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Abstract—Energy Harvesting and Energy Efficient (EEH) Cog-
nitive Radio Networks (CRNs) is one of the key technologies to
meet the next generation wireless network demands for high
energy and spectrum efficiency. EEH-CRNs can enable self-
sustaining green communications by reducing the energy cost
and harvesting the ambient energy sources while capitalizing the
idle spectrum simultaneously. In this paper, we first propose a
hybrid EH-SU model to harvest energy from both renewable
sources, e.g. solar, and ambient radio frequency signals. A
general hybrid cooperative spectrum sensing (CSS) scheme is
then considered with and without energy half-duplex (EHD)
constraint which prevents SUs from charging and discharging
the battery at the same time. As an alternative to common
homogeneity assumption, we propose a heterogeneous EEH-
CSS scheme to exploit heterogeneous sensing and reporting
channel characteristics of SUs. After formulating the energy
state evolution under stochastic energy arrivals, a convex myopic
EEH-CSS policy optimization framework is then developed to
jointly obtain the optimal harvesting ratio, sensing duration and
detection threshold of each SU to maximize the total achievable
throughput subject to collision and energy-causality constraints.
Obtained results show that the proposed heterogeneous approach
delivers %45 and %230 more throughput than the homogeneous
one with and without EHD constraint, respectively. Furthermore,
if the EHD constraint is mitigated, proposed heterogeneous
approach provides %400 and %240 more throughput than the
EHD constrained homogeneous and heterogeneous EHE-CSS

schemes, respectively.
I. INTRODUCTION

A. Motivation

To fulfill the ambitious demands of the next generation
wireless communication networks, e.g. 1000 times heavier
data traffic and 100 times less energy consumption per bit
[1], researchers in both academy and industry focus on energy
and spectrum efficient solutions. CRNs have already received
a great attention from both communities to mitigate the
inefficient fixed spectrum allocation policy with the novel
idea of utilizing idle licensed spectrum in an opportunistic
manner. However, a substantial portion of above demands
has recently migrated to mobile wireless networks and de-
vices with limited energy resources. Considering the fact that
30% of the energy expenditure of mobile devices is caused
by wireless networking and computing modules [2], energy
efficient (EE) CRNs play a vital role to provide portable
devices with more spectrum for less energy consumption.
Because approximately 2% of the worldwide C' Oy emissions
is caused by the communications and information technologies
[4], energy efficient policies are becoming more important to

achieve green communication standards.

In this regard, communication community recently focuses
on EH communications to obtain significant advantages over
traditional grid-powered and non-rechargeable and/or battery-
powered wireless devices [5]. By harvesting required energy
from alternative natural resources such as solar, vibrational,
thermoelectric, and radio frequency (RF) signals etc., EH
cognitive radios (CRs) can achieve self-sustaining green com-
munications. For a given amount of energy, conventional EE-
CRNs aims to minimize the total sensing energy consumption
subject to the fundamental collision constraint to prevent
unlicensed users, a.k.a secondary users (SUs), from interfering
with the licensed users, a.k.a primary users (PUs). In EH
systems, on the other hand, energy needed for sensing and data
transmission arrives intermittently and in random magnitudes
of energy because of the random nature of EH sources.
Then, the ultimate goal of EEH-CRNs would be, not only
to minimize the over-all energy consumption, but to also
maintain sensing and transmitting tasks under random and
intermittent energy arrivals. Such a goal dictates an extra
fundamental limit on the capacity of traditional CRNs: energy-
causality constraint which states that the energy harvested by
a time instant must be greater than or equal to the consumed
energy until that time instant [6]. Furthermore, ultra-capacitors
are preferred to store harvested energy due to their high
power density, good recycling ability, and near perfect storing
efficiency. Albeit these favorable features, ultra-capacitors are
subject to energy half-duplex (EHD) constraint which prevents
SUs from charging and discharging simultaneously. As a
result, EHD constraint leads to a performance degradation
in harvested energy amount and available time left for data
transmission because SUs have to share the available time for
harvesting, sensing, and transmitting [7].

