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Wireless-Powered Machine-to-Machine Multicasting
in Cellular Networks

Abdullah M. Almasoud, and Ahmed E. Kamal, Fellow, IEEE

Abstract—In future cellular networks, it is expected that data
traffic will increase significantly due to deployments of large
numbers of Internet of Things (IoT) objects. The IoT objects
operate underlaying a cellular network, and they use Machine-to-
Machine (M2M) communication to transmit multicst messages.
We propose to use Radio Frequency (RF) Energy Transmitters
(ET) to compensate the IoT objects with the energy consumed in
forwarding multicast messages. Our goal is to support multicast
service for IoT objects and transmit energy to them such that the
total transferred energy by the ETs is minimized. We formulated
the problem mathematically as a non-convex Mixed Integer
Nonlinear Program (MINLP). Due to the difficulty of solving the
problem optimally, we decompose the original problem into two
sub-problems using Generalized Bender Decomposition with Suc-
cessive Convex programming (GBD-SCP). Although this method
facilitates finding a solution for the problem, the problem is still
hard due to binary variables. Hence, we propose the Constraints
Decomposition with SCP and Binary Variable Relaxation (CDR)
algorithm to solve the problem more efficiently. Simulation results
show that the proposed algorithm achieves a performance close to
the GBD-SCP algorithm while the computation time is reduced
significantly when the network size is larger.

Index Terms—Wireless-powered, energy harvesting, power
transfer, multicast, M2M communication, routing, scheduling.

I. INTRODUCTION

MULTICASTING is an essential service for disseminat-
ing a message to a group of recipients. Instead of

sending a message from a source to a group of destinations
multiple times using unicast communications, multicast ser-
vice allows addressing a message to a group of destinations
simultaneously. Multicast service becomes more appealing in
cellular networks due to a rapid growth in data traffic in the
recent years [2]. Multicasting in current cellular networks is
used for content delivery for typical cellular phones. However,
with the revolution of the Internet of Things (IoT), Machine-
to-Machine (M2M) multicast service for large numbers of low-
power IoT devices in cellular networks is required. Therefore,
we need to consider several challenges while supporting this
emerging type of multicast service.

IoT is a technology that enables physical objects to ob-
serve and monitor activities and phenomena, processes the
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collected data and communicate with other physical objects
in order to make a decision or accomplish a certain task
[3]. It is expected that the number of IoT objects that will
be deployed in the world will reach 50 billions by 2020
[4]. M2M communication, which is also called machine-type-
communication (MTC), is considered as an important enabling
technology for IoT, where it allows direct communication
between neighboring IoT objects.

Multicasting over cellular networks can be classified based
on its applications into human oriented and machine oriented
[5]. Multicast service in cellular networks is developed typi-
cally for human-based applications like video content delivery.
On the other hand, machine oriented multicast is designed
to support multicast service for machine-based applications,
which includes: 1) An IoT object sends software updates to
a group of IoT objects, 2) an IoT object sends a multicast
messages to a group of IoT actuators to perform controlling
actions in a factory and 3) an IoT sensing object that detects
hazardous events on the road and multicast warning messages
to a groups of IoT objects embedded in Vehicular Ad Hoc
Networks (VANET). Therefore, machine oriented multicasting
should address the challenges associated with IoT to enable
its applications in the next generation of the cellular networks.

IoT devices are typically designed to use small size batteries
to satisfy their energy demands. On the other hand, devices
in wireless-powered networks harvest RF (Radio Frequency)
energy from dedicated energy transmitters or from ambient RF
radiation. RF energy harvesting is a technology that enables
converting a received RF signal to energy [6]. Hence, wireless-
powered network has emerged as a candidate solution for some
applications in future networks [7]. Although wireless energy
transfer gives the IoT devices an efficient way to satisfy their
energy demands without the need for battery replacement, a
significant portion of the transmitted signal for charging is
wasted because of signal attenuation and non-optimality of
the energy harvesters.

There is a trade-off between satisfying the energy demands
of the IoT devices using only wireless energy transfer or
batteries. The former approach helps the IoT to satisfy their
energy demands without the need for battery replacement or
suffering from energy outage. However, part of the transmitted
energy can be lost due to the warless medium and imperfect
energy harvesters. Therefore, using only conventional batteries
to power IoT devices eliminates wasting energy that happens
during wireless energy transfer. Accordingly, it may not be
feasible to power the whole M2M devices (IoT objects) in
the network using only RF energy harvesting technology.
However, wireless energy transfer can power the M2M devices
partially by supporting the M2M devices with the required
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energy to transmit the multicast messages.
In this paper, we consider wirelessly powered M2M multi-

casting underlaying cellular networks. Due to the high cost of
powering the multicast communication using wireless energy
transfer, the goal is that we minimize the total required energy
to be transferred from the Energy Transmitters (ET) to the
M2M devices. Since M2M devices are compensated for the
energy consumed in sending multicast messages, they should
minimize their total consumed energy for transmission to
reduce the total transmitted energy from the ETs. As the
M2M devices operate underlaying a cellular network, they
must keep their interference under certain thresholds to protect
the regular cellular users and the other M2M devices. Within
any time slot, the M2M devices can either: 1) transmit data,
2) receive data, 3) harvest energy or 4) stay idle. Hence, we
show how to schedule multicast message transmission and
reception and RF energy harvesting for the M2M devices. The
scheduling process aims in supporting the multicast services
while minimizing the required transmitted energy by the ETs.

A. Related Works

1) Wireless-Powered Networks: In [8], the authors studied
the beamforming in multicast wirelessly powered networks.
They formulated the problem mathematically and proposed a
fast parallel iterative algorithm that converges to a KKT point.
The paper in [9] considered energy efficiency optimization for
machined-to-machined communication. The proposed work
considered a joint optimization for channel selection, power
control and time allocation. Moreover, the authors in [12]
investigated maximum energy efficiency in wireless powered
networks using dedicated power transmitters. They considered
time allocation and power control jointly to maximize energy
efficiency.

In [14], a framework for peer-harvesting in wireless-
powered networks is introduced. A hybrid base station sends
data and energy to a set of wireless nodes that can harvest
energy from the hybrid base station and from each other. The
proposed scheme specifies how the wireless-powered network
allows a wireless node to harvest energy from its peers in
addition to the hybrid base station.

2) Cellular Networks: Since energy harvesting from am-
bient energy sources may not always be feasible, the authors
in [13] proposed to use dedicated power beacons to charge
devices in wireless-powered cellular networks. A hybrid base
station that sends data can also charge the devices in the
cellular network in addition to the dedicated power beacons.
They demonstrated a significant improvement on the outage
probability for the users when they are charged using dedicated
power beacons rather than using ambient energy resources
or a hybrid base station. In [11], the authors proposed an
architecture and a model to transfer power wirelessly in cellu-
lar networks. They introduced what is called power beacons,
which charge mobile devices using microwave radiation. They
also investigated the deployment of the cellular network under
an outage constraint on the data transmission link. In [15], the
authors proposed a cellular IoT network that transfers energy
to IoT devices and shares the spectrum of the cellular network

opportunistically. The proposed work aimed at enhancing
spectrum and energy efficiencies.

3) Internet of Things: In [17], we proposed a cognitive
mobile base station that transmits data and energy to IoT
devices. To transfer energy to the IoT devices within a certain
tolerable time, the mobile base station adjusts its location
and transmission power such that the IoT devices are charged
without delay. To optimize the operation of the mobile base
station, we showed how to minimize the total energy consumed
in energy transfer and the mobility of the base station. The
paper in [16] studied an energy efficient resource allocation
for M2M communication and energy harvesting for IoT. Joint
power allocation and time allocation are considered in order
to minimize total energy consumption. The authors in [18]
studied full-duplex M2M communication for wireless-powered
IoT. The idea of the paper is to utilize the extra energy not
used by receivers, and hence, receiving IoT devices transfer
energy to the transmitting IoT device.

4) Multicasting: An M2M multicast service for transferring
data and energy to a large number of users is proposed in
[19]. It is shown that the proposed scheme reduces energy
consumption and delay while reducing the control overhead. In
[20], the authors introduced a reliable multicast and broadcast
method for energy harvesting network. The proposed method
guarantees reliable multicast service for the energy harvesting
nodes which suffers from energy deficiency. In [21], algo-
rithms for routing multimedia multicast in IoT is studied. It
is shown that the speed and the accuracy of the proposed
algorithm outperforms a representative multicast routing algo-
rithm. Wireless-powered multicast and unicast services with
full duplex self-energy recycling is investigated in [10]. The
goal is to maximize the secrecy-multicast rate region subject
to transmit power constraints.

