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Abstract—Reconfigurable intelligent surfaces (RISs) have
emerged as efficient and cost-effective technique to enhance
a great variety of possible performances of the Internet of
Things (IoT) systems by reconfiguring the propagation environ-
ment. Motivated by this, we investigate the RIS-assisted edge
computing systems for batteryless IoT sensors (b-IoT) under
Rician fading channel conditions. We consider a fixed time
frame divided into three slots. A b-IoT sensor harvests energy
from radio frequency signals from a nearby base station (BS)
during the first time slot. While performing local computation,
the b-IoT sensor offloads computation bits to the BS and an
IoT sensor using device-to-device communications protocol in
the second and final time slots, respectively. An offloading ratio
differentiates the fraction of computational bits, offloaded to
BS and IoT sensors. We formulate the optimization problem
with the convex sum of computational bits as objective function
and energy consumption, offloading ratio, and energy harvesting
constraints. We propose a gradient descent-based iterative algo-
rithm to solve the optimization problem. Simulation assessments
depict RIS panel-assisted edge computing and energy harvesting
enhances the performance by more than 90% compared to the
traditional baseline schemes, such as networks with no RIS
panel.

Keywords—RIS panel, passive elements, IoT sensor, edge
computing, energy harvesting.

I. INTRODUCTION

Through intelligent sensing and communication, Internet

of Things (IoT) systems provide massive wireless con-

nectivity for emerging technologies, such as smart cities,

autonomous vehicles, etc. For example, mobile data traffic

growth/year is about 30% between 2018 to 2024, with each

sensor data usage from 6 to 23 GB/month [1]. These emerg-

ing technologies require continuous information updates and

complex computational processing. This issue becomes even

more critical for batteryless IoT (b-IoT) sensors due to their

communications and on-board computational requirements

under energy resources constraints. Edge computing, provid-

ing computing execution resources for sensors close to end-

users, and energy harvesting are viable solutions to overcome

the computational complexity with limited on-board energy

constraints of b-IoT sensors.

b-IoT sensors encounter considerable challenges of re-

alizing energy-efficient, low-performance, and low latency

processors [2]. External power sources must provide energy

to b-IoT sensors in order to support their operations. Given

the complexity and higher expense, harvesting energy from

external sources like solar or wind is not always viable

solution approach. Energy harvesting, therefore, from nearby

base station (BS) radio frequency (RF) signals attracts grow-

ing interest, thanks to converting harvested RF signals into

electricity. Hence, energy harvesting provides a stable and

controllable energy source to prolong b-IoT sensors’ lifetime.

Reconfigurable intelligent surfaces (RISs) may have pas-

sive elements to control the reflection angle and attenuation

of the incident signals. The receiving nodes receive stronger

signals and enhance the performance. Therefore, adding an

RIS panel makes energy harvesting and channel modeling

robust by creating intelligent radio environments. Hence,

enabling propagation paths to be co-designed with physical

layer signaling [3]. Incorporating RIS panels into the net-

works further maximizes the channel gain between nodes

due to artificial incident signals reconfiguration.

The RIS panels can be used to enhance b-IoT systems

performance. However, the benefits of RIS panels to edge

computing systems for b-IoT sensors receive little attention

in the literature. For example, the RIS panel assisted-edge

computing was studied to leverage edge computing during

the offloading time [4]. The authors in [5] investigated the

energy consumption model to compute bits and associated

delay for assessing RIS-assisted edge computing systems.

The sum computation bits are investigated to measure system

performance to assess the edge computing system. The

authors in [6] investigated the RIS-assisted edge computing

maximization to achieve an optimal resource allocation.

However, they do not consider the on-board energy constraint

of the nodes. In [7], the authors proposed a RIS panel-assisted

edge computing to design an efficient computing algorithm

from resource-constrained mobile devices. The authors in

[8] proposed power transfer relaying protocols for energy-

constrained relay nodes by using power splitting and time

switching receivers. However, the authors did not deploy the

RIS panel and efficient edge computing in their model.

