
optimal solution when the number of variables is very large. The
ETs are located within 100 meters of the BS as assumed in [3].
The multipath fading is exponentially distributed with unit mean.
Moreover, the distribution of the shadowing is log-normal standard
deviation of 8 dB. Table I shows the rest of the simulation parameters.

TABLE I: Simulation Parameters

Parameter Value

PLc 0.01
PLe 2
PET

max 20 W
PBS 20 W
W 6 MHz
η 0.652
v 1 Mb

P tx
max 250 mW
T 0.1 sec

ΓEH -21 dBm

Parameter Value

N0 -174 dbm/Hz
BLmin 10 mAh
BLinit

i 300 mAh
BLmax

i 500 mAh
φ 15◦

φ 20◦

Γ 10
Γcell 10
ε 0.01
δ 0.01

Table II shows the total transmitted energy from all ETs and the
computation time for the optimal and GBD-SCP algorithm. When
the network size is small, the performance of GBD-SCP is close to
the optimal in term of total transmitted energy. On the other hand,
there is no efficient way to obtain the optimal solution when the
network size is large since the computational complexity increases
rapidly by increasing the number of variables. It is shown that the
total transmitted energy when the network size is large is less that the
total transmitted energy when the network size is small. The reason



for that is the number of ETs in the large network size is greater than
the number of ETs in the small network size. We show in the section
the positive effect of increasing the number of ETs in the amount of
the total transmitted energy.

TABLE II: GBD-SCP algorithm performance

Network size

Small
Large

Transmitted Energy
Optimal GBD-SCP

0.711 0.72
N/A 0.256

Computation Time
Optimal GBD-SCP

443 8.89
N/A 874

Table II shows also the computation times when we solve the prob-
lem optimally and when we use GBD-SCP algorithm for both small
and large networks. For small network size, it is shown that GBD-SCP
algorithm reduces the computation time significantly. This is due to
approximating the non-convex data rate function and decomposing the
problem into a convex NLP and an MILP subproblems. Furthermore,
the computation time for GBD-SCP increases when the network size is
large. This increase in time is due to the rapid increase in the number
of variables, and that leads to more computation time requirement. On
the other hand, there is no efficient way to obtain the optimal solution
for the MINLP problem when the network size is large due to the
increase in the number of variables. However, GBD-SCP can provide
solutions for large network size since the primal problem is convex
and the master problem is an MILP which can be solved efficiently
using CPLEX solver.
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Fig. 2: Transmitted energy vs number of ETs.
Fig. 2 shows the total transmitted energy when GBD-SCP algorithm

is used and the number of channels, cellular devices and destinations
are 4, 7 and 5, respectively. It is shown how the total transmitted
energy is related to the number of ETs in the network. The total
transmitted energy by all ETs in the network decreases significantly
when the number of ETs increases. The reason is that increasing the
number of ETs can help the IoT devices to receive energy from ETs
with better channels conditions. Hence, the total transmitted energy is
reduced while satisfying the energy demands for the IoT devices. On
the other hand, the transmitting IoT can forward the multicast message
through the base station or through another IoT to the destination.
When the channel condition to a neighboring IoT is better than the
channel condition to the base station, the IoT can select forwarding
the multicast message through the neighboring IoT if that leads to
minimizing the energy used for transmission. Accordingly, the total
transmitted energy to the transmitting IoT can be reduced. Since
increasing the number of IoT devices in the network increases the
possibility of forwarding the multicast message through neighboring
IoT devices with better channel conditions, this can lead to reducing
the consumed energy for transmission, and hence, reducing the total
transmitted energy by ETs as shown in Fig. 2 .

Fig. 3 shows total transmitted energy versus the number of multicast
destinations in the network when the number of channels, cellular
devices and ETs are 4, 3 and 25, respectively. Increasing the number
of destinations can lead to more IoT devices engaging in forwarding
the multicast messages, and hence, more energy consumption for
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Fig. 3: Transmitted energy vs number of destinations.

multicast message transmission. Therefore, ETs tend to transfer more
energy to the IoT devices when the number of multicast destinations
increases as shown in Fig. 3. Increasing the number of cellular users
can lead to more interference to the receiving IoT devices. Therefore,
the transmitting IoT may require more energy for data transmission.
Accordingly, the ETs transmit more energy to the IoT devices to satisfy
their energy demands.

VI. CONCLUSION
In this paper, we considered energy harvesting-based multicast

communication in cellular IoT. We proposed to wirelessly power
the IoT multicast communication to encourage the IoT device to
participate in forwarding the multicast messages while not depleting
their battery in collaboration. Our formulated problem is a non-convex
MINLP, where there is no efficient way to solve it in general. The
data rate function is non-convex, and hence, we approximate it with
a concave lower bound function. Then, we utilized GBD algorithm
with SCP to decompose the optimization problem into a convex NLP
and a MILP subproblems. We evaluated the performance of GBD-SCP
algorithm and we showed that it achieves a performance close to the
optimal while the computation time is reduced significantly.
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