B. Motivations and Contributions

When the M2M devices are small and battery powered,
they tend to optimize their operations to prolong their batteries
lifetimes. One important application of M2M communication
is the multicast service, where a sender sends a message to a
group of destinations. The multicast tree may include a multi-
hop communication between the M2M devices, where M2M
devices should be encouraged to participate in forwarding the
multicast message. However, the M2M devices can operate
in a greedy way and avoid collaborating in forwarding the
multicast message. Therefore, we propose in this work to
incentivize the M2M devices to collaborate in forwarding the
multicast tree by charging them wirelessly using distributed
energy transmitters. To best of our knowledge, no paper in the
literature discuss incentivizing the M2M devices to participate
in multicast tree forwarding by charging them wirelessly.

The contributions of our paper can be summarized as
follows:
• We formulate the problem of wireless-powered M2M

multicasting in cellular network such that the total trans-
mitted energy by ETs is minimized. We consider the
routing and the scheduling of multicast messages and
the scheduling of energy harvesting. The Base Station
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(BS) can contribute to forwarding the multicast messages
to the destinations if that helps in minimizing the total
transmitted energy.

• The formulated problem for finding the optimal solu-
tion is a non-convex Mixed Integer Nonlinear Program
(MINLP). Therefore, it is difficult to obtain a solution
efficiently. We use Generalized Bender Decomposition
with Successive Convex Programming (GBDC-SCP) to
find a solution for our problem. To facilitate the solution,
we approximate the non-convex data rate function by a
concave lower bound function. Then, we decompose the
original problem into a convex Nonlinear Program (NLP)
and Mixed Integer Linear Program (MILP) using Gen-
eralized Bender Decomposition (GBD) [22]. Moreover,
we solve the NLP problem successively using Successive
Convex Programming (SCP) within GBD.

• Although the GBD-SCP algorithm can find a solution for
our problem after decomposing the problem into convex
NLP and MILP subproblems, the problem is still hard to
solve due to the binary variables in the MILP problem.
Hence, we propose Constraints Decomposition with SCP
and Binary Variable Relaxation (CDR) algorithm to solve
the optimization problem. We show in this paper that each
group of variables may depend on the solution of another
group of variables. Hence, CDR algorithm decomposes
the optimization problem into an LP and two NLP sub-
problems based on the dependence of the variables on
each other. Moreover, all binary variable are relaxed to
find a solution for the problem in a more efficient way. We
show that the proposed algorithm converges to a solution
within a finite number of iterations, and it reduces the
computation time significantly when the network size is
large.

• We study in the simulation section the performance
of GBD-SCP and CDR algorithms and compare their
computation times. We show that GBD-SCP slightly
outperforms CDR algorithm, but CDR achieves a better
performance in terms of computation time. Moreover, we
compare the total energy consumption when ad hoc and
hybrid network architectures are used. We show that the
hybrid architectures can reduce the total needed wireless
energy transfer compared with the ad hoc architectures.

C. Paper Organization

This paper is organized as follows. In Section II, we describe
the system model, then we formulate the problem in Section
III. We discuss how to solve the formulated problem using
GBD-SCP and CDR algorithms in Section IV and Section V,
respectively. We show and discuss the simulation results in
Section VI. Finally, we conclude our paper in Section VII.

II. SYSTEM MODEL

In this paper, we consider a set of M2M devices, (,
operating underlaying the uplink bands of a cellular network.
The M2M device can transmit over a set of channels, �, and it
keeps its interference to the other M2M devices and to the set
of regular cellular users, %, below certain thresholds Γ"2"

TABLE I: Notations

Symbol Description

� The set of channels used by cellular and M2M devices.
� The set of channels used for power transfer.
/ The set of time slots.
( The set of M2M users.

BS Base station.
( ( ∪ BS.
% The set of regular cellular network users.

ET Energy transmitter.
�)8 8Cℎ energy transmitter.
�) ( Energy transmitters set.
�2
8 9

The gain of channel c between node 8 and node 9.
%!2 Path loss constant for channel c.
%!4 Path loss exponent.
U2 , V2 Fast and slow fading gains for channel c, respectively.
�C , �A Transmitting and receiving antenna gains, respectively.
38 9 Distance between node 8 and node 9.
q, q �)8’s antenna azimuth and elevation angles in degree.
, , #0 Channel bandwidth and the noise spectral density.

%CG
8
(2, I) Transmission power of M2M device 8 over channel 2 and

during slot I.

%̃8 (2, I)
The point where '8 9 (2, I) function is approximated
around it using the first-order Taylor approximation.

%CG<0G Maximum transmission power of M2M devices.

%24;;
8
(2, I) A parameter for the transmission power of the 8Cℎ regular

cellular users to the BS over channel 2 and during slot I.

%�)
48
(2, I) Transmission power of �)4 to M2M device 8 over channel

2 and during slot I.
%�)<0G Maximum transmission power for ETs.
%�( Transmission power of the BS.
, Channel bandwidth.

W8 9 (2, I)
The signal received by M2M 9 from M2M 8, over channel
2 and during slot I.

'8 9 (2, I)
Data rate of the link between a transmitting M2M 8 to
a receiver 9 over channel 2 and during slot I.

'8 9 (2, I)
Approximate data rate of the link between a transmitting
M2M 8 to a receiver 9 over channel 2 and during slot I.

%ℎ<0G
Maximum energy that the energy harvesting circuit can
harvest.

E , g Parameters used to model the nonlinearity of the energy
harvesting circuit.

Γ�� Sensitivity of the energy harvester.
Γ"2" A threshold used to control SINR of M2M devices.
Γ24;; A threshold used to control interference to cellular devices.

-8 (2, I)
A binary variable equals 1 only if M2M 8 transmits over
channel 2 during slot I.

-8 9 (2, I)
A binary variable equals 1 only if M2M 8 transmits to a
receiver 9 over channel 2 during slot I.

-24;;
8
(2, I) A parameter equals 1 only if cellular user 8 transmits over

channel 2 during slot I.

�8 (2, I)
A binary variable equals 1 only if M2M 8 harvests energy
over channel 2 during slot I.

�48 (2, I)
A binary variable equals 1 only if M2M 8 harvests energy
from �)4 over channel 2 during slot I.

H2
48

An indicator equals 1 only if M2M 8 is located within the
energy harvesting zone of �)4 that transmits power over
channel 2.

5
H

8 9
(2, I)

A variable represents the data flow, in bits, of the link
between a transmitting M2M 8 and a receiver 9 used to
route the multicast traffic, over channel 2 and during slot
I, to destination H.

B The source of the multicast session.
3 The set of destinations for the multicast session.
@ Required data demand by the multicast session in bits.
) slot duration.

� CG
8
(I) Energy consumed by M2M 8 for transmission during slot I.

��
8
(I) Energy harvested by M2M 8 during slot I.

�!8 (I) Battery level of M2M 8 during slot I.
�!<8= Minimum battery level.
�!8=8C

8
Initial battery level of M2M 8.

�!<0G
8

Maximum battery level of M2M 8.
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and Γ24;; , respectively. The Base Station (BS) can receive the
multicast message from an M2M device and forward it to all
destination M2M devices. A set of energy transmitters, �)(,
transmit power wirelessly, over a set of channels �, to all
M2M devices engaged in multicast message transmission.

Multicast message transmission and energy harvesting for
M2M devices are scheduled over a set of time slots, / , where
the duration of each time slot is ) . M2M devices are equipped
with batteries to perform their designated functions. How-
ever, energy consumed for multicast message transmission is
compensated by transferring power wirlessly from ETs. M2M
devices operate under harvest-use-store mode [23]. Therefore,
each M2M device harvests energy, uses it in multicast mes-
sages transmission and stores in its battery only the unused
harvested energy. ET with best channel condition to the M2M
is used to transfer the power to minimize total transferred
energy.

BS

ET 1

ET 3

ET 2

ET 5

ET 4

ET 6

IoT 1

IoT 3

IoT 2

IoT 4

IoT 5

IoT 7

IoT 6

IoT 8

UE 1

UE 2

UE 3

Fig. 1. M2M multicasting with energy harvesting in cellular networks.