B. Related Work

In his early work, Sultan considers a non-cooperative spec-
trum sensing where a single EH-SU tries to maximize the
throughput while making decision on being either dormant
or active to sense the primary channel (PC) based on a
Markov decision process (MDP) [8]. In [9]-[11], authors
investigate the effects of energy arrivals on spectrum sensing
and access policies of a single EH-SU. In accordance with
the energy arrival rate, they also define energy-limited and
spectrum-limited regimes for a fixed sensing duration. Even



though above works provide a valuable insight into the non-
cooperative EH spectrum sensing, detection performance of
a single SU is severely affected by channel impairments. As
a remedy, Cooperative spectrum sensing (CSS) is a powerful
solution to alleviate these by taking advantage of the spatial
diversity of SUs to obtain higher confidence [12]. Moreover,
[9]-[11] optimize the energy consumption of the SU by
adjusting the detection threshold for a fixed sensing duration.
However, joint optimization of sensing durations and detection
thresholds of SUs is necessary in CSS.

Inspired by [13], Yin et al. studies the fundamental tradeoffs
among harvesting, sensing, and transmission duration in CSS
with the EHD constraint [14]. Based on homogeneous signal-
to-noise-ratio (SNR) and perfect common control channel
(CCC) assumption, they develop the theoretical basis of CSS
under the EHD constraint. Likewise, for a homogeneous EH-
CSS scenario where SUs harvest energy from RF signals, the
optimal sensing probability and harvesting duration of each
SU is obtained to maximize the throughput while satisfying the
energy causality and PU collision constraints [15]. Similarly,
authors of [16] consider a homogeneous CSS setting to find
the optimum balance between average probability of global
detection, probability of false alarm and probability of having
an active SU to transmit with the available harvested energy.
On the other hand, Ala et al. propose two strategies using
which the individual needs are reflected on the final decision
by means of adjusting the local detection thresholds [17].
Finally, a finite-horizon POMDP is considered to obtain the
optimal cooperation among the SUs for sensing and access to
maximize throughput with the available energy while satisfy-
ing the PU detection constraint [18]. CSS schemes in [14]-
[18] use the OR’ fusion rule which is mathematically more
tractable but less energy efficient [19]. Except [17], [14]-
[18] do not consider the imperfection of CCC. However, the
total energy consumption of CSS increases with the increasing
reporting error until an error wall after which reliable spectrum
sensing is not feasible [20]. In particular, heterogeneity of the
sensing and reporting quality of cooperating SUs is another
complexity which is not considered in these works.

C. Main Contributions and Novelty
The main contributions of this paper can be summarized as:

1) In this paper, we propose a hybrid EH-CSS scheme
where SUs can harvest energy from both renewable
sources, e.g. solar, and ambient RF signals. In order to
mitigate the EHD constraint, Luo et al. proposed the
simple and yet novel idea of using two different ultra-
capacitors to charge and discharge at the same time [7].
Accordingly, we generalize their model to investigate the
performance of a hybrid EH-CSS with and without the
EHD constraint.

2) Under the common assumption of homogeneous sensing
and reporting channels (e.g., identical SNRs, reporting
errors etc.), optimal sensing durations of all SUs will
be the same. In this case, Binomially distributed K -out-
of-N rule is extensively employed to conclude a global

decision by enforcing SUs to have identical detection
and false alarm reports at fusion center (FC). In practical
cases where SUs have heterogeneous sensing and report-
ing channel qualities, however, enforcing SUs to have
identical local reports at the FC will cause more energy
consumption since SUs with relatively low SNRs are
required to sense longer. As a result, Binomial K-out-
of-N is also throughput inefficient under heterogeneous
scenarios since the FC must wait for the slowest SU.
This is mainly because of the fact that the FC will
not diffuse back the final decision and access policy
until it collects all reports. Therefore, to capitalize from
the sensing and reporting quality diversity of SUs, we
propose a heterogeneous CSS framework by employing
a Poisson-Binomial (P-Binomial) based K -out-of-NN rule
where SUs with different sensing and reporting qualities
are allowed to have different reported detection perfor-
mances.