The contribution of this paper is as follows: We propose

a multi-purpose use of the RIS panel with passive elements

powered by harvested energy, as shown in Fig. 1. We model

all possible communications links using Rician fading with-

out/through the RIS panel between communicating nodes.



To assess the RIS panel-assisted edge computing system, we

optimize the sum computation bits to leverage the benefits

of the RIS panel over the computation performed. We divide

a fixed duration time frame divided into three optimal time

slots, named as phases, which are summarized as follows:

(1) Phase I: b-IoT sensor, S harvests energy from nearby

BS RF signals during the first time slot. For local and

offloaded computation, an energy efficiency factor determines

the fraction of energy harvested by S. (2) Phase II: S offloads

computation bits to the BS in the second optimal time slot.

(3) Phase III: S then offloads the remaining computation

bits to IoT sensor, D using a D2D communications protocol

in the last time slot. We propose a gradient descent based-

iterative algorithm by taking the Lagrangian multiplier into

account to solve the non-convex optimization problem.

In the paper organization, we describe the system model,

the optimization problem, its solution, the simulation results,

and the conclusion in Section I - IV, respectively.

II. SYSTEM MODEL

RIS panel

S D BS 

RF harvesting link
Offloaded to BS
Offloaded to D

Energy harvesting 
during time Te

Total time: T
Offloading to BS 
during time Tb

Offloading to D 
during time Td

Fig. 1: System model

We consider IoT systems with batteryless sensors, assisted

by an RIS panel, where each device is equipped with a single

antenna element and edge computing capabilities. Each of

these IoT sensors is referred to b-IoT. The RIS panel, having

N passive elements, is powered by energy harvested from

BS RF signals and y is each contributing element power

consumption. We assume that the passive elements of the RIS

panel are ideal and control the incident signals’ reflection

angle and phase shift. b-IoT sensor, S, has a computation

task, which may be processed locally or offloaded to nodes,

such as a BS and an IoT sensor, D, followed by an offloading

ratio. The total time is divided into repeating time frames, and

each frame with duration, T , is divided into three optimal

slots, namely Te, Tb, and Td. S harvests energy from BS RF

signals during Te time. Using the harvested energy, S offloads

computation tasks to the BS during the Tb time slot and D
during the Td time slot. Table I summarizes the parameters

used in the paper.

A. Phase I: Energy harvesting from BS RF signals

1) RIS panel: Passive elements of the RIS panel are

designed to reflect the incident signals to the destination of

interest. Each passive element is smaller than the wavelength,

TABLE I: List of symbols used in the paper

Symbol Description Symbol Description
w{.} Variables c{.}, ω Constants

T Total time λ{.}, Variables

pb BS power m{.} Variables

λr Wavelength hbs, hsb BS-S gains
N RIS elements B{.} Computation bits

K Rician factor W{.} Bandwidth

e Harvested energy α, β, γ Reflection coefficient
ζ Efficiency factor δ[.] Path loss exponent

y Each element power Θ{.} Diagonal matrix
f Fractional number v{.} Comm. overhead

ρ Offloading ratio pc,bs S power circuit to BS
em Min. harv. energy T{.} Time for Phase I-III

hSR,RS S-RIS gains θ{.} RIS phase shift
hRD RIS-D gains p, q, r RIS in Phase I-III
Cc CPU cycle/bit pc,d2d S power circuit to D
hB Gains between S-BS P,Q,R Variables
Φ Dual function L Lagrangian multiplier
hD Gains betn S-D hEH Gains at energy harves.
hsd S-D gain d Midpoint array distance

hBR,RB BS-RIS gain [.]† Conjugate matrix
Ce Eff. capacitance co-eff. Cf Centre frequency

λr. The authors in [9] showed that a passive element is

a square patch of size λr

5 × λr

5 , where λr is the signal

wavelength, to behave as diffusers with no strong intrinsic

guidance. The elements adjust the reflection coefficient to

reflect the signals with nearly the same gain into the direc-

tions of interest. We express the RIS panel properties in a

diagonal N ×N matrix during the energy harvesting period

as follows: Θe = diag(α1e
jθe

1 , α2e
jθe

2 , ..., αNejθ
e
N ), where

αi ∈ [0, 1] is amplitude reflection coefficient and θei is the

RIS passive elements phase-shift.