Fig. 1 shows a scenario for multicasting in IoT using M2M
communication underlying a cellular network. IoT 1 transmits
a multicast message to IoT 4 and IoT 8, whereas IoT 7
transmits a multicast message to IoT 5 and IoT 6. It is required
to minimize total energy consumed for multicast message
transmission in order to minimize total energy transmitted by
ETs. Therefor, IoT 1 forwards its message to IoT 3 using
M2M link to avoid transmitting with high power to the BS to
deliver the message to the destinations. Then, IoT 3 forwards
the multicast message to the BS, and the BS forwards the
multicast message to IoT 4 and IoT 8. On the other hand,
IoT 7 is located in close proximity to IoT 5 and IoT 6, and
it consumes less energy when it multicasts directly to these
destinations using M2M communication rather than reaching
them through the BS. Hence, it multicasts the message directly
to the destinations using M2M communication.

The gain of channel 2 between node 8 and node 9 , �2
8 9

, is
given by

�28 9 = %!2 U2 V2 �C �A 3
−%!4
8 9 (1)

where %!2 is the path loss constant for channel 2, %!4 is the
path loss exponent, U2 and V2 are fast and slow fading gains
for channel c, respectively, �C and �A are transmitting and
receiving antenna gains, respectively, and 38 9 is the distance
between node 8 and node 9 . We assume that �C = �A = 1
for M2M devices, whereas ETs use directional antennas for
power transfer, and it is approximated by [24]

�C ≈
30, 000
q q

(2)

where q and q are the antenna azimuth and elevation angles,
respectively, in degree.

Let H2
48

be an indicator function equals 1 only if M2M
device 8 is located within the energy harvesting zone of �)4
which transmits power over channel 2. Hence, H2

48
function is

given by

H248 =

 1, 348 ≤
(
%�)<0G%!2 U2 V2 �C �A

Γ��

) 1
%!4

0, otherwise.
(3)

where %�)<0G is maximum transmission power for each �)8 ∈
�)( and Γ�� is minimum input power to the energy harvester
to harvest energy.

M2M devices operate underlying a cellular network, and
hence, regular cellular users cause interference to M2M de-
vices’ transmission. Let %C G

8
(2, I) be the transmission power

of M2M device 8 over channel 2 and during slot I. The signal
to noise plus interference ratio for the transmission of an M2M
device to a receiver 9 is calculated as follows:

W8 9 (2, I) =
%C G
8
(2, I) �2

8 9∑
@∈(\8 %

C G
@ (2, I) �2@ 9 + # 9

. (4)

where # 9 =
∑
A ∈% %

24;;
A (2, I) �2

A 9
+ #0, , %24;;A (2, I) is

transmission power of the A Cℎ regular cellular users to the
BS over channel 2 and during slot I, #0 is the noise spectral
density and , is the channel bandwidth.

From equation (4), the data rate of a transmitting M2M
device 8 to a receiving node 9 over channel 2 and during slot
I is given by

'8 9 (2, I) = , log2

(
1 + W8 9 (2, I)

)
(5)

The total harvested energy that M2M 8 can harvest from
�): over channel 2 and during slot I, [:8 (2, I), is given by
[25], [26]

[:8 (2, I) =
[

%ℎ<0G

4−gΓ��+E

(
1 + 4−gΓ��+E

1 + 4 [−g%�):8 (2,I)�2:8+E ]
− 1

)]+
(6)

where %�)
:8
(2, I) is the transmission power of �): to M2M

device 8 over channel 2 and during slot I, %ℎ<0G is the
maximum harvested energy that the energy harvesting circuit
can harvest, Γ�� is the sensitivity of the energy harvester, E
and g are parameters used to model the nonlinearity of the
energy harvesting circuits and [G]+ = max(0, G). Hence, the
total energy consumed and harvested by user 8 during slot I
are given, respectively, as follows:

� C G8 (I) =
∑
2∈�

%C G8 (2, I)). (7)

and

��8 (I) =
∑
2∈�

∑
:∈�) (

)[:8 (2, I). (8)
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III. PROBLEM FORMULATION

We assume that the M2M device is equipped with a single
radio. Hence, the M2M device can either transmit, receive or
harvest energy during each time slot, i.e.,∑

2∈�

[
-8 (2, I) +

∑
∀:∈(

-:8 (2, I)
]
+

∑
2∈�

�8 (2, I) ≤ 1,

∀8 ∈ (, I ∈ /.
(9)

The binary variable -8 9 (2, I) is set to 1 if there is a flow
from M2M device 8 to a receiver 9 over channel 2 and during
slot I, i.e. when 0 < 5

H

8 9
(2, I), and it is set to 0 otherwise.

Therefore, we have the following two constraints:

-8 9 (2, I) ≤
|3 |∑
H=1

5
H

8 9
(2, I), ∀8 ∈ (, 9 ∈ (,∀2 ∈ �, I ∈ /. (10)

5
H

8 9
(2, I)
E

≤ -8 9 (2, I),

∀8 ∈ (, 9 ∈ (, 2 ∈ �, H ∈ 3, I ∈ /.
(11)

The following two constraints set -8 (2, I) to 1 if
∃ -8 9 (2, I) = 1 and set -8 (2, I) to 0 otherwise.

-8 (2, I) ≤
∑
9∈(

-8 9 (2, I), ∀8 ∈ (, 2 ∈ �, I ∈ /. (12)

∑
9∈( -8 9 (2, I)

|( |
≤ -8 (2, I),∀8 ∈ (, 2 ∈ �, I ∈ /. (13)

Similarly for �8 (2, I), we have

�8 (2, I) ≤
∑

4∈�) (
�48 (2, I), ∀8 ∈ (, 2 ∈ �, I ∈ /. (14)∑

4∈�) ( �48 (2, I)
|�)( | ≤ �8 (2, I), 8 ∈ (, 2 ∈ �, I ∈ /. (15)

A receiver 9 can receive a message from an M2M device 8
over channel 2 and during slot I if W8 9 (2, I) is greater than a
certain threshold Γ"2" , i.e.,

Γ"2" -8 9 (2, I) ≤ W8 9 (2, I)
∀8 ∈ (, 9 ∈ (, 2 ∈ �, I ∈ /.

(16)

Let 5 H
8 9
(2, I) be a variable representing data flow, in bits, of

the link between a transmitting M2M 8 and a receiver 9 used
to route the multicast traffic, over channel 2 and during slot
I, to destination H. Since the flow over a certain link cannot
exceed its capacity, we have

5
H

8 9
(2, I) ≤ '8 9 (2, I)),

∀8 ∈ (, 9 ∈ (, H ∈ 3, 2 ∈ �, I ∈ /.
(17)

Transmission power of the M2M device over a certain
channel and during a time slot is zero when it is not scheduled
for transmission over that channel and during that time slot.
Therefore, it is upper bounded by the maximum transmission
power, %C G<0G , as follows:

j%C G8 (2, I) ≤ %C G<0G-8 (2, I), ∀8 ∈ (, 2 ∈ �, I ∈ /. (18)

To satisfy a data flow demand, @, form the source of the
multicast, B, to a set of destinations, 3, the flow conservation
constraints are given by

|/ |∑
I=1

∑
2∈�

∑
8∈(\B

5
H

8B
(2, I) = 0, ∀H ∈ 3. (19)

|/ |∑
I=1

∑
2∈�

∑
9∈(\H

5
H

H 9
(2, I) = 0, ∀H ∈ 3. (20)

|/ |∑
I=1

∑
2∈�

∑
9∈(\B

5
H

B 9
(2, I) = @, ∀H ∈ 3. (21)

|/ |∑
I=1

∑
2∈�

∑
8∈(\H

5
H

8H
(2, I) = @, ∀H ∈ 3. (22)

and
|/ |∑
I=1

∑
2∈�

∑
=∈(\H

5
H

=8
(2, I) =

|/ |∑
I=1

∑
2∈�

∑
9∈(\B

5
H

8 9
(2, I),

∀8 ∈ (\(B ∪ H),∀H ∈ 3.

(23)

where flow bifurcation is possible.
M2M devices can share channels with regular cellular users

as long as they do not cause harmful interference to the signal
transmitted by the regular cellular users. Therefore,

Γ24;; -24;;: (2, I) ≤
%24;;
:
(2, I)�2

:1∑
8∈( %

C G
8
(2, I) �2

81
+ #0,

∀: ∈ %, 2 ∈ �, I ∈ /.
(24)

where Γ24;; is a threshold used to control interference to
cellular devices and -24;;

:
(2, I) is a parameter equals 1 if

cellular user 8 transmits over channel 2 during slot I and zero
otherwise.
�)4 transmits power over channel 2 and during slot I to

M2M device 8 only if that device is scheduled for receiving
energy from �)4 over channel 2 and during slot I, i.e.,

%�)48 (2, I) ≤ %�)<0G�48 (2, I),
∀4 ∈ �)(,∀8 ∈ (,∀2 ∈ �, I ∈ /.

