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Abstract—The need to integrate flexible and intelligent mech-
anisms for energy management becomes a necessity. In this
paper, we are considering a microgrid with infrastructures
having production capacities and consumption needs. Several
data and constraints related to the microgrid consumption have
been collected, in addition to data concerning the production of
renewable energy from Photovoltaic panels (PV). Data history is
used as input to a neural network to predict one day ahead of
consumption and production. Then, a prioritized scheduling fam-
ily of algorithms is presented. First, we introduce a mathematical
formulation to our problem. Then, we propose various scenarios
that go from an exact solution to heuristic-based use cases,
including scheduling of several energy classes with a maximum
scheduling time lapse. Results show that prioritized scheduling,
including time lapse based on predictions, can give more reliable
results than scheduling based on bin packing.

Index Terms—Artificial Intelligence (AI), Deep Learning (DL),
Long Short-Term Memory (LSTM), Bin Packing (BP), Smart
Microgrid, Optimization

I. INTRODUCTION

Resource management dilemmas are omnipresent in dif-
ferent fields, especially in smart grids, computer networks,
and transport supervision. In this paper, we investigate a
microgrid case: we predict building energy consumption and
renewable energy production so that we could do the best
energy management. The studied microgrid is composed of
a set of buildings that integrate renewable energy production
and short-long term energy storage. We aim to avoid costly
upgrades to the microgrid system while increasing the pen-
etration of renewable energy sources: solar, wind, and other
micro-sources. The interest of this paper in our opinion is
that the proposed algorithm could be not only applied to the
microgrid problem but also the resource management problems
in different other fields. It is worth mentioning here that
the microgrid needs online optimization methods that make
predictions of both consumption and production to plan and
manage the smart grid. These online techniques provide real-
time recommendations and automatic actions for consumers
and prosumers to encourage more efficient use of electricity
while assuring their satisfaction.

The rest of the paper is structured as follows: in Section II,
we discuss the energy management scheduling state-of-the-
art. In Section III, we formulate the studied problems using

different use cases. In Section IV, we describe the proposed
management algorithms. In Section V, we evaluate our work
in terms of various key performance metrics. Finally, we
conclude and discuss our work in Section VI.

II. STATE OF THE ART

In this work, we investigate 1) the prediction of consumption
and of renewable energy production and 2) the response to the
need to serve the demands of end-users. We start by investigat-
ing the relevant work in the forecasting of the consumption
and production in a microgrid. The literature presents some
statistical methods (linear regression, principal component
analysis, and fuzzy modeling) that utilize historical data to
estimate future energy consumption. Several works focus on
learning models to predict energy consumption in residential
and commercial buildings, using features such as weather and
energy bills. A. Bogomolov et al. [1], aim to solve in their
work the problem of modeling and predicting energy consump-
tion. They present an innovative approach to predict energy
consumption using people mobility patterns extracted from
Call Detail Records (CDRs). They applied diverse techniques
to decrease the computational complexity of the enormous
amount of data. Moreover, results (accuracy, Mean Square
Error (MSE), etc.) justify the quality of feature selection proce-
dures and the use of learning techniques. Chengdong et al. [2]
propose advanced techniques to solve the problem of energy
forecasting. Authors adapted a deep learning-based method to
the context of building energy management. Complex systems
such as stacked auto-encoders have been introduced in the
same model parameter tuning. Riccardo et al. [3] consider
the problem of energy consumption forecasting in residential
microgrids. The authors propose several approaches: Support
Vector Machine (SVM), Auto-Regressive Moving Average
(ARMA), Nonlinear Auto-Regressive (NAR), and recurrent
neural networks (RNN). Then, they evaluate the efficiency of
each technique in power demand forecasting. Results show
that the proposed RNN configuration led to minimal error
variance related to the other techniques. In [4], The authors
propose a dual deep neural network architecture. The main
issue in this paper deals with forecasting and classifying
time series. They compared various algorithms Support Vector



Regression (SVR), Gated Reccurent Unit (GRU), and LSTM
for prediction and SVM, Convolutional neural network(CNN),
and Multi Layer Perceptron (MLP) for classification. The
authors showed that the proposed approach works on differ-
ent domains (cellular, energy management, and transportation
systems). Nonetheless, they focussed mainly on applying the
proposed method to the microgrid context. In [5] the authors
used a CNN-LSTM to extract features of energy consumption.
The proposed method was compared to decision tree, random
forest, and linear regression models.

