
REAL-TIME DYNAMIC MR IMAGE RECONSTRUCTION USING KALMAN FILTERED
COMPRESSED SENSING

Chenlu Qiu, Wei Lu and Namrata Vaswani

Dept. of Electrical and Computer Engineering, Iowa State University, Ames, IA,
{chenlu, luwei, namrata}@iastate.edu

ABSTRACT

In recent work, Kalman Filtered Compressed Sensing (KF-CS) was
proposed to causally reconstruct time sequences of sparse signals,
from a limited number of “incoherent” measurements. In this work,
we develop the KF-CS idea for causal reconstruction of medical im-
age sequences from MR data. This is the first real application of
KF-CS and is considerably more difficult than simulation data for
a number of reasons, for example, the measurement matrix for MR
is not as “incoherent” and the images are only compressible (not
sparse). Greatly improved reconstruction results (as compared to CS
and its recent modifications) on reconstructing cardiac and brain im-
age sequences from dynamic MR data are shown.

Index Terms/Keywords: Compressed Sensing, Kalman Fil-
tered Compressed Sensing, dynamic MRI

1. INTRODUCTION
In recent work [1], the problem of causally reconstructing time se-
quences of spatially sparse signals, with unknown and slow time-
varying sparsity patterns, from a limited number of linear “incoher-
ent” measurements was studied and a solution called Kalman Fil-
tered Compressed Sensing (KF-CS) was proposed. An important ex-
ample of this type of problems is real-time medical image sequence
reconstruction using MRI, for e.g. dynamic MRI to image the beat-
ing heart or functional MRI to image the brain’s neuronal responses
to changing stimuli(see Fig.1). In these examples, the signal (heart or
brain image) is approximately sparse (compressible) in the wavelet
transform domain [2],[3]. MRI measures the 2D Fourier transform
of the image which is known to be “incoherent” w.r.t. the wavelet
basis [2]. Because MR data acquisition is sequential, the scan time
(time to get enough data to accurately reconstruct one frame) is re-
duced if fewer measurements are needed for accurate reconstruction
and hence there has been a lot of interest in the MRI community to
use compressed sensing (CS) to do this [2],[3].

This idea was first demonstrated in [2] for a single MR image
or volume. The work of [3] extended the idea to offline dynamic
MRI reconstruction, i.e. it used the entire time sequence of mea-
surements to jointly estimate the entire image sequence (treated it as
a 3D x-y-t signal, sparse in wavelet domain along the x-y axis and
sparse in the Fourier domain along the time axis). But this is a batch
solution (needs all measurements first) and also the resulting joint
optimization is computationally complex. On the other hand, the so-
lution of [1] is causal and also much faster, and thus can be used
to make dynamic MRI real-time. Reduced scan-time and real-time
reconstruction are the currently missing abilities that prevent the use
of MRI in interventional radiology applications, such as MR-guided
surgery[4]. Some other recent work that also targets causal recon-
struction of sparse image sequences is [5] and [6].
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Fig. 1. Fig.1(a) Top: Original image sequence. Middle: MRI re-
constructions using KF-CS. Bottom: MRI reconstruction using CS.
Fig.1(b) is the corresponding MSE plot. n = 2049, m = 4096 and
σ2

obs = 100.

In this work we use [1] to develop a KF-CS algorithm to causally
reconstruct image sequences using MR data. There are some key
differences in our current problem from the simplistic model used in
[1] and these require some practical modifications to the algorithm
of KF-CS(described in section 2). Additionally, in this work, (i) we
develop a method for estimating the prior model parameters from
training data(described in section 3.1) and (ii) we use the results of
[7] to develop a method for selecting the number of observations
required and the parameters used by the CS step of KF-CS(described
in section 3.2). Results on reconstructing a cardiac sequence and
a brain sequence are discussed in section 4 and they show greatly
reduced mean squared error(MSE) when compared to performing
CS at each time as in [2], as well as to some other modifications of
CS. For e.g. in Fig 1b, the CS error is more twice that of KF-CS.

1.1. Problem Formulation
Let (Zt)m1×m1

denote the image at time t and let m := m2
1 be its

dimension. LetXt denote the 2D discrete wavelet transform (DWT)
of Zt, i.e. Xt := WZtW

′. Let F denote the discrete Fourier trans-
form (DFT) matrix and Yfull,t = FZtF

′ = FW ′XtW
′F ′ denote

the 2D-DFT ofZt. All of this can be transformed to a 1D problem by
using Kronecker product denoted by

⊗
. Let yfull,t := vec(Yfull,t)

and xt := vec(Xt). Then yfull,t = F1DW1Dxt where F1D =
F

⊗
F and W1D = W

⊗
W . Here, vec(Xt) denotes the vec-

torization of the matrix Xt formed by stacking the columns of Xt

into a single column vector. In MR imaging, we capture a set of n,
(n < m), Fourier coefficients corrupted by white noise. This can be
modeled by applying a n × m mask, M (which contains a single 1
at a different location in each row and all other entries are zero) to
yfull,t followed by adding Gaussian noise.