(25)

To ensure that the M2M device participating in forwarding
the multicast message is compensated for the energy consumed
in transmission, we have

|� |∑
I=1

� C G8 (I) ≤
|� |∑
I=1

��8 (I), ∀8 ∈ (. (26)

Based on the RF energy harvester implementation, the M2M
device can harvest energy from a received signal if the input
power is greater than a certain threshold, Γ�� , i.e.,

Γ���48 (2, I) ≤ %�)48 (2, I)�248 ,
∀4 ∈ �)(,∀8 ∈ (,∀2 ∈ �, I ∈ /.

(27)

Moreover, M2M device 8 needs to be located within the energy
harvesting zone of an �)4 to be able to harvest energy from
that ET, i.e.,

�48 (2, I) ≤ H248 ,∀4 ∈ �)(, 8 ∈ (,∀2 ∈ �, I ∈ /. (28)
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Let the battery level of M2M device 8 during slot I be
�!8 (I), which is defined as follows:

�!8 (1) = �!8=8C8 , ∀8 ∈ (. (29)

�!8 (I) = �!8 (I − 1) − � C G8 (I) + ��8 (I)
∀8 ∈ (, I ∈ /\1.

(30)

where �!8=8C
8

is initial battery level of M2M 8.
The battery level does not exceed its maximum capacity,

and cannot be negative. Therefore,

0 ≤ �!8 (I) ≤ �!<0G8 ∀8 ∈ (, I ∈ /\1. (31)

M2M device 8 cannot transmit if the battery energy level is
below a threshold �!<8=. Hence,

-8 (2, I) ≤
�!8 (I)
�!<8=

, ∀8 ∈ (, 2 ∈ �, I ∈ /. (32)

The problem of minimizing the total transmitted energy
from all ETs to M2M devices to support multicast commu-
nication is formulated as follows:

P1 : Minimize :
∑

4∈�) (

∑
8∈(

∑
2∈�

|� |∑
I=1

%�)48 (2, I) ) (33)

Subject to:

Constraints (9-24), (25-32).

-8 (2, I), -8, 9 (2, I), �8 (2, I), �48 (2, I) ∈ {0, 1},
∀8 ∈ (, 9 ∈ (, 4 ∈ �)(, 2 ∈ �, 2 ∈ �, I ∈ /.

(34)

0 ≤ 5
H

8 9
(2, I) ≤ E

∀8, 9 ∈(, H ∈ 3, 2 ∈ �, I ∈ /.
(35)

0 ≤ %C G8 (2, I) ≤ %C G<0G ,∀8 ∈ (, 2 ∈ �, I ∈ /. (36)

0 ≤ %�)48 (2, I) ≤ %�)<0G ,
∀4 ∈�)(, 8 ∈ (, 2 ∈ �, I ∈ /.

(37)

IV. GENERALIZED BENDERS DECOMPOSITION WITH
SEQUENTIAL CONVEX PROGRAMMING (GBD-SCP)

The optimization problem in Section III is in a form of a
Mixed Integer Nonlinear Problem (MINLP), which is known
to be NP-hard in general [27], and there is no efficient way to
solve this kind of problem optimally. Due to the non-convexity
of equation (5) and (8), the formulated problem is non-convex
even with relaxation of the discrete variables. To solve the
formulated problem, we first approximate equation (5) with a
concave lower bound of the data rate function. Moreover, we
reformulate constraint (26), add an additional and necessary
constraint and relax it. Then, we use a sequential convex pro-
gramming method with Generalized Bender Decomposition
(GBD) algorithm [22] to find a solution for the optimization
problem.

A. A Concave Lower Bound for The Data Rate Function

In this section, we find a concave lower bound for equation
(5) since it is not a concave function. First, we rewrite equation
(5) as follows:

'8 9 (2, I) = , log2

(
1 +

%C G
8
(2, I) �2

8 9∑
@∈(\8 %

C G
@ (2, I) �2@ 9 + # 9

)
= , log2

( ∑
@∈(

%C G@ (2, I) �2@ 9 + # 9
)
−

, log2

( ∑
@∈(\8

%C G@ (2, I) �2@ 9 + # 9
)

︸                                        ︷︷                                        ︸
, '̂8 9 (2,I)

(38)

To approximate equation (38) with a concave lower bound
function, we approximate the second term, i.e., '̂8 9 (2, I), with
a convex function. For the concave function '̂8 9 (2, I), its first-
order Taylor approximation around a point %̃8 (2, I) is a global
overestimator [28]. Therefore,

'̂8 9 (2, I) ≤ , log2

( ∑
@∈(\8

%̃@ (2, I) �2@ 9 + # 9
)
+

∑
@∈(\8

,�2
@ 9

log2 (4) [%C G8 (2, I) − %̃8 (2, I)]

[∑A ∈(\8 %̃A (2, I) �2A 9 + # 9 ]
, '̃D?

8 9
(2, I)

(39)

Hence, a concave lower bound function for equation (38) is
given by

'8 9 (2, I) , , log2

( ∑
@∈(

%C G@ (2, I) �2@ 9 + # 9
)
− '̃D?

8 9
(2, I)

(40)

B. Relaxing Energy Harvesting Function

The function ��
8
(I), defined in (8), is nonconvex due to

the noncovexity of the energy harvesting model described in
equation (6). Similar to [26], we first introduce a slack variable
Δ:8 (2, I) = 4 [g%

�)
:8
(2,I)�2

:8
] . Then, we rewrite [:8 (2, I) as

follows:

[:8 (2, I) =
[

%ℎ<0G

4−gΓ��+E

(
1 + 4−gΓ��+E

1 + 4E/Δ:8 (2,I)
− 1

)
︸                                   ︷︷                                   ︸

,b
(
Δ(2,I)

)
]+

(41)

From the equation above, we reformulate the function
b
(
Δ(2, I)

)
as follows to make it a concave function [8]:

b
(
Δ(2, I)

)
=
%ℎ<0G (1 + 4−gΓ

��+E )
4−gΓ��+E

− %ℎ<0G

4−gΓ��+E

− %
ℎ
<0G (1 + 4−gΓ

��+E )
4−gΓ��+E

4E

4E + Δ:8 (2, I)

(42)

Finally, we relax Δ:8 (2, I) = 4 [g%
�)
:8
(2,I)�2

:8
] into

Δ:8 (2, I) ≤ 4 [g%
�)
:8
(2,I)�2

:8
] (43)

It is shown in [8] that the solution of optimization problem is
still optimal after dropping the operator [G]+ in equation (41)
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and relaxing Δ:8 (2, I) as in (43). Accordingly, we can replace
constraint (26) by

|� |∑
I=1

� C G8 (I) ≤
|� |∑
I=1

�
�

8 (I), ∀8 ∈ (. (44)

where �
�

8 (I) is defined as follows:

�
�

8 (I) =
∑
2∈�

∑
:∈�) (

) b
(
Δ(2, I)

)
. (45)

Since b
(
Δ(2, I)

)
is concave function, and hence �

�

8 (I) is
concave, the constraint (44) is convex.

From constraint (43), we have

ln
(
Δ:8 (2, I)

)
≤ g%�):8 (2, I)�

2
:8 (46)

The constraint above is not convex. Therefore, we approximate
ln

(
Δ:8 (2, I)

)
using Taylor approximation around a point,

Δ̃:8 (2, I), as follows:

ln
(
Δ̃:8 (2, I)

)
+ Δ:8 (2, I)
Δ̃:8 (2, I)

− 1 ≤ g%�):8 (2, I)�
2
:8 (47)

C. Generalized Benders Decomposition Steps

Generalized Benders Decomposition (GBD) [22] is a proce-
dure used to solve non-convex MINLP problems. GBD method
decomposes the non-convex MINLP into two subproblems, a
master and a primal subproblems. The master subproblem is
Mixed Integer Linear Program (MILP), whereas the primal
subproblem is Non-linear Program (NLP). In each iteration
of GBD algorithm, the upper and the lower bounds of the
problem are given by solving the primal and the master
problem, respectively,

The NLP subproblem in GBD algorithm corresponds to the
original problem after fixing the binary variables. In addition to
getting the upper bound after solving the NLP subproblem, we
find the Lagrange multipliers associated with the constraints
of the NLP subproblem. From non-linear duality theory, the
Lagrange multipliers of the primal problem are used in the
master problem to find the lower bound. The solution of the
binary variables given by the master problem are used by the
primal subproblem in the next iteration, and the algorithm
iterates until the algorithm converges.