3) After demonstrating the differences in the timeslotted
operation of SUs due to the heterogeneity, we develop
the energy state evolution for EH-CSS with and without
EHD constraint. Based on SUs’ energy states, a convex
myopic policy optimization framework is developed
to find the optimal EH policy to jointly obtain the
optimal harvesting ratio, sensing duration and detection
threshold of each SU which maximizes the sum of the
achievable throughput of SUs subject to collision and
energy-causality constraints.

4) The performance of CSS with/without EHD constraint
and under homogeneity/heterogeneity is numerically an-
alyzed. Obtained results clearly show that the proposed
heterogeneous CSS scheme without EHD constraint
gives the best performance in terms of sensing energy
cost reduction, achievable throughput maximization and
harvested energy accumulation.

D. Paper Organization

The rest of this paper is organized as follows: Section-II
models the hybrid EH based on stochastic energy arrivals.
Section-1III, introduces the proposed CSS scheme. After that,
Section-IV characterizes the energy state evolution of each
SU and formulates the convex myopic policy optimization.
Numerical results are presented in Section-V. Finally, we
conclude the paper in Section-VI with a few remarks.

II. SYSTEM MODEL

We consider a CRN comprised of a single PC and M
time synchronous and self-powered EH-SUs. The PU works
in a time slotted fashion such that the PC is either in a
busy or idle state for a given timeslot. Similarly, SUs also
cooperatively operate in timeslots of 7' seconds to harvest,
sense and utilize the PC. To facilitate the analysis in this paper,
we assume that SUs always have data to transmit and demands
for as higher achievable throughput if available. We model the
stochastic energy arrival rate of SU m as a random variable
A, in [Joule/s] which follows a general distribution function



with mean \,, and variance Ufn. For example, A,, can be
interpreted as the received amount of energy per time unit
with respect to received luminous intensity of a solar panel in
a particular direction per unit solid angle. The energy arrival
rate within a timeslot ¢, /\fn, is assumed to be time invariant.
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Figure 1: Generalized Hybrid EH-SU Model.

Based on the idea in [7], generalized hybrid EH-SU model
is shown in Figure 1 where the switch (a) splits the renew-
able energy arrivals in time without interrupting the sensing-
reporting-transmitting of the SU; p,,T and (1 — p;,)T dura-
tions are allocated for storing the harvested energy on the PES
and the SES, respectively. The switch (b) works in opposite
direction of the switch (a) to power the SU, i.e., while the PES
(SES) collects energy arrivals the SES (PES) powers the SU.
Assuming negligible time and energy loss due to switching, the
SU will be able to harvest energy for the whole timeslot while
powering the SU uninterruptedly. Right after execution of the
local sensing, reporting and receiving the global decision, CSS
unit toggles the switch (c) to position O in the case of PU
absence to transmit secondary data, otherwise it toggles the
purple switch to position 1 to harvest RF energy from the
busy PC. To put distinction between each other, we refer to
CSS schemes with and without EHD constraint as energy half-
duplex system (EHS) and energy full-duplex system (EFS),
respectively.
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Figure 2: Time-slot Representation of SUs with (a) EHS and (b) EFS.

A. Time-slotted Operation for Energy Half-Duplex (EHD) CSS

EHS can be obtained as a specific case of the generalized
model in Figure 1 by eliminating the SES and keeping the
switch (b) in position 1 all the time. In the EHS, as shown in
Figure 2.a, SU m harvest renewable energy for p,,,T" seconds,
then use the stored available energy from the previous timeslot
along with the harvested energy in the current timeslot to
complete CSS tasks. Right after the sensing duration, SUs
except for the slowest one keep harvesting energy until they
receive a global decision feedback from the FC, which is
shown as a multicolor portion of the timeslot in 2.a. Based on

the decision, the residual time will be used for the secondary
data transmission by toggling the switch (c) to position O if
the PC is idle, otherwise it will be toggled to position 1 for
RF-EH until the beginning of next timeslot.