2) Channel gain: We consider the channel gain from the

BS to S, the BS to RIS, and RIS to S are hbs, hBR ∈ C
N×1,

and hRS ∈ C
N×1, respectively. The effective channel gain

from S to the BS is:

hEH = hbs + h†
BRΘehRS (1)

The direct link from the BS to S channel gain, by adopting

Rician fading, is given as follows:

hbs =

√
β−1
bs√

K + 1
(
√
Khlos

bs + hnlos
bs ) (2)

where βbs = 16π2dδ1

λ2 . δ1 is the path loss exponent and d
is communicating node midpoint array distance. The ele-

ments of hnlos
bs , and hlos

bs are independently and identically

distributed (i.i.d.) according to CN (0, 1). K ∈ [0,+∞) is

Rician factor. The channel gains for given Θe is:

h†
BRΘ

ehRS =

N∑
n=1

αne
jθe

n [h†
BR]n[hRS]n (3)

Phase shift, θen is selected in the sum to be the same phase

of hbs. θen, therefore, is expressed as [10]:

θen = arg(hbs)− arg([h†
BR]n[hRS]n) (4)



3) Energy harvesting: We assume that b-IoT sensor has

compatible hardware components required for energy har-

vesting. S leverages energy harvesting from BS RF signals

to support its operations while also decoding BS RF signals

from data recipients. The received BS RF signals is converted

into direct current through a rectifier. The rectifier consists

of the passive low-pass filter and Schottky diode. Harvested

energy from BS RF signals during Te is:

e = max
θe
1,...,θ

e
N

ζTepb(hbs + h†
BRΘehRS)

2

=ζTepb(hbs + p[h†
BR]n[hRS]n)

2
(5)

where pb is BS transmit power. Te is the time used during en-

ergy harvesting. ζ is energy efficiency factor. [.]† is conjugate

transpose matrix. p is contributing elements from N .

4) Local Computation: The number of locally computed

bits is [11]:
Bl = (Tb + Td)

Cf

Cc
(6)

where Tb and Td are the computation offloading time for BS

and D, respectively. Cc is the CPU cycle number per bit

required for local computation. Cf is the center frequency.

5) Energy consumption for local computation: We assume

no overhead associated with the partition of computation bits.

The energy consumed for local computation is [11]:

El = (Tb + Td)CeC
3
f (7)

where Ce defines chip architecture-depended effective capac-

itance coefficient of the processor.
B. Phase II: computation offloading to BS

1) RIS properties: We express the RIS properties during

the offloading to BS as N ×N diagonal matrix as follows:

Θb = diag(β1e
jθb

1 , β2e
jθb

2 , .., βke
jθb

N , βNejθ
b
N ), where βi ∈

[0, 1] is the amplitude reflection coefficient and θbi is passive

elements phase-shift. q is contributing elements from N .

2) Channel gain: We consider channel gain from S to the

BS, S to RIS, and RIS to BS are hsb, hSR ∈ C
N×1, and

hRB ∈ C
N×1, respectively. Channel gain from BS-to-S is:

hB = hsb + h†
SRΘbhRB (8)

We adopt the Rician fading but in the opposite Phase from

II-A2, which is defined as hsb. For any given Θb, we have

gains as h†
SRΘ

bhRB =
∑N

n=1 αne
jθe

n [h†
SR]n[hRB]n. Phase

shift, θbn is selected in the sum to be the same Phase of hbs.