In the following, we describe four steps to solve the
optimization problem iteratively using GBD with Sequential
Convex Programming (SCP). These steps are: 1) Initialization,
2) Solving the primal problem, 3) Solving the feasibility
problem and 4) Solving the master Problem. A complete
overview of the algorithm is shown in Algorithm 1.

Note: In Algorithm 1, we use + superscript on the binary
variables to indicate their solution after being fixed. Moreover,
the continuous variables with (:) and (;) superscripts indicate
their values after the primal and feasibility problems being
solved feasibly in the : Cℎ and ;Cℎ times, respectively.

1) Initialization:
We find initial values for all binary variable, %̃8 (2, I) and
Δ̃:8 (2, I), then we set -+

8
(2, I) = -8 (2, I), -+

8 9
(2, I) =

-8 9 (2, I), �+8 (2, I) = �8 (2, I) and �+
48
(2, I) = �48 (2, I),

∀8 ∈ (, 9 ∈ (, 4 ∈ �)(, 2 ∈ �, 2 ∈ �, I ∈ / . Moreover,
we set the counter, : and ;, to 1.

2) Primal Problem:
After fixing all binary variables, the primal problem transforms
the MINLP problem into an NLP problem. We use a concave
lower bound function '8 9 (2, I) in equation (40) to approx-
imate the data rate function in equation (38) to preserve the
convexity of the primal problem in GBD algorithm. Moreover,
we replace constraint (26) by constraint (44) and (47) to
approximate the original optimization problem by a convex
approximation. Accordingly, we formulate the primal problem
as a convex NLP program as follows:

P2.1 : Minimize :

c =
∑

4∈�) (

∑
8∈(

∑
2∈�

|� |∑
I=1

%�)48 (2, I) )
(48)

Subject to:

Constraints (19-24), (29-31), (35-37), (44) and (47).

-+8 9 (2, I) −
|3 |∑
H=1

5
H

8 9
(2, I) ≤ 0,

∀8 ∈(, 9 ∈ (, 2 ∈ �, I ∈ /.

(49)

5
H

8 9
(2, I)
E

− -+8 9 (2, I) ≤ 0,

∀8 ∈ (, 9 ∈ (, 2 ∈ �, H ∈ 3, I ∈ /.
(50)

%C G8 (2, I) − %C G<0G-+8 (2, I) ≤ 0,
∀8 ∈ (, 2 ∈ �, I ∈ /.

(51)

%�)48 (2, I) − %�)<0G �+8 (2, I) ≤ 0,
∀4 ∈ �)(, 8 ∈ (, 2 ∈ �, I ∈ /.

(52)

5
H

8 9
(2, I) − -+8 9 (2, I) '8 9 (2, I) ) ≤ 0,

∀8 ∈ (, 9 ∈ (, H ∈ 3, 2 ∈ �, I ∈ /.
(53)

-+8 (2, I) −
�!8 (I)
�!<8=

≤ 0,∀8 ∈ (, 2 ∈ �, I ∈ /. (54)

Γ"2" -+8 9 (2, I)
[ ∑
@∈(\8

%C G@ (2, I) �2@ 9 + U8 9
]
−

%C G8 (2, I) �28 9 ≤ 0

∀8 ∈ (, 9 ∈ (, 2 ∈ �, I ∈ /.

(55)

Γ���+48 (2, I) − %�)48 (2, I)�248 ≤ 0,
∀4 ∈ �)(, 8 ∈ (, 2 ∈ �, I ∈ /.

(56)

1 ≤ Δ48 (2, I),∀4 ∈ �)(, 8 ∈ (, 2 ∈ �, I ∈ /. (57)
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After finding an optimal solution for P2.1, we need to
derive the Lagrange multipliers associated with the con-
straints (49-56). The master problem uses these multipli-
ers to find solutions for the binary variables. Let Φ(:) be
the set of Lagrange multipliers associated with P2.1, i.e.,
Φ(:) = {_: (8, 9 , 2, I), Λ: (8, 9 , H, 2, I), l: (8, 2, I), Ω: (4, 8, 2, I),
\: (8, 9 , H, 2, I), Θ: (8, 2, I), Z : (8, 9 , 2, I), k: (4, 8, 2, I)}, ∀8 ∈ (,
∀ 9 ∈ (, ∀4 ∈ �)(, ∀H ∈ 3, ∀2 ∈ �, I ∈ / , 1 ≤ = ≤ : . The set
members of Φ(:) are associated with lagrange multipliers of
the constraints (49-56), respectively.

3) Feasibility Problem:
When the primal problem solution is not feasible, we solve the
feasibility problem to use its Lagrange multipliers in solving
the master problem. The feasibility problem is similar to the
primal problem except that we introduce some variables that
serve as upper bounds for all constraints, and the objective
function is to minimize the sum of these variables in order to
minimize the sum of the constraints violations. Therefore, the
feasibility problem can be formulated as follows:

P2.2 : Minimize :
|� |∑
I=1

∑
∀8∈(

( ∑
∀2∈�

(
D3 (8, 2, I)+

D6 (8, 2, I) +
∑
∀ 9∈(

( [
D1 (8, 9 , 2, I) + D7 (8, 9 , 2, I)

]
+

|3 |∑
H=1

[
D2 (8, 9 , H, 2, I) + D5 (8, 9 , H, 2, I)

] ))
+

∑
∀4∈�) (

∑
∀2∈�

[
D4 (4, 8, 2, I) + D8 (4, 8, 2, I)

] )
(60)

Subject to:

Constraints (19-24), (29-31), (35-37), (44), (47) and (57).

-+8 9 (2, I) −
|3 |∑
H=1

5
H

8 9
(2, I) ≤ D1 (8, 9 , 2, I)

∀8 ∈ (, 9 ∈ (, 2 ∈ �, I ∈ /.

(61)

5
H

8 9
(2, I)
;

− -+8 9 (2, I) ≤ D2 (8, 9 , H, 2, I)

∀8 ∈ (, 9 ∈ (, 2 ∈ �, H ∈ 3, I ∈ /.
(62)

%C G8 (2,I) − %C G<0G-+8 (2, I) ≤ D3 (8, 2, I),
∀8 ∈ (, 2 ∈ �, I ∈ /.

(63)

%�)48 (2, I) − %�)<0G �+48 (2, I) ≤ D4 (4, 8, 2, I)
∀4 ∈ �)(, 8 ∈ (, 2 ∈ �, I ∈ /.

(64)

5
H

8 9
(2, I) − -+8 9 (2, I) '8 9 (2, I) ) ≤ D5 (8, 9 , H, 2, I)
∀8 ∈ (, 9 ∈ (, H ∈ 3, 2 ∈ �, I ∈ /.

(65)

-+8 (2, I) −
�!8 (I)
�!<8=

≤ D6 (8, 2, I),

∀8 ∈ (, 2 ∈ �, I ∈ /.
(66)

Γ"2" -+8 9 (2, I)
[ ∑
@∈(\8

%C G@ (2, I) �2@ 9 + U8 9
]
−

%C G8 (2, I) �28 9 ≤ D7 (8, 9 , 2, I)
∀8 ∈(, 9 ∈ (, 2 ∈ �, I ∈ /.

(67)

Γ���+48 (2, I) − %�)48 (2, I)�248 ≤ D8 (4, 8, 2, I),
∀4 ∈ �)(, 8 ∈ (, 2 ∈ �, I ∈ /.

(68)

D1 (8, 9 , 2, I), D2 (8, 9 , H, 2, I), D3 (8, 2, I),
D4 (4,8, 2, I), D5 (8, 9 , H, 2, I), D6 (8, 2, I),

D7 (8, 9 , 2, I), D8 (4, 8, 2, I) ≥ 0,
∀8 ∈ (, 9 ∈(, 4 ∈ �)(, H ∈ 3, 2 ∈ �, 2 ∈ �, I ∈ /.

(69)

Let Φ̂(;) be the set of Lagrange multipliers as-
sociated with the feasibility problem P2.3, i.e., Φ(;)

= {_̂; (8, 9 , 2, I), Λ̂; (8, 9 , H, 2, I), l̂; (8, 2, I), Ω̂; (4, 8, 2, I),
\̂; (8, 9 , H, 2, I), Θ̂; (8, 2, I), Ẑ ; (8, 9 , 2, I) , k̂; (4, 8, 2, I)}, ∀8 ∈ (,
9 ∈ (, 4 ∈ �)(, H ∈ 3, 2 ∈ �, 2 ∈ �, I ∈ / , 1 ≤ = ≤ : . The
set members of Φ̂(;) are associated with lagrange multipliers
of the constraints (61-68), respectively.