B. Time-slotted Operation for Energy Full-Duplex (EFD) CSS

The timeslotted operation of the EFS is demonstrated in
Figure 2.b where the positions of switches have also been
shown in zeros and ones for the first SU to provide readers
with more insight into operation of the generalized model.
By using the SES, the SUs are now able to harvest energy
for the entire timeslot while also using the entire timeslot
for sensing and transmitting/RF harvesting. As mentioned
earlier, the different sensing duration of SUs problem still
applies and SUs put themselves into sleep mode to save energy
until they receive a decision from the FC. Threfore, EFS
intuitively provides : 1) More harvested energy, and 2) more
throughput, since the timeslot is not shared between harvesting
and sensing+transmission. We also note that both EHS and
EFS models may further be simplified for SUs which are solely
empowered by RF-EH by eliminating the renewable energy
harvester and replacing the RF energy harvester with it.

III. COOPERATIVE SPECTRUM SENSING

Since the focus of this paper is the EH aspects of CRNs, a
generic sensing method like energy detection is adequate for
local detectors. Energy detectors (EDs) have been extensively
exploited as the ubiquitous sensing technique in the literature
due to its simplicity, compatibility with any signal type, and
low computational and implementation complexity [21]. We
denote the binomial hypothesis for the idle and busy state
of the PC as Hy and Hi, respectively. Based on long time
observations, the secondary network is aware of the apriori
probability of idle and busy state of the PC which are denoted
as mp = P [Ho] and m; = P [H.], respectively. To detect
primary signals, ED of SU m measure the received signal
energy for a number of samples N,, and compares it with a
threshold ¢, to decide on the PU activity status. For a large
enough number of samples (/V,,, > 30) and normalized noise
variance, probability of false alarm, P/, and probability of

m>

detection, P2, are respectively given by [13]

Pl (Nm,em) = Q [(em ~1) \/E} (1)
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where v, and Q(-) denote the SNR of SU,, and the Q-
function, respectively. After the local sensing process, SUs
send their hard results, u.,, to the FC over a binary symmet-
ric CCC. Denoting the reporting error probability as P, =
P [t = 1ty = 0] = P [l = O|uy, = 1] where i, is the
hard decision received by the FC, the local false alarm and
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Table I: Energy States at the beginning of timeslot ¢, SZ,.

detection probabilities received at the FC side are given by

P! =P iy = 1ty = 0] P [, = O|H]
+ P [ = L = 1 P [ = 1|Ho]

=P,(1-P)+(1-B)P, 3)
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=P (1-Pp) +(1-R) Py, )

The FC collects u,,’s and makes the global decision using the

following test
M
=

m=1
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which follows the P-Binomial distribution (Under the common
homogeneity assumption, K follows Binomial distributions as
a special case by enforcing P/ = P/, Pl = Pl vm).
Using equations (3) and (4) in P-Binomial distribution, the
FC obtains the global false alarm and detection probabilities
by fusing the local reports as follows [22]
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where F; is the set of all subsets of ¢ integers that can be
selected from {1,2,3,...,M}. Since F; has (") elements,
using an efficient method to calculate Eq. (6) and (7) is very
important, especially when M is very large. For this purpose,
probability mass function (pmf) and cumulative distribution
function of P-Binomial random variables can be expeditiously
calculated in order of O(M log, M) from polynomial coeffi-
cients of the probability generating function of K [23].

IV. ENERGY STATE EVOLUTION AND MYOPIC POLICY
OPTIMIZATION

In EH-CSS, energy states of SUs evolve over time such
that energy state in the next timeslot depends on the energy
state and action taken (i.e., duration of harvesting, sensing,
and transmitting) in the current timeslot. For EHS, there is a
single battery with Let n}, € [0,1] (n2, € [0,1]) and S}, (5%)

denote the storing efficiency and storage capacity of the SES
(PES), respectively. For the sake of comparison, we assume

that EHS and EFS have exactly the same total battery capacity,
ie. Sh =8/ =S + S2 where superscripts h and f refer
to EHS and EFS, respectively. At the beginning of the each
timeslot ¢, SU is aware of available energy levels in the PES
and SES. RF energy harvesting rate is given by

XLt = Pl 1[PEL) " > P Watt] ®)
where P denotes the transmission power of the RF source,
(6L,)~* is the path loss over the distance &, with the cor-
responding path loss exponent a, 17/ denotes the efficiency
of RF-to-DC converter circuit, and I [P(6%,)~* > P] is the
indicator function to impose RF-to-DC circuitry sensitivity on
the received RF power such that there is no gain if the received

power is less than the sensitivity threshold, P.