The above can be rewritten using the notation of [1] as

yt = Axt + wt, A := HΦ, H := MF1D, Φ := W1D (9)

with wt ∼ N (0, σ2
obs) is i.i.d. Gaussian measurement noise. Let
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Algorithm 1 Kalman Filtered Compressive Sensing for compressible or less-sparse signal
Initialization: At t = 0, compute x∗ = argminx

1
2
||y−Ax||2l2 +γ||x||l1,γ = γcs = 2

√
2 log2 mσobs, T0 = {i ∈ [1 : m] : |x∗|i > αinit}.

Set P0 = 100 ∗ Q, x̂0 = 0
For t > 0, do
1. Temporary KF using T ← Tt−1:

(Pt|t−1)T,T = (Pt−1)T,T + (Q)T,T (1)

Kt,tmp,T = (σ2
obs(Pt|t−1)

−1
T,T + A′

T AT )−1A′
T (2)

(x̂t,tmp)T = (x̂t−1)T + Kt,tmp,T (yt − AT (x̂t−1)T ), (x̂t,tmp)Tc = 0 (3)

2. Run CS on KF error to update nonzero set(Addition/Deletion)

(a) Compute the filtering error, ỹt,f = yt −AT x̂t,tmp, run CS on ỹt,f , i.e. estimate β̂ = argminβ
1
2
||yt,f −Aβ||2l2 + γ||β||l1 with

γ = γERC . Set x̂t,CSF E = x̂t,tmp + β̂.
(b) Addition/Deletion: estimate the nonzero set at t as: Tc = {i ∈ [1 : m] : |x̂t,CSF E|i > αadd}, set Tt ← Tc.

3. Run KF on the current nonzero set Tc:

(x̂t|t−1)Tc =

(
(x̂t−1)T∩Tc,T∩Tc

0Tc\T,Tc\T

)
, (x̂t|t−1)Tc

c
= 0 (4)

(Pt|t−1)Tc,Tc =

[
(Pt−1|t−1)T∩Tc,T∩Tc

(P0)Tc\T,Tc\T

]
+ (Q)Tc,Tc (5)

Kt,T = (σ2
obs(Pt|t−1)

−1
Tc,Tc

+ A′
Tc

ATc)
−1A′

Tc
(6)

(Pt)Tc,Tc = (I − Kt,T ATc)(Pt|t−1)Tc,Tc (7)
(x̂t|t)Tc = (x̂t|t−1)Tc + Kt,T [yt − A(x̂t|t−1)Tc ], (x̂t|t)

c
Tc

= 0 (8)

4. Output Tt, x̂t and x̂t,CSF E. Compute signal estimation ẑt = W1Dx̂t or ẑt,CSF E = W1Dx̂t,CSF E.

Nt denote the current set of nonzero coefficients (or significantly
nonzero coefficients in case of compressible sequences). For (xt)Nt ,
we assume a spatially independent (but not identically distributed)
Gaussian random walk model, i.e.

xt = xt−1 + νt, νt ∼ N (0, Qt),

(Qt)Nt,Nt = (Q)Nt,Nt

(Qt)Nc
t ,[1:m] = 0, (Qt)[1:m],Nc

t
= 0 (10)

where Q is a diagonal matrix estimated as explained in section 3.1.
The diagonal assumption on Q is a valid one because the wavelet
transform is well-known to be a decorrelating transform for natural
images [8]. The set, Nt of (significantly) nonzero elements of xt

changes slowly over time, for e.g. for a 32 × 32 block of a cardiac
image, |Nt| ≈ 130 and |Nt \ Nt−1| ≤ 20.

2. KF-CS FOR REAL-TIME DYNAMICMRI
The overall idea of Kalman Filtered Compressed Sensing (KF-CS)
for a sparse signal sequence is as follows [1]. Let Tt denote the KF-
CS estimated set of (significantly) nonzero coefficients at time t, i.e.
Tt = N̂t. At t = 0, we perform CS on y0 followed by thresholding,
to estimate T0. At any t, we first run a reduced order KF for the ele-
ments of Tt−1. Denote its output by x̂t,tmp. We use this to compute
the filtering error in the observation, ỹt,f := yt − Ax̂t,tmp. If ỹt,f

is larger than usual (its weighted norm is greater than a threshold), it
indicates that more coefficients have become nonzero. At this time,
we perform CS on ỹt,f followed by thresholding the output to find
new additions to Tt−1. This is followed by a KF prediction and up-
date step for the current set of nonzero coefficients, Tt. Coefficients

that got falsely added in the past or that became zero over time are
removed from Tt by thresholding the KF output x̂t.