θbn is expressed as θbn = arg(hsb)− arg([h†
SR]n[hRB]n).

3) Energy consumption for BS: After computation, the BS

sends back the outcome to S. The BS has sufficient CPU

capability to assume that offloading time is negligible since

the BS may have high power and computation capability.

Authors in [11] suggest that Computation and downloading

steps have a negligible effect on the computation process.

We, therefore, adopt these assumptions in our model. The

consumed energy to offload to the BS is expressed as follows:

Eb = Tb(
fe

Tb
+ pc,bs) (9)

where pc,bs defines circuit power of S during offloading to

the BS. f defines the fraction of the harvested energy used

to compute offloaded bits to BS. e is defined from (5).

4) Computation at BS: The offloading Phase has offload-

ing, computing, and downloading steps. The computation

offloading tasks of S include raw data encryption and packet

header. S offloads the maximum bits to the BS during Tb,

which is expressed as follows:

Bb = max
θb
1,...,θ

b
N

ρ
TbW1

vb
log2

(
1 +

fe

Tb

hB
2

σ2

)

=ρ
TbW1

vb
log2

(
1 +

fe

Tb

h
′
B

2

σ2

) (10)

where h
′
B = hsb + q[h†

SR]n[hRB]n. vb > 1 is the communi-

cation overhead. W1 is the bandwidth. ρ is the computation

offloading ratio. σ2 denotes the noise power.

C. Phase III: computation offloading to D

1) RIS properties: We express the RIS properties for

passive elements to S during the offloading to the

D as N × N diagonal matrix as follows: Θd =
diag(γ1e

jθd
1 , γ2e

jθd
2 , .., γNejθ

d
N ), where γi ∈ [0, 1] is the

fixed amplitude reflection coefficient and θdi is the phase-

shift. r is the number of contributing elements from N .

2) Channel gain: Let the channel matrix from S to D, S
to RIS, and RIS to D are hsd, hSR ∈ C

N×1, and hRD ∈
C

N×1, respectively. Thus, the channel gain from the BS to

S is expressed as follows:

hD = hsd + h†
SRΘdhRD (11)

The direct link from the BS to S channel gain, by adopting

Rician fading, is given as follows:

hsd =

√
β−1
sd√

K + 1
(
√
Khlos

sd + hnlos
sd ) (12)

where βsd = 16π2dδ2

λ2 . δ2 is the path loss exponent. The

elements of hnlos
sd , and hlos

sd are i.i.d. according to CN (0, 1).
K ∈ [0,+∞) is Rician factor. For any given Θd, we have

gains as h†
SRΘ

dhRD =
∑N

n=1 αne
jθe

n [h†
SR]n[hRD]n. Phase

shift, θen is selected in the sum to be the same Phase of hbs.

θdn is expressed as θdn = arg(hsd)− arg([h†
SR]n[hRD]n).

3) Energy consumption for D: S offloads computation

bits to D, followed by D2D communications protocol, during

Td. The consumed energy to offload to D is:

Ed = Td(
(1− f)e

Td
+ pc,d2d) (13)

where pc,d2d is circuit power of S during offloading to D.



4) Computation at D: S offloads the remaining bits to D,

which is expressed as follows:

Bd=max
θd
1 ,..,θ

d
N

(1− ρ)
TbW2

vd
log2

(
1 +

(1− f)e

Td

hD
2

σ2

)

=(1− ρ)
TbW2

vd
log2

(
1 +

(1− f)e

Td

h
′
D

2

σ2

) (14)

where h
′
D = hsd + r[h†

SR]n[hRD]n. vd > 1 indicates the

communication overhead. W2 is the bandwidth.