We define the maximum time spent for harvesting+sensing
for EHS/EFS in (9)/(10), the net gained energy until the
global decision feedback for EHS/EFS in (11)/(12), harvested
energy from RF source for EHS/EFS in (13)/(14), and the
total harvested energy from renewable source for EFS in (15)
as follows

" = max (p T + Ny, T) )
I/ = max (N,,T%) (10)
Al =My (T" = N, T,) — Ny B (11)
Al =M [homT + 0, [0 = p 1] = N Es - (12)
At =N (T - T") (13)
ATES = arit (T —T7) (14)
T = )‘in [mlnpm + 7772n (1- Pm)] T (15)

where T is the sensing duration per sample, F, is the
sensing energy expenditure per sample, [z]* £ max(0,x),
E!* min (E,,, S:" + A,,) is the transmission energy
where 0 < F,, < 5, is the allocated transmission energy for
SU,,. By setting E,, = an_ L+ A,,, SUs exhaust all available
residual energy for secondary data transmission, otherwise
residual energy of SUs for the next timeslot will be S?, which
is shown for all four cases in Table I. For normalized powers,
the total expected achievable throughput of the secondary

network is then given by

Ry =mo (1— Qf)Rgo

T-Th
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T —mrh] (16)
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where E!* is the transmission energy of the SU m. Based
on energy state evolution of SUs, an optimal design for EH
and sensing strategy can be formulated as an MDP with an
uncountable and continuous state and action space. Hence, we
will consider a myopic policy which only focuses on current
timeslot by ignoring its effects on future rewards, thus, SUs
will decide to sense and transmit whenever they satisfy the
energy causality constraint. It has been shown that a myopic
policy is very close to the optimal policy with greatly reduced
computational cost [24]. Accordingly, we can formulate the
problem of maximizing the achievable throughput for EHS as
in Py where we take the logarithm of (16) to put the objective
in a convex form. P is a convex mixed-integer non-linear
programming (MINLP) problem whose mixed-integer nature
is due to the variables N,, and . It is a practical approach to
relax the problem by unintegerizing N,,. After obtaining the
optimal reel valued solution, one can obtain the closest upper
integer value, which does not negatively effect the system
performance since N,, >> 1 and 715, E; << 1. For the
rest of the paper, we will employ the majority voting rule,
k = [M/2] where [-] denotes the ceiling operation, which has
already been shown to be the optimal voting rule for required
minimum SNR (i.e. required minimum sensing energy cost)
of CSS [20]. Therefore, the following convexity analysis is
based on the unintegerization of NV, for k = [M/2].

P, pf?,%v}'fn log, (o) +log, (1 — Q) + log, (Rg())
Em, VM

1 st logy (Qq) <logy (Qq)

2 Pl <0.5, Vm

3: 0.5< P, ¥m

4: 0o<T-1"

5 0< S+ AL, VYm

6 0 <S5 + A ttmpmT < Sl Ym

7 30 < Ny, <T/T;, Ym

8: keNt, N, eR" ccR, ¥m

The first term of the objective function is a constant and out
of the consideration. The second term is a concave function
since Q7 (Qq) are log-concave functions of PJ, (PZ) in both
Binomial and P-Binomial distribution cases [19]. It is also non-
decreasing in ]571; (Pffl) since Q7 (Qq) intuitively increases
as SUs report with more confidence. Constraints in line 2
(line 3) is required to ensure the convexity (concavity) of
Pf < 0.5 (P2 > 0.5) since Q(-) < 0.5 (Q(-) > 0.5)
is a convex (concave) function. Indeed, constraining local
detection probabilities to be higher than 0.5 and false alarm
probabilities to be lower than 0.5 do not contradict practical
cases of interests. P < 0.5 (P4 > 0.5) also ensures the
the convexity (concavity) of P/ (P%) since non-negative

weighted summation preserves the convexity (concavity). Fur-
thermore, exploiting the convex composition mechanics [25],
the concavity of the log(l — Q) and the first constraint,
log(Q4) > 1log(Qq), can be proven as in [19].