Considering the necessity to serve the demands of end-
users, we need to study the management mechanisms for
microgrids in the literature. In [6], the authors focus on the
influence of human presence and environmental sensors in
the building for both efficient energy use and more reliable
control of indoor environmental quality. They present a review
of several recent publications detailing the application of
agent-based involvement in the building’s domain. In [7] and
[8] authors proposed a wide range of methods: linear and
dynamic programming, heuristic, game theory, fuzzy methods
and so on to solve the problem of optimizing the building’s
energy and cost. Some works [9] focus on using dynamic
programming (DP) algorithms to extract relevant rules from
the optimization results, since DP could not be applied in
real-time. In other works [10], authors used Reinforcement
learning (RL) methods such as Q-learning [11] to schedule the
energy of a smart home. But these solutions have limitations as
they fail for large-scale problems. Since indoor environmental
quality is crucial to ensure occupant health, comfort, well-
being, and productivity the author in [12] investigates the use
of sensors to do the best energy saving, thermal comfort, and
indoor air quality. In [13] the authors present a comprehensive
and critical review of the several methods used to deal with the
energy management problem. They start with the classification
of optimization techniques developed for microgrid energy
management and approaches. The principal purposes of the
energy management system are to optimize the energy use and
system safety. In [14], the authors presented a Reinforcement
learning approach to deal with the energy management prob-
lem in smart buildings. They started by modeling the system
with a Markov decision process then by using a reinforcement-
learning-based energy management algorithm to reduce the
operational energy costs.

ITI. CONTEXT AND PROBLEM FORMULATION

In this paper, we are considering a microgrid example.
One definition for microgrid is a group of interconnected
loads and distributed energy resources within clearly defined
electrical boundaries that act as a single controllable entity
concerning the grid. It can be composed, as shown in figure 1,
of factories, universities, houses, hospitals, different renewable
energy resources like photovoltaic panels, wind turbines, and
storage capacities.

The main objective of this work is to make all these actors
collaborate to achieve the best management of the microgrid
and to minimize the use of the electric utility network.

Figure 1: A Micro Grid example

A. Studied environment: Energy consumption differentiation

For energy consumption, we use data collected from real
buildings. Diverse photovoltaic panels are installed on the
same site, their output power is used as energy production
in this work. We used an artificial intelligence method based
on a recurrent neural network (RNN), to predict both energy
consumption and energy production. This method is going to
be explained in the next section.

These predicted values are used to obtain the optimized
management knowing the predicted production, consumption
and storage capacities.

In our work, we decided to distinguish between two classes
of energy consumption to do the most reliable scheduling.
Some consumption will be prioritized on others.

o The first identified type is critical (non flexible) energy
demand,

o The second one corresponds to the energy demand that
can be somehow flexible. It corresponds to devices that
can be delayed for some time such as heaters, air condi-
tioning or domestic appliances.

o Note that we restrict the work on two classes. It can
easily be generalized to more classes as in computer
networks. Some contributions include a third “confort”
class equivalent to best effort in the networking domain...

The table I summarize the used variables and their definitions.