III. OPTIMIZATION PROBLEM

We jointly optimize time allocations, Te, Tb, Td, number

of RIS elements, and the offloading ratios with the objective

of maximizing the sum of computation bits is:

max
p,q,r,Te,Tb,Td,ρ

Bl +Bb +Bd (15a)

s.t. et ≤ ζTepb(hbs + p[h†
BR]n[hRS]n)

2 (15b)

py ≤ (N − p)e, qy ≤ (N − q)e, ry ≤ (N − r)e (15c)

0 ≤ ρ ≤ 1 (15d)

p ≤ N, q ≤ N, r ≤ N (15e)

(7), (9), (13)

The objective function in (15a) maximizes both locally

and offloaded computed bits. The energy harvesting model

is shown in (15b), where et is the threshold. Power consumed

by RIS passive elements, p, q, and r during Phase I, II, and

III, respectively, are described in (15c). The offloading ratio

is bounded in (15d).

IV. PROPOSED SOLUTION

Problem (15) is not convex due to (15a) - (15c) con-

taining the coupling of optimizing variables, making (15)

challenging to solve. We tackle the coupling of non-convex

energy harvesting from BS RF signal constraint in (15b) by

defining as follows: et ≤ Teen, where en = ζpb(hbs +
p[h†

BR]n[hRS]n)
2. We transform (15) as follows:

max
p,q,r,Te,Tb,Td,ρ,en,w1,w2

Bl + wb + wd (16a)

s.t. wb ≤ Bb, wd ≤ Bd (16b)

py ≤ (N − p)Teen (16c)

qy ≤ (N − q)Teen (16d)

ry ≤ (N − r)Teen (16e)

et ≤ Teen (16f)

(7), (9), (13), (15d), (15e)

where wb and wd are newly introduced variables.

Lemma 1: Let {λ∗
b}, {λ∗

d}, {p∗}, {q∗}, {r∗}, {T ∗
e }, {T ∗

b },

{T ∗
d }, {ρ∗}, {w∗

b}, {w∗
d} be the optimal variables of (16),

where λb, λd, wb and wd are auxiliary variables. There must

be {λ∗
b}, {λ∗

d} so that optimizing variables satisfy Karush-

Kuhn-Tucker condition such that λ∗
b = λb, λ

∗
d = λd, wb =

w∗
b , wd = w∗

d. We analyze wb ≤ Bb from (16b) as follows:

0 ≤ Bn
b

Tb
(17)

where Bn
b = 1+ c2Teh

′
B

2 − Tb(1− 2
wb

m1c1 ). c1 = W1

vb
, c2 =

fen

σ2 . We define m1 = ρTb to address the coupling variables

issue. We reformulate wd ≤ Bd from (16b) as follows:

0 ≤ Bn
d

Td
(18)

where Bn
d = 1 + c4Teh

′
D

2 − Td(1 − 2
wd

m2c3 ), c3 = W2

vb
,

c4 = (1−f)en

σ2 . We define m2 = (1 − ρ)Td to address the

coupling variables issue. Similarly, we reformulate (16c) -

(16e) as follows:

0≤(NTe − P )en − py

py
, 0≤(NTe −Q)en − qy

qy
,

0 ≤ (NTe −R)en − ry

ry

(19)

where P = Tep, Q = Teq, R = Ter are defined to address

the coupling variables issues and also for rotational brevity.

We reformulate (16) using (17) - (19) as follows:

max
p,q,r,P,Q,R,Te,
Td,Tb,m1,m2,en

λlBl+λb(B
n
b −wbTb)+λd(B

n
d −wdTd) (20a)

s.t. 0 ≤ λp((NTe − P )en − py)− wppy) (20b)

0 ≤ λq((NTe −Q)en − qy)− wqqy) (20c)

0 ≤ λr((NTe −R)en − ry)− wrry) (20d)

(7), (9), (13), (15e), (16f)

({p∗},{q∗},{r∗},{P ∗},{Q∗},{R∗}, {T ∗
e }, {T ∗

d },{T ∗
b },

{m∗
1}, {m∗

2}) satisfy for λi = λ∗
i , wi = w∗

i , where

i ∈ {l, b, d, p, q, r, P,Q,R}. λi and wi should satisfy the

following conditions.