The last term in the objective is the logarithm of R, which
is a function of I'" in (9). I'" is a piece-wise maximum of
functions g, (pm, Nm) = pmT + NpTs which is a linear
function of (pm, Nym) and constant for (p,, Ny), Vn #m €
[1, M]. Since piece-wise maximization preserves the convexity
and gy, (pm, Nom ), Vm is linear, T is a convex function of
(pms Nm), Vm, which is again followed from the convex
composition rules. On the other hand, since log(1l + x) is
concave and monotonically non-decreasing for non-negative x
and perspective operation preserves concavity [25], the inner
part of the last term can be considered as the perspective
function of I'*. Thus, the last term of the objective is also
concave following from the convex composition rules. Con-
straint 4, T < T, defines the upper-bound of the maximum
harvesting+sensing time as the timeslot duration. Constraint
5 enforces the system to have enough storage to execute the
sensing operation for N,, E; amount of energy. Constraint 6
limits the harvesting rate since harvesting and storing energy
up to a fully charged battery will not provide any additional
energy. In constraint 7, IV,,, is lower-bounded to evoke the cen-
tral limit theorem and upper-bounded to maximum permissible
number of samples within a timeslot duration. For EFS, P4
can be modified to become P5 as follows:

Py: max, - logy (m) +logs (1 - Q) +logs (Rio)

1 s.t. log, (Qd) < logy (Qq)

2 0.5 < PL VYm

3 Pl <0.5, ¥m

4: o<T -1/

5: 0< S&)%tfl +Sg@,t71 + A, Vm

6 0< 80" 4+ Altpm T < Sy, ¥m

7 0< S+ A, (1= pm) T < S5, Vm
8 30 < Ny, < T/Ts, ¥m

9 keNt N, eR", ccR, Vm

where constraints 5, 6 and 7 is adapted for EFS to apply
the same reasoning given above. Even though the convexity
analysis of P, follows the same spirit of P4, it is worth
indicating that the objective function of Po is free of p,,.
Unlike in EHS, this is because of the EFS feature that the
entire timeslot is accessible for both harvesting and sensing
+ transmitting. SUs can spend the harvested energy in the
beginning of a timeslot within the same timeslot, which
requires joint optimization of all variables. Hence, if we allow
SUs to expend only the residual energy from the previous
timeslot, variables p,, and (N,,, €,, k) can be separated



inherently. Such a policy can be formulated as

Pg: max Yo, =X, [Mpm + 1 (1= )] T
1: st 0<SETL LNl o, T < SE Vm
2: 0< S N2 (1 —p)T < S2, Vm

where the objective is the total harvested energy during the
entire timeslot and harvesting ratios are limited to the PES
and SES capacity in lines 1 and 2, respectively. So that, once
one of them is fully charged, we will switch to other in order
to avoid wasting the energy arrivals. P3 can equivalently be
written as

P4 : max p, AL, (n,ln — 77,2,1) T
Pm

S%{t—l an _ S?n’t_l
1: st max (0,—)\%7711”11, — /\an?nT ) <
Sl _ Sl,t—l SQ,t—l
P = 10D <1’ YR A:nnfnT)

Based on P4, finding the optimal harvesting policy of EFS is
trivial and can be analyzed in three different cases:
1) nl, =n2: Any p,, within the feasible region is optimal.
2) nl, > n2: Optimal p,, is attained at the upper bound.
3) nl, < n?: Optimal p,, is attained at the lower bound.
Please note that the optimal harvesting ratio is independent
from the storage capacities, S}, and SZ,.