B. Machine learning for predictions

Different machine learning algorithms have been compared
in former contributions to choose the best algorithm to apply
to our data. After thorough experiments, and previous work
[4], we decided to use LSTM (long short term memory)
family to make our predictions. LSTM is a variant of RNN.
It has been proposed to overcome the problem of vanishing
gradient caused by backpropagation over time in RNN. The
LSTM learns to keep only the appropriate information to make
predictions. It is built on three layers: an input layer, a hidden
layer, and an output layer. Each layer is formed of memory
blocks, and each memory block is constructed of special
multiplicative units called gates. The most relevant gates are
Input, Output and Forgot gates. Fig.2 shows results of one day
ahead prediction for PV production and for the consumption



Table I: Variables and definition

Variable | Definition

EtT Total predicted energy that needs service in
time slot [t-1,t)

EfC Critical predicted energy that needs service
in time slot [t-1,t)

EtD Delayed predicted energy that needs service
in time slot [t-1,t)

P Predicted produced energy at time slot [t-
Lo

By Estimated Energy in the Battery at time slot
[t-1,0

Gt Estimated energy drawn from the grid at
time slot [t-1,t)

Dy Total estimated demand of delayed traffic in
slot t

Ry Delayed traffic that has reached its time
limit.

My Total delayed trac traffic generated in (t-7¢],

arot Total interaction between the systems actors

T How many instant that delayed predicted
energy consumption can be shifted

(we predict 24-time slots in the future based on learning input
parameters such as panel type, humidity, temperature...).

The proposed model is as follows: y = f(z), where y
is the target variable which could indicate the total energy
consumption or the PV produced energy and x corresponds to
the features represented by weather data, such as temperature,
historical consumption... The main objective of this model is
to construct a machine-learning algorithm that can predict the
building (residential or commercial) energy consumption given
historical data for the target variable and the corresponding
features.

LSTMs have been applied on advanced difficult problems,
including Energy Management For electric vehicles in smart
cities. In [15] the authors compared the use of Long Short
Term Memory and Gated Recurrent Unit and in general on all-
natural processing language problems. Since LSTM provided
the best results while applied to different problems, we decided
to implement it to make predictions of our building consump-
tion and production [4]. The first step was to determine the
best meta parameters, during the learning phase. We trained
our model using different inputs to choose the most accurate
ones related to our predictions. We also trained our model
using different layers and the number of neurons. We used a
real data set for both consumption and production data. The
data used were collected over almost four years at several time
steps in the tertiary building Drahi-X Novation Center of Ecole
polytechnique, Palaiseau, France. The results were evaluated
using metrics such as Root Mean Square Error (RMSE) and
the Mean Absolute Error (MAE). More details could be found
in [4].

C. Energy management scenarios definition

In the first place, we defined three cases for our energy
management problem. These cases could be extended in future
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Figure 2: One day ahead prediction

work since they do not take into account all the possibilities.

1) Case I: No delay, One class : Here, we are considering
all the energy demands of consumers without categorizing
them. We try to serve the energy demand using the renewable
energy produced at each time slot. We store the produced en-
ergy in the battery. We intend to minimize ar,; that represents
the total action executed on the system(storing in the battery,
consuming from the battery, and buying from the grid). If the
state of charge of the battery is enough we use it to serve
the energy demand, else the electrical grid is used to serve
the service of all traffic in a time slot. The objective function
could be of this form:

Minimize : aror=F_, atBi+B:Gy

subject to:
atBt+Bth>:E;T (1)
ai+p<=1 (2)
a*B:=0 (3)

2) Case II: Different energy classes: In this case, we are
categorizing our energy consumption demands. To start, we
identify two kinds of energy demands. The first is called criti-
cal energy (CE), it’s the energy demand that we need to serve
without any delay (in analogy with realtime applications in
the data network QoS). Here, in our dataset, this corresponds
to appliances such as ventilation and data centers. The second
is the delayed energy consumption demand (like variable bit
rate in computer networks), that could be served later (in the
dataset it corresponds to heating, air conditioning...). We target
to minimize the energy consumed from the grid. Note that if
there is insufficient battery energy, the delayed class is not
served at all. The objective function is written as follows:

Minimize : Gr=%1_, G,

subject to:
G+ Bi+P,—EE —vDP >=0 (@)
Gy>=0 (5)
(Bi+P;—ES )y >=0 (6)
0<=y <=1 @)

DP=(1—~;_1)xDP ,+EP (8)



3) Case Ill: Delay and different energy classes with dead-
line: As in the previous case, we consider two categories of
energy consumption demands: critical and delayed. However,
the delayed energy demand needs to be served at a maximum
after 7 time slots (timelapse).