4) Master Problem:
The master problem uses support functions in the model to
provide a lower bound solution. These support functions are
given in equation (58) and (59). Hence, the master problem
can be formulated as an MILP as follows:

P2.3 : Minimize : ` (70)

Subject to:

Constraints (9), (12-15), (28), (34).

L
(
-8 (2, I), -8 9 (2, I), �8 (2, I), �48 (2, I), 5 H (=)8 9

(2, I),

%
C G (=)
8
(2, I), %�) (=)

48
(2, I)

)
≤ `

∀8 ∈ (, 9 ∈ (, 4 ∈ �)(, H ∈ 3,
2 ∈ �, 2 ∈ �, I ∈ /, 1 ≤ = ≤ :.

(71)

L̂
(
-8 (2, I), -8 9 (2, I), �8 (2, I), �48 (2, I), 5 H (@)8 9

(2, I),

%
C G (@)
8
(2, I), %�) (@)

48
(2, I)

)
≤ 0

∀8 ∈ (, 9 ∈ (, 4 ∈ �)(, H ∈ 3,
2 ∈ �, 2 ∈ �, I ∈ /, 1 ≤ @ ≤ ;.

(72)

D. GBD-SC Algorithm

Due to the non-convexity of equation (5), we substitute it
with an approximate function defined by equation (40). More-
over, constraint (26) is non-convex. Therefore, we provide an
approximation for the problem by replacing (26) by constraint
(44) and adding constraint (47). Given an initial point value for
%̃8 (2, I) and Δ̃:8 (2, I), we embed SCP within GBD algorithm
to solve the primal problem successively in order to get a
better approximation for the original problem.

Initial values for %̃8 (2, I) and Δ̃:8 (2, I) can be set to
%C G<0G (2, I) and 4 [g%

�)
<0G (2,I)�2:8 ] , respectively. Without loss of

generality, we assume that finding feasible initial values for
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L
(
-8 (2, I), -8 9 (2, I), �8 (2, I), �48 (2, I), 5 H (:)8 9

(2, I), %C G (:)
8
(2, I), %�) (:)

48
(2, I)

)
=

∑
4̃∈�) (

∑̃
8∈(

∑̃
2∈�

|� |∑̃
I=1

%
�) (:)
4̃8̃

(2̃, Ĩ) )+

_: (8, 9 , 2, I)
(
-8 9 (2, I) −

|3 |∑
@=1

5
@ (:)
8 9
(2, I)

)
+ Λ: (8, 9 , H, 2, I)

(
5
H (:)
8 9

(2,I)
E

− -8 9 (2, I)
)
+ Θ: (8, , I)

(
-8 (2, I) − �!8 (I) (:)

�!<8=

)
+

Ω: (4, 8, 2, I)
(
%
�) (:)
48

(2, I) − %�)<0G �48 (2, I)
)
+ \: (8, 9 , H, 2, I)

(
5
H (:)
8 9
(2, I) − -8 9 (2, I) '

(:)
8 9 (2, I) )

)
+

l: (8, 2, I)
(
%
C G (:)
8
(2, I) − %C G<0G-8 (2, I)

)
+ k: (4, 8, 2, I)

(
Γ���48 (2, I) − %�) (:)48

(2, I)�2
48

)
+

Z : (8, 9 , 2, I)
(
Γ-8 9 (2, I)

[ ∑
@∈(\8

%
C G (:)
@ (2, I)�2

@ 9
+ U8 9

]
− %C G (:)

8
(2, I)�2

8 9

)
.

(58)

L̂
(
-8 (2, I), -8 9 (2, I), �8 (2, I), �48 (2, I), 5 H (;)8 9

(2, I), %C G (;)
8
(2, I), %�) (;)

48
(2, I)

)
= _̂; (8, 9 , 2, I)

(
-8 9 (2, I) −

∑ |3 |
@=1 5

@ (;)
8 9
(2, I)

)
+Λ̂; (8, 9 , H, 2, I)

(
5
H (;)
8 9

(2,I)
E

− -8 9 (2, I)
)
+ Θ̂; (8, 2, I)

(
-8 (2, I) − �!8 (I) (;)

�!<8=

)
+ Ω̂; (4, 8, 2, I)

(
%
�) (;)
48

(2, I) − %�)<0G �48 (2, I)
)

+\̂; (8, 9 , H, 2, I)
(
5
H (;)
8 9
(2, I) − -8 9 (2, I) '

(;)
8 9 (2, I) )

)
+ +k̂; (4, 8, 2, I)

(
Γ���48 (2, I) − %�) (;)48

(2, I)�2
48

)
l̂; (8, 2, I)

(
%
C G (;)
8
(2, I) − %C G<0G-8 (2, I) + Ẑ ; (8, 9 , 2, I)

(
Γ-8 9 (2, I)

[ ∑
@∈(\8 %

C G (;)
@ (2, I)�2

@ 9
+ U8 9

]
− %C G (;)

8
(2, I)�2

8 9

))
.

(59)

the binary variables is possible. However, when the initial
values of the binary variables lead to infeasible solution for
the primal problem, feasibility problem can be used to get the
Lagrange multipliers to be used in solving the master problem
then continue the iteration of GBD-CS Algorithm. One way
to get possible feasible initial values for the binary variables
is to solve an optimization problem that minimizes the sum
of all binary variables subject to all linear constraints in P1
associated with the flow, 5 H

8 9
(2, I), and the binary variables.

Algorithm 1 shows the required steps to solve our problem
using GBD and SCP. In steps 1-3, we find initial values for
the binary variables, %̃8 (2, I) and Δ̃:8 (2, I), then we solve
the primal problem using SCP algorithm to get the upper
bound and the initial values for the multipliers. Then, we
define the fixed values for the continuous variables to be
used by the master problem. We assume that we can get a
feasible solution for the primal problem using the selected
initial values. However, it is possible to solve the feasibly
problem if the solution of the primal problem is infeasible to
find the required Lagrange multipliers for the master problem.
In step 4-9, we solve the master problem and find the lower
bound. The algorithm terminates if the difference between the
upper and the lower bounds is less than a threshold n .

In steps 10-18, we solve the primal problem again after
fixing the binary variables with their new values, and we
get the upper bound and the multipliers if the solution is
feasible. The algorithm terminates if the gap between the
upper and the lower bounds is less than a threshold n . If the
solution is not feasible, we solve the feasibility problem to get
the Lagrange multipliers as shown in steps 19-23. Then, the
algorithm iterates until the target gap between the upper and
the lower bounds is achieved.

It is shown in Algorithm 2 that SCP terminates when the
solution does not change or when the maximum number of
iterations is reached. Moreover the set of all binary variables
in the optimization problem is finite. Therefore, Algorithm
1 terminates in a finite number of steps for any positive

convergence tolerance parameter, n , as shown in [22].

V. CONSTRAINTS DECOMPOSITION WITH BINARY
VARIABLES RELAXATION (CDR)

In section IV, we use a convex approximation for the non-
convex data rate function. Then, we decompose the problem
into two subproblems: 1) Convex NLP and 2) MILP using
GBD and SCP. Although this method facilitates finding a
solution for the original optimization problem, the problem is
still NP-Hard due to the binary variables in the master prob-
lem. Therefore, in this section we propose another method for
solving the original optimization problem based on constraints
decomposition and binary variables relaxation.

Problem P3.1 Problem P3.2 Problem P3.3

Fig. 2

Fig. 2 shows how the decision variables depend on each
other. To get an advantage of this property, we decompose the
problem into three subproblems accordingly. Due to constraint
(9) and relaxation of the binary variables, we decompose
the binary variables of data transmission (i.e. -8 (2, I) and
-8 9 (2, I)) and the binary variables for energy harvesting (i.e.
�8 (2, I) and �48 (2, I)) into two problems. Hence, We find
solutions for the flow 5

H

8 9
(2, I), -8 (2, I) and -8 9 (2, I) in

problem P3.1, then we round the relaxed binary variables up to
1. Then, we solve problem P3.2 to get solutions for �8 (2, I)
and �48 (2, I). Note that the solution of the relaxed binary
variable can only be zero or a positive number less than or
equals one. Hence, we round the positive solution of each
relaxed binary variable up to 1. Finally, we can solve problem
P3.2 where %C G

8
(2, I) and %�)

48
(2, I) depend on the found

solution of the binary variables. In the following, we formulate
these subproblems and describe the proposed algorithm for
solving the optimization problem.
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Algorithm 1: Generalized Benders Decomposition
with Sequential Convex Programming (GBD-SCP)

1 Select initial fixed values for -8 (2, I), -8 9 (2, I),
�8 (2, I), �48 (2, I), %̃8 (2, I) and Δ̃48 (2, I), ∀8 ∈ (,
9 ∈ (, 4 ∈ �)(, 2 ∈ �, 2 ∈ �, I ∈ / , solve problem
P2.1 using Algorithm 2, and let its solution and the
corresponding Lagrange multipliers set be c (1) and
Φ(1) , respectively.