V. RESULTS AND ANALYSIS

To have identical total storage capacity and storing ef-
ficiency to establish a fair comparison between EHS and
EFS, we deliberately enforce them to gave identical storage
efficiency and total capacity. We assume that energy arrival
intensity follows Gamma distribution with shape and scale
parameters k and 6, respectively. To clearly show the impacts
of heterogeneity, we consider cooperation of 5 SUs with —5,
—10, —15, —20, —25 SNRs in dB. Unless it is explicitly stated
otherwise, we employ the parameters given in Table II.
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Figure 3: Comparison of homogeneous and heterogeneous cases: Optimal
timeslot portions for (a) homogeneous and (b) heterogeneous; P;i, P,{L, and
sensing duration for (a) homogeneous and (b) heterogeneous.

hand, while SUs with relatively low SNRs are relaxed to
have P4 ~ Pf ~ 0.5, SUs with relatively high SNRs are
enforced to have nearly perfect local detection performances,
P? ~ P/ ~ 1 as shown in subplots (b) and (d). Therefore, by
exploiting the SNR diversity of SUs, proposed approach yields
a decreased sensing time (thus, energy) and increased time
availability for harvesting and transmission. For 50 timeslots
and 1000 different network scenarios, averaged results show
that the proposed heterogeneous CSS gives %45 and %230
more throughput in EHS and EFS CSS schemes, respectively.
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Table II: Table of Parameters

For an EHS with an empty storage, Figure 3 compares
the optimal values of traditional homogeneous (Binomial) and
proposed heterogeneous (P-Binomial) CSS for A, = 1 Vm,
k = [M/2], and Q4 = 0.99. As can be seen in subplots
(a) and (c), the SU with the lowest SNR has to expend its
all harvested energy to sense for a long duration in order
to achieve 0.9 (0.1) local Py (Pr) to ensure Qa4 = 0.99
under the homogeneity assumption. As a result, the slow-
est SU does not leave time for channel utilization which
yields zero throughput even if other SUs harvested energy
for transmission. In the heterogeneous case, on the other

the channel is w9 = 0.4. Top two plot shows the total storage
of SUs, Zm an, at the beginning of the timeslots and bottom
two plots show the achieved total throughput corresponding
to the actual channel state. Since the PC is mostly busy,
EFS accumulate energy due to the lack of chance to spend
it for transmission. The stored energy difference between
homogeneous and heterogeneous cases is caused from the
energy inefficiency of homogeneity assumption as in Figure
3.(c). On the other hand, EHS cannot store energy like EFS
since the available time is shared for harvesting, sensing and
transmitting as in Figure 3.(a). In terms of the throughput,
heterogeneous EHS has superior performance than the homo-
geneous one. For EFS, both homogeneous and heterogeneous



approach have a better performance than the EHS. Among
all combinations, it can be seen that the combining the EFS
with the proposed heterogeneous CSS scheme gives the best
solution.
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Figure 5: Horizontal energy levels and throughput for 7o = 0.8.

Hom. EHS | Het. EHS | Hom. EFS | Het. EFS
Hom. EHS %0 %45 %55 %400
Het. EHS -%35 %0 %5 %240

Table III: Performance enhancement of proposed methods.

Similar observations can be made for Figure 5 where the
apriori probability of being idle for the channel is m—0 = 0.8.
In this case, the PU is mostly absent and SUs take advantage
of this by utilizing the channel instead of not transmitting
and saving the harvested energy. It is worth noting that if
the energy arrival intensity increases the slope of the energy
accumulation will also increase, or vice versa. Unlike Figure 4,
the throughput difference between homogeneous and hetero-
geneous case of EFS is more significant. For 50 timeslots and
1000 different network scenarios, Table III shows the averaged
throughput increase of proposed methods with respect to
homogeneous and heterogeneous EHS performance.

VI. CONCLUSIONS

In this paper, we considered a hybrid generalized SU model,
which can harvest energy from both renewable sources and
ambient RF signals, to investigate the performance of EHE-
CSS schemes with and without EHD constraints under the
heterogeneous sensing and reporting channel characteristics of
SUs. Unlike the traditional homogeneity assumption, a novel
heterogeneous EHE-CSS scheme is proposed to capitalize
the heterogeneous sensing and reporting channel diversity of
SUs. Numerical results show that the proposed heterogeneous
approach delivers %45 and %230 more throughput than the ho-
mogeneous one with and without EHD constraint, respectively.
If the EHD constraint is mitigated, proposed heterogeneous
approach also provides %400 and %240 more throughput than
the EHD constrained homogeneous and heterogeneous EHE-
CSS schemes, respectively.
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