Minimize : Gr=T_, G,

subject to:
Gy+By+P,—ES —RP —~,(DP ——RP)>=0 ®
G >=0 (10)
(By+P;—EE —RP)xy,>=0 an
DP=(1—v-1)(DL RE)+E] (12)
0<=y <=1 13)
RP>=0 (14)
RP<=EP _ (15)
RY>=Dy—(M~E[ ) (16)
My=33i_,_, EY a7

IV. MANAGEMENT ALGORITHMS

In this section we are going to detail different used algo-
rithm on the different cases described in the previous sections.
Two principal strategies are introduced the first is based on
scheduling the second aims to apply bin packing. The first
algortithm EMAWC is based on the first approach, and the
second algorithm EMAWCFF is based on the second ap-
proach. The different algorithms proposed are variations of the
proposed approaches. The different inputs for our algorithms
are the results of our machine learning predictions.

Table II summarizes the used algorithm on each scenarios

Table II: Used approach upon scenarios

Scenarios Algorithm Approach 1 | Approach 2
Scenario 1 X <
Scenario 2 X <
Scenario 3 X

Algorithm 1. is applied to the first scenario, where we are
serving the energy consumption demand of users using the PV
production or buying it from the Grid. We need to serve every
consumption when it happens. For each instant, we store the
produced energy in the battery. For each demand, if there is
enough energy in the battery then it would be used for this
demand else the needed energy will be bought. Algorithm
2 is based on Bin Packing (BP) problem and particularly
the heuristic First-Fit. In a bin packing problem, we are
considering the bins that will contain the elements that require
placement. We chose it only because it gives an optimal
solution. In our case, the bins will be the predicted produced
energy and the elements to place are the predicted energy

Algorithm 1 Energy Management Algorithm without clas-
sification : EMAWC

1: Input: Ef, P, B, atot

2: Output: G¢,Bt, atot

: Store harvesting energy in the Battery
. Increment atot

3

4

5:

6: if B, > ET then
7 Raise action consume
8 Increment atot

9 return 0,B¢ , atot
11: else

12: Raise action Buy

13: Gy =Ef

14: Increment atot
15: return G¢,Bt , atot
16: end if

consumption demand. The policy of the First-Fit is to browse
elements and bins one by one and place the first element in
the first suitable bin. Since the production is variable the size
of our bins will vary as a function of time so that we will be
using a Variable Size Bin Packing VSBP. The major limitation
of the BP family is that it does not meet time constraints.

Algorithm 2 Energy Management Algorithm without
classification using FirstFit heuristic for BinPacking
EMAWCFF

1: Input: ET, P;, By length(ET), length(P:)
2: Olltpl.lt: Gt,Bt, Qtot

3: Store harvesting energy in the Battery
4: Increment atot

S:

6: while length(ET)) do

7:

8 if Ef' < B, then

9: Raise Place Object

10: Update By

11: Increment atot

12:

13: else

14: check next bin

15: Increment a0t (penalty)

16: end if

17:

18: end while

For algorithms 3 and 4, we introduced in our equations, the
notion of classification or categorization of the energy demand
so that we could serve the critical energy demand and if it’s
satisfied, we serve the delayed one.