2 Set : = 1, ; = 0, *� = c (1) .
3 Set, 5 H (1)

8 9
(2, I) = 5

H∗
8 9
(2, I), %̃8 (2, I) = %C G∗8 (2, I),

Δ̃48 (2, I) = Δ48 (2, I), %C G (1)8
(2, I) = %C G∗

8
(2, I),

%
�) (1)
48

(2, I) = %�) ∗
48
(2, I).

4 Solve problem P2.2.
5 Let the solution of P2.2 be `∗, and set !� = `∗.
6 if (*� − !�) < n then
7 Terminate.
8 else
9 -+

8
(2, I) = -∗

8
(2, I), -+

8 9
(2, I) = -∗

8 9
(2, I),

�+
8
(2, I) = �∗

8
(2, I), �+

48
(2, I) = �∗

48
(2, I),

%̃8 (2, I) = %C G∗8 (2, I) -∗8 (2, I).
10 Solve problem P2.1 using Algorithm 2.
11 if (The solution of Algorithm 2, c (:) , is feasible and

optimal multipliers are found) then
12 *� = min(*�, c (:) ).
13 if (*� − !�) < n then
14 Terminate.
15 else
16 : = : + 1.
17 Let the corresponding Lagrange multipliers set

be Φ(:) .
18 5

H (:)
8 9
(2, I) = 5

H∗
8 9
(2, I), %̃8 (2, I) = %C G∗8 (2, I),

Δ̃48 (2, I)=Δ48 (2, I), %C G (:)8
(2, I) = %C G∗

8
(2, I),

%
�) (:)
48

(2, I) = %�) ∗
48
(2, I).

19 else
20 Solve the feasibility problem, P2.3.
21 Find the corresponding Lagrange multipliers set,

Φ̂(;) .
22 ; = ; + 1.
23 5

H (;)
8 9
(2, I) = 5

H∗
8 9
(2, I), %C G (;)

8
(2, I) = %C G∗

8
(2, I),

%
�) (;)
48

(2, I) = %�) ∗
48
(2, I).

24 Go to step 4.

Note: In CDR algorithm, we use + superscript on the binary
variables to indicate their solution after being fixed. Moreover,
the continuous variables with (:) superscripts indicate their
values after being solved in the : Cℎ iteration of CDR algo-
rithm.

A. Problem P3.1

The goal of solving this problem is to find solutions for the
relaxed -8 (2, I) and -8 9 (2, I) variables. From Fig. 2, we can
find solutions for 5

H

8 9
(2, I) variables by solving the multicast

flow conservation constraints, then we can decide the values

Algorithm 2: Sequential Convex Programming (SCP)

1 A = 1, Π(0) = ∞
2 while (A ≠ Max iterations) do
3 Solve the optimization problem, and let its solution

be Π(A ) .
4 if (The solution is feasible) then
5 if (Π(A−1) − Π(A ) > X) then
6 %̃8 (2, I) = %C G∗8 (2, I).
7 Δ̃48 (2, I)=Δ48 (2, I).
8 A = A + 1.
9 else

10 c (:) = Π(A ) .
11 Terminate.

12 else
13 Terminate.

of -8 (2, I) and -8 9 (2, I) accordingly. To explore a variety of
different solutions for the decision variables, we solve problem
P3.1 such that we get different solutions for the relaxed binary
variables in each run of P3.1 problem.

We define a set, d, where it contains initially all -8 9 (2, I)
variables. After solving P3.1 problem, we remove each
-8 9 (2, I) variable from set d if its solution is positive. From
constraint (74), we can get different solution for -8 9 (2, I)
variables after each run of problem P3.1 in CDR algorithm.
Different solutions for -8 9 (2, I) variables may lead to finding
different solutions for �48 (2, I) variables in problem P3.2,
and hence, different solutions for %C G

8
(2, I) and %�)

48
(2, I) in

problem P3.3. Accordingly, We can formulate P3.1 problem
as follows:

P3.1 : Minimize :
|� |∑
I=1

∑
2∈�

∑
8∈(

∑
9∈(

∑
H∈3

5
H

8 9
(2, I) (73)

Subject to:

Constraints (10-13), (19-23) and (35).∑
-8 9 (2,I) ∈d

-8 9 (2, I) > 0. (74)

0 ≤ -8 (2, I) ≤ 1, ∀8 ∈ (, 2 ∈ �, I ∈ /. (75)

0 ≤ -8 9 (2, I) ≤ 1,∀8 ∈ (, 9 ∈ (, 2 ∈ �, I ∈ /. (76)

B. Problem P3.2

After finding solutions for -8 (2, I) and -8 9 (2, I) in P3.1, we
round them up to 1 and fix them in addition to fixing 5

H

8 9
(2, I).

Then, we solve P3.2 in order to find solutions for �8 (2, I) and
�48 (2, I). Hence, we can formulate problem P3.2 as follows:

P3.2 : Maximize :
∑

4∈�) (

∑
8∈(

∑
2∈�

|� |∑
I=1

%�)48 (2, I) ) (77)

Subject to:
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Constraints (14-15), (24), (25), (27-31), (36-37), (44), (47),
(51), (54-55), and (57)∑

2∈�

[
-+8 (2, I) +

∑
∀@∈(

-+@8 (2, I)
]
+

∑
2∈�

�8 (2, I) ≤ 1,

∀8 ∈ (, I ∈ /.
(78)

5
H +
8 9
(2, I) − -+8 9 (2, I) '8 9 (2, I) ) ≤ 0,

∀8 ∈ (, 9 ∈ (, H ∈ 3, 2 ∈ �, I ∈ /.
(79)

0 ≤ �8 (2, I) ≤ 1, ∀8 ∈ (, 2 ∈ �, I ∈ /. (80)

0 ≤ �48 (2, I) ≤ 1, ∀8 ∈ (, 4 ∈ �)(, 2 ∈ �, I ∈ /. (81)

C. Problem P3.3
In problem P3.1 and P3.2, we find solutions for the relaxed

binary variables. Therefore, we can formulate P3.3 as a convex
NLP to get a solution for power allocation subproblem as
follows:

P3.3 : Minimize :
∑
8∈(

∑
4∈�) (

∑
8∈(

∑
2∈�

|� |∑
I=1

%�)48 (2, I) ) (82)

Subject to:

Constraints (19-24), (29-31), (35-37), (44), (47), (49-56) and
(57).

D. CDR Algorithm
The CDR algorithm is described in Algorithm 3. In this

algorithm, we solve problem P3.1, P3.2 and P3.3 iteratively af-
ter decomposing the original optimization problem. Moreover,
we employ Algorithm 2 to find approximation for the non-
convex data rate function. In steps 1-2, Algorithm 3 initialize
some counters and parameters to be used by the algorithm.
Moreover, Algorithm 3 initialized the set d to contain all
binary variables -8 9 (2, I). In steps 4-7, we solve problem P3.1,
round the relaxed variables up to 1 and remove them from d

if they are positive. In steps 8-11, we solve P3.2 and round
the solution of the relaxed binary variables up to one. Then
we solve the problem of minimizing total transmitted energy
in step 12 using Algorithm 2. Steps 13-18 lead to termination
of Algorithm 3 when the solution of the algorithm is repeated
in the recent iterations for a number of times equals Count.
Moreover, Algorithm 3 will terminate when the set d becomes
empty.

Theorem V.1. Given a finite number of users, channels and
time slots, CDR algorithm converges in a finite number of
steps.