λb=
1

Tb
,λd=

1

Td
,λp=

1

py
,λq=

1

qy
,λr=

1

ry
,wb=

Bn
b

Tb
,wd=

Bn
d

Td
, wp=

(NTe−P )en−py
py

, wp=
(NTe−P )en−py

py
,

wq=
(NTe−Q)en−qy

qy
, wr=

(NTe−R)en−ry
ry

(21)

Proof: We prove Lemma 1 by considering Lagrange func-

tion of (20). A detailed proof is shown in [12].

We apply Lemma 1 to achive the solutions of λi, and wi

from (20). Hence, Lagrange function of (20) is:

L=λlBl+λb(B
n
b −wbTb)+λd(B

n
d−wdTd)−λP ((NTe

−P )en)−λp(py−wppy)−λQ((NTe−Q)en)− λq(

qy−wqqy)−λR((NTe−R)en)−λr(ry−wrry)−
λeh(et − Teen)− λec(El + Eb + Ed)

(22)

We define λec and λeh as non-negative Lagrange multipli-

ers for (16f). We conclude that it is easy to prove that (20) is



convex for a given λi and wi. A strong duality exists between

primary and dual problems. Hence, (20) is equivalent to the

solution of the dual problem. This transformation is expressed

as follows:

min
λi,wi

Φ(λi, wi) (23)

where i ∈ {l, b, d, p, q, r, P,Q,R} and

Φ(λi, wi) = max
p,q,r,P,Q,R,Te,
Tb,Td,m1,m2

L (24)

In the next step, we find the solution of λi, wi, and L. The

gradient descent method guides L and the auxiliary variables

to be updated. Using (22), we maximize the dual function as

follows:

Φ = max
p,q,r,P,Q,R,Te,
Tb,Td,m1,m2

λlBl+λbB
n
b+λdB

n
d −λecEl−λecEb (25)

−λecEdλb − wbTb−λdwdTd−enλP (NTe−P )−λQen

(NTe−Q)−λRen(NTe−R)− λppy − λqqy − λrry + ω

where ω is the sum of values irrelevant to the optimizing

variables. We achieve the optimal solution by taking the first

order derivative of Lagrange function as follows:

p∗ = λpy, q∗ = λqy, r∗ = λry, P
∗ = λPen,

Q∗ = λQen, R∗ = λRen
(26)

T ∗
d = λl

Cf

Ce
+ λd(1− 2

Bt
d

m∗
2c3 ) + λec(CeC

3
f − (1− f)

en − λ1)− λdwd

(27)

T ∗
b = λl

Cf

Ce
+ λb(1− 2

Bt
b

m∗
1c1 ) + λec(CeC

3
f − f

en − λ2)− λbwb

(28)

T ∗
e =λbc2h

′
B

2
+ λdc4h

′
D

2
λec(fen − λ3T

∗
b − (1− f)

(en − λ4T
∗
d ) + λehen − λPNen

− λQNen − λRNen

(29)

Plugging the value of (26) - (29) in (20) results a linear

maximization problem. The optimization problem, therefore,

can be solved using interior-point methods [13]. We summa-

rize the solution in an algorithm as follows:

Algorithm 1 Enhanced Edge Computing Algorithm

1: Initialize: i = 0, λi, and wi

2: repeat
3: Achieve p∗, q∗, r∗ from (26), T ∗

d from (27), T ∗
b from

(28), and T ∗
e from (29)

4: Solve (20) using p∗, q∗, r∗, T ∗
d , T

∗
b , T

∗
e .