Algorithm 3 Energy Management Algorithm with classifi-
cation

1: Input: EC, EP, Py, By, atot
2: Output: G¢,By, atot

3:

4: while Critic Energy Demand do
5. EMAWC(ES, Py, B, atot)
6.
7
8

end while

9 while Delayed Energy Demand do
10:  EMAWC(EP, Py, By, atot)

12 end while

For algorithm 5, we are adding the concept of the deadline



for the delayed energy consumption demand, that could be
retarded but only for a certain time called timelaps.

Algorithm 4 Energy Management Algorithm with classifi-
cation using FirstFit heuristic for BinPacking

: Input:EC, EP, P;, By length(E]), length(P;)
: Output: Gt,ét, Qtot

while Critic Energy Demand do
EMAWCFF(EY, Py, By length(ET), length(Py)

: end while

: while Delayed Energy Demand do
EMAWCFF(EtD , P;, By length(E]), length(P;)

——

: end while

Algorithm 5 Energy Management Algorithm with classifi-
cation and deadline

I: Input:EC, EP, Pi, By, atot, T
2: Output: Gt,ét, Qtot

3:

4: while Critic Energy Demand do

5. EMAWC(ES, Py, B, aiot)

6:

7. if t > 7 then

8: EMAWC(EP _, P, By, atot)
9: end if

10: end while

V. PERFORMANCE EVALUATION

In this section, we are evaluating the results obtained with
the presented models. For each scenario, we compared the
use of the algorithms based on three metrics, the number of
total actions, the State Of Charge (SOC) of the battery and
the amount of energy pulled from the grid.

As it can be seen in Fig. 3, we have compared the results
of the first and second algorithms for the first case, on the
basis of the three metrics. We claim that including the number
of actions taken corresponds to the fact that charging and
discharging a battery is a very costly function that affects its
life cycle and other power electronic devices.

We can see that the first algorithm is better. In fact, the
amount of energy consumed from the grid is lower than with
the algorithm based on Bin Packing. The first algorithm needs
fewer actions than the second one to serve the total energy.
As it can be seen in Fig. 4, we have compared the results of
the third and fourth algorithms on the basis of three metrics:
The amount of energy drawn from the grid, the number of
total actions made for one day and the state of charge of
the battery. We can see that the third algorithm outperforms
the other algorithms. In fact, the amount of energy consumed
from the grid is again lower than with the algorithm based on
Bin Packing. The first algorithm needs fewer actions than the
second one to serve the total energy.

In Fig 5 we are comparing the first and third scenarios. In
general, the Deadline based algorithm consumes less energy
from the grid so it is better. But, they have an equal number
of actions and the Deadline based algorithm uses more battery
storage than the other.

A. A real load emulator

The algorithms developed in this paper will be integrated in
a real load emulator shown in the figure 6. This emulator is
connected to a solar panel and a wind turbine. It takes also the
predicted and actual consumption and is equipped with Li-ion
batteries. The management algorithm will be integrated so as
to monitor state of charge for batteries and actual load bought
from the grid. The loads are downscaled from a real building
to correspond to the emulator size (300 W).

Solar panel

Overview of the actual nano-grid

Electrical tableau

CR1000X

Data visualisation
with Node-RED

Lead-acid
battery

Power source DC Load

Figure 6: Ecole Polytechnique real load emulator

VI. CONCLUSION AND FUTURE WORK

This paper presents a machine learning approach to make
optimized scheduling in a smart microgrid. We made one day
ahead prediction for the energy consumption of a building
and energy produced by photovoltaic panels. We designed
several management algorithms including maximum time-laps
scheduling. We used a real dataset to train and predict future
consumption and production. We then compared scheduling
performance depending on different predefined scenarios. We
compared our algorithm with a heuristic of bin packing.
Results show that our scheduling algorithm with time-laps
outperforms bin packing because it uses the battery as a
temporary storage tool to program non-urgent consumption
classes. As perspectives, first, the presented algorithms will
be integrated with the NRLab emulator to benefit from a real
battery behavior and they will be used in a different context:
for QoS planning in an edge cloud RAN resource management
system.
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