Proof. In P3.1, constraint (74) ensures that at least one new
variable -8 9 (2, I) ∈ d is greater than zero in each iteration
of Algorithm 3. Moreover, Algorithm 3 removes all positive
variables -8 9 (2, I) from d during each iteration. It is shown
in Algorithm 3 that one of the termination conditions is when
the set d is empty. Hence, the maximum number of iterations
for Algorithm 3 is reached when one variable -8 9 (2, I) ∈ d is
removed from d in each iteration. In other words, the number
of iterations for CDR algorithm is upper bounded by the
maximum cardinality of set d, which is |( |× |( |× |� |× |/ |. �

Algorithm 3: Constraints Decomposition with SCP
and Binary Variable Relaxation (CDR)

1 Set : = 1, Π = ∞ and Count = 0.
2 d = {-8 9 (2, I)}, ∀8 ∈ (, ∀ 9 ∈ (, ∀2 ∈ �, I ∈ / .

3 while
(
Count ≠ Termination Threshold and d ≠ {∅}

)
do

4 Solve problem P3.1.
5 if (The solution of P3.1 is feasible) then
6 Round the solutions of -8 (2, I) and -8 9 (2, I)

up to 1, i.e. -+
8
(2, I) = d-∗

8
(2, I)e and

-+
8 9
(2, I) = d-∗

8 9
(2, I)e, ∀8 ∈ (, ∀ 9 ∈ (,

∀2 ∈ �, I ∈ / .
7 Remove -8 9 (2, I) from d ∀ -+

8 9
(2, I) = 1.

8 Solve problem P3.2.
9 if (The solution of P3.2 is feasible) then

10 Set %̃8 (2, I) = %C G∗8 (2, I) and
Δ̃48 (2, I)=Δ48 (2, I), ∀8 ∈ (, 4 ∈ �)(,
∀2 ∈ �, I ∈ / .

11 Round the solutions of �8 (2, I) and
�48 (2, I) up to 1, i.e.
�+
8
(2, I) = d�∗

8
(2, I)e,

�+
48
(2, I) = d�∗

48
(2, I)e, ∀8 ∈ (, 4 ∈ �)(,

2 ∈ �, I ∈ / .
12 Solve P3.3 using Algorithm 2, and let the

solution be c (:) .
13 if (The solution of Algorithm 2 is feasible)

then
14 if

(
c (:) = Π

)
then

15 Count = Count +1.

16 if
(
c (:) < Π

)
then

17 Π = c (:) .
18 Count = 0.

19 : = : + 1.

VI. SIMULATION RESULTS

In this section, we study the problem of minimizing the
total transferred energy to support M2M multicast service for
IoT devices in cellular networks. We use General Algebraic
Modeling System (GAMS) [29] with SCIP solver [30] to solve
the original optimization problem, P1, optimally. It is shown
in [30] that SCIP uses a spatial branch-and-bound algorithm
to solve convex and non-convex MINLP problem to achieve
global optimality. Moreover, we use CPLEX [31] and Interior
Point Optimizer (IPOPT) [32] under GAMS to solve MILP
and NLP problems, respectively.

We consider in the simulation two network sizes: 1) Small
networks and 2) Larger networks. The network size is rep-
resented here by the number of devices and ETs. Unless the
network parameters are specified otherwise, the small network
consists of 1 BS, 1 ET, 8 cellular devices and 5 M2M devices.
On the other hand, the large network consists of 1 BS, 4 ETs,
8 cellular devices and 10 M2M devices.
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Due to the difficulty of finding the optimal solution when
the network size is large, we compare the optimal solution
with GBD-SCP and CDR algorithm using small networks. For
the other performance comparisons in this section, we use the
larger network. Similar to [13], we assume that the ETs are
distributed within 100 meter of the BS. The distribution of
the multipath fading and the shadowing are exponential with
unit mean and log-normal with standard deviation of 8 dB,
respectively. The rest of the simulation parameters are shown
in Table II.

TABLE II: Simulation Parameters

Parameter Value

%!2 10−2

%!4 2
q 15◦

q 20◦

, 6 MHz
#0 -174 dbm/Hz
Γ�� 0.064 mW
Γ"2" 10
Γ24;; 10
g 274

%ℎ<0G 4.927 mW

Parameter Value

E 0.29
%CG<0G 250 mW
%�)<0G 20 W
%�( 20 W
) 1 sec
@ 1 Mb

�!<8= 10 mAh
�!8=8C

8
300 mAh

�!<0G
8

500 mAh
n 0.01
X 0.01

1 2 3 6 25 50

Iteration
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Fig. 3: A comparison between the optimal solution and the solutions given
by GBD-SCP and CDR algorithms.

Fig. 3 shows a comparison between the optimal solution
and the solutions given by GBD-SCP and CDR algorithms.
As the number of iterations for CDR algorithm increases, the
performance improves significantly until it stabilizes when it
reaches around the 6Cℎ iteration. Both GBD-SCP and CDR
achieve performance close to the optimal although GBD-SCP
outperforms CDR.

Fig. 4 shows the effect of increasing the number of ETs on
the total transmitted energy when the network is larger and
CDR iterations are 10. The performance difference between
GBD-SCP and CDR algorithms decreases by increasing the
number of ETs. Moreover, the total required energy to be
transferred decreases as the number of ETs increases, as shown
in Fig. 4. The reason for this trend is that increasing the
number of ETs increases the chances for the M2M devices
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Fig. 4: Transmitted energy vs number of ETs.

to receive energy from closer ETs and over channels with
better conditions. Hence, less energy can be transferred while
supporting the same energy demands for the M2M devices.

TABLE III: Computation Time (Seconds)

Small Network Large Network

Optimal 129 N/A
GBD 61 73
CDR 13 16

Table III shows the computation times when the problem
is solved optimally and when GBD-SCP and CDR are used.
We select the number of iterations for CDR algorithm to
be 10 since its performance is close to the optimal and the
performance of GBD-SCP algorithm when the network size
is small and large, respectively. It is shown that finding the
optimal solution when the network size is small requires
long computation time whereas it cannot be found efficiently
when the network is large. Moreover, Table III indicates
that GBD-SCP and CDR algorithms reduce the computation
time significantly when the network is small, and they can
find solutions when the network is large. CDR algorithm
outperforms GBD-SCP when the network size is small and
large. GBD-SCP algorithm performance is significantly influ-
enced by solving the MILP problem, which consists of binary
variable. However, CDR algorithm solves the problem while
relaxing the binary variables, and this contributes to reducing
the computation time.

To study the effect of the network architecture on the total
transmitted energy, we consider hybrid and ad hoc networks
architectures. A hybrid network is similar to the network
architecture shown in Fig. 1 where the multicast message
can be transmitted using M2M communication links and the
cellular downlink from the BS to the M2M devices. On the
other hand, the multicast message is transmitted using only
M2M communication in ad hoc network architecture without
help from the BS.

Fig. 5 and Fig. 6 show the effect of the network architecture
on the transmitted energy. Since only the transmitting M2M
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Fig. 5: Transmitted energy vs. number of ETS when the network architecture
is ad hoc and hybrid.
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Fig. 6: Transmitted energy vs. number multicast destination when the network
architecture is ad hoc and hybrid.

devices are compensated by energy for their consumed energy
to transmit a multicast message, the BS can help in reducing
the total consumed energy by M2M devices by forwarding
the multicast message to the destinations. Hence, the total
transmitted energy can be reduced by using the hybrid network
architecture as shown in Fig. 5 and Fig. 6. On the other
hand, increasing the number of destinations when the network
is ad hoc generally results in more M2M communications,
and hence, more energy consumption by the M2M devices.
Therefore, the ETs transmit more energy as the number of
destinations increases in the ad hoc network architecture as
shown in Fig. 6.

VII. CONCLUSION

In this paper, we considered wireless-powered multicast-
ing service for M2M devices in cellular networks. Multiple
ETs are distributed in the network to transfer energy to the
M2M devices. M2M devices utilize M2M communication to
transfer multicast messages, and they are compensated for

the energy consumed for forwarding the multicast messages.
We formulated the problem mathematically, and the goal is
to minimize the total transmitted energy by these ETs. The
formulated problem is hard to solve since it is a non-convex
MINLP. Therefore, we utilized GBD algorithm to decompose
the problem into an NLP and an MILP subproblem. Then, we
approximated the non-convex data rate function by a lower
bound concave function and used SCP algorithm within GBD
to solve the problem.

Because the problem is still hard to solve using GBD-
SCP, especially when the number of binary variables is large,
we proposed the CDR algorithm to solve the problem more
efficiently. By utilizing the dependence of some variables on
each other, we decomposed the original problem into three
easier to solve sub-problems with binary variables relaxation.
We studied the performance of CDR algorithm which achieves
a performance that is close to GBD-SCP algorithm, but
requires less computation time when the network size is large.
We showed that the hybrid network architecture contributes to
reducing the total transmitted energy by the ETs.
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