5: Update Lagrange multipliers and auxiliary variables

from i → i+ 1
6: Output of the optimal enhanced edge computing

7: until convergence

Updating the Lagrange variables has the complexity of

O(K2) due to the 3K +1 number of variables. O(z) means

that the upper limit of complexity increases with an order

of z. Hence, the complexity of Algorithm 1 is O(K7).
Algorithm 1 guarantees the convergence [14].

V. SIMULATION RESULTS

We show simulation results in this section. The BS,

S, D, and RIS panels are deployed at fixed locations.

The distance between two communicating nodes deter-

mines their corresponding channel gains. We consider T ∈
{50, 100, 150, 200, 250} ms, N ∈ {50, 100, 150, 200, 250},

σ2 = −94 dBm, ζ = [0, 1), pb = 2 W, em = 0.1 mJ, and

vb = vd = 2.
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Fig. 2 shows that the convergence of the optimization

problem is fast and occurs at the fifth iteration. Fig. 3 shows

the number of computed bits when we vary the number of

passive elements of the RIS panel and compare it to the

case when the system does not deploy an RIS panel, i.e.,

N = 0. The RIS panel plays a critical role in offloading an

optimal number of bits to the BS and D since we adopt a

Rician fading channel between S and the BS and D. With

no RIS panel, S offloads a trivial fraction of computational

bits to other nodes due to adverse channel conditions. Hence

S primarily performs local computation and computes only

a tiny fraction of bits. When the number of passive elements

increases, S offloads bits to other nodes. Due to BS’s higher

computation handling capacity than D, the BS computes a

higher fraction of offloaded bits. We find that around 90% of



computational bits are performed by S and the BS, while D
performs small fraction computations.
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Fig. 4: Energy harvesting from BS RF signals

In Fig 4, we show the performance of harvested energy,

in the form of a histogram, for the various number of

passive elements and compare it to the case when N=0.

A fewer RIS panel passive elements reduces the number of

micro-controllers used for RIS. Eventually, it becomes less

expensive with less hardware complexity. However, a higher

number of passive elements guarantees a higher fraction of

energy from BS RF signals. Fig. 4 also shows that a higher

amount of energy is harvested from BS RF signals for the

optimal number of passive elements and efficiency factors.

For example, N = 150 defines our proposed algorithm to find

the optimal number of passive elements between N = 0 to

150 to harvest the optimal fraction of BS RF signals. Even for

higher ζ, energy harvesting does not increase when N = 0.

This is because we adopt Rician fading between BS-to-S,

hence, weakening the received signals significantly.
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Fig. 5: Computational offloading time vs. total time

In Fig. 5, computational offloading time varies for total

time and compare it N = 0. Due to the more significant

number of passive elements, all possible links are reflected

by the RIS panel to the IoT sensors. The offloading time

increases the total time frame increases. This is obvious

because higher total time allows S to offload more bits than

local computation. On the other hand, the remaining time is

utilized for energy harvesting from BS RF signals.

VI. CONCLUSION
We study the RIS panel-assisted edge computing systems

for b-IoT sensors in an adverse Rician fading channel con-

dition. We investigate the effect of RIS passive elements

on energy harvesting and the offloading computation per-

formance for a b-IoT sensor for a given time frame, divided

into three optimal slots. RIS panel passive elements adjust the

phase shift and reflect the incident signals to the receiving

nodes, significantly enhancing energy harvesting and edge

computation performance. The b-IoT sensor harvests energy

from RF signals from a nearby BS for use in computation and

communications. Then b-IoT performs the local computation

and offloads the remaining bits to the BS in the second time

slots and another IoT sensor in the last time slot, following

an offloading ratio. An optimization problem is formulated

to maximize the sum of computational bits, subject to energy

consumption at each stage, offloading ratio, and passive

elements of RIS. We propose an iterative algorithm to achieve

optimal solutions to the non-convex optimization problem.

Simulation results show the advantage of edge computing

RIS panel assisted systems for b-IoT sensors.
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