LetΔt := Nt \Tt−1. The reason why KF-CS for sparse signals
outperforms CS is that CS uses yt = Axt + wt to estimate the
|Tt−1∪Δt|-sparse signal, xt, while KF-CS uses ỹt,f = yt−Ax̂t =

Aβt + wt to estimate βt � xt − x̂t,tmp. As explained in [1], βt =
[(xt − x̂t)Tt−1

, (xt)Δt , 0(Tt−1∪Δt)c ] is also |Tt−1 ∪Δt|-sparse but
is only |Δt|-compressible (assuming (xt − x̂t,tmp)Tt−1

is small).
Key Differences. KF-CS was designed for estimating a highly

sparse signal sequence, with slowly changing nonzero elements’ set,
from a small number of random Gaussian projections corrupted in
Gaussian noise. All nonzero coefficients at a given time were as-
sumed to follow a random walk with equal variance. In the MRI
reconstruction problem, there are a few key differences.

1. The matrix,A = HΦ is no longer random Gaussian. Φ is the
DWT matrix and H contains randomly selected rows from
the DFT matrix. The resulting A matrix is not as incoherent
(incoherence can be quantified by μ = maxi�=j |A

′
iAj |) as a

random Gaussian matrix of the same size.
2. The wavelet transform coefficients’ vector, xt, of a real med-
ical image (e.g. cardiac or brain) is only compressible (not
sparse) and the number, St, of “significantly” nonzero coef-
ficients(as a percentage of the signal size, m), is much larger
than what was used in the simulations in [1].

3. Different wavelet coefficients have different variances, and in
fact the nonzero coefficients that get added/deleted over time
are typically the smaller variance ones.

4. The problem dimension,m is much larger (e.g. m = 4096).
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Modifications. We describe below our modifications to address
the above issues. The final algorithm is summarized in Algorithm 1.

Use of Basis Pursuit De-Noising(BPDN). Because of issue 2),
the Dantzig selector, which was designed for very sparse signals,
estimated from highly incoherent observations does not work well.
We replace it by the BPDN (see step 2a of Algorithm 1), which was
also used in [2].

Dealing with false additions and misses. Even with BPDN,
because of issue 3), either many of the (significantly) nonzero coef-
ficients never get added to Tt, i.e. Tt \ Nt is large or there are too
many false additions,Δ = Tt \Nt. In the latter case, the increase in
|Tt|may result in a singularA′

Tt
ATt (making the KF unobservable).

Because of issue 1), this begins to occur for smaller values of |Tt|/n
than if A were random Gaussian (and of course occurs more often
when n is smaller, e.g. when n = 308 for a 32 × 32 cardiac image
sequence).

To prevent this, the addition/deletion threshold, αadd, needs to
be large, but this results in largerΔ = Nt \Tt. Note that the estima-
tion error along T = Tt, (xt − x̂t)T , depends linearly on A′

T AΔ.
Because of larger sized Δ and because of 1), A′

T AΔ is no longer
very small and thus (xt − x̂t)T is also not very small. By using the
output of the CS step, x̂t,CSF E = x̂t,tmp + β̂t, as the final output
(instead of using the KF output, x̂t), we ensure that at least the CS
estimate of (βt)T = (xt − x̂t,tmp)T is included in the final esti-
mate. For the same reason, we also use x̂t,CSF E for deletion, in fact
we combine addition and deletion into a single step (see step 2b of
Algorithm 1).

Initial covariance. Since there is an unknown delay in detecting
new additions to the nonzero coefficients’ set, the initial error covari-
ance of newly added coefficients is never correctly known. We use
an arbitrarily large value, P0 = 100Q for it (the estimate for the new
coefficients will thus be closer to an LS solution).

Efficient Implementation. Whenm is large, a direct implemen-
tation of KF-CS becomes very slow. We make it faster using some
simple reformulations such as solving a 2D version of BPDN and
using the algorithm of [2] or using standard matrix algebra tricks to
speed up matrix multiplications and inversions in the KF step.

3. PARAMETER ESTIMATION
Section 3.1 discuss how we estimate Q and section 3.2 discuss how
we select n and γ using ERC.

3.1. Estimating Q
We consider two models forQ. The first one assumesQ to be a diag-
onal matrix with different entries while the second assumes Q is di-
agonal with all equal entries. The second model will have more bias
(since finer scale wavelet coefficients always have smaller variance
than coarser scale ones) but will have smaller variance and hence is
a better idea when limited training data is available.
We can compute an approximate Maximum Likelihood (ML) esti-
mate of Q under either model: we pick a zeroing threshold, set all
coefficients below it to zero and use the rest of the coefficients to
compute the ML estimate. The algorithm is summarized in Algo-
rithm 2. |δi| in step 2 stands for the times of nonzero occurrence for
ith entry of xt and |δi| = 0 implies the ith entry, xt,i, is zero or
equal at all time. We compare the two models for Q in Fig 2.

3.2. Selecting n and γ using ERC
The BPDN estimator is defined as the solution to

arg min
xt

1

2
||yt − Axt||

2
l2 + γ||xt||l1 (11)

where γ is a regularization parameter that determines the tradeoff
between the data consistency and the sparsity. We use Theorem 8

Algorithm 2 Q estimation
1. Zero out “compressible”(nearly zero) coefficients

(a) Select zeroing threshold
• For t = 1 : Ltrain, here, Ltrain denotes the
length of training sequence,
– Compute xt = W

′

1Dzt. Arrange |xt,i| in
decreasing order of magnitude, i.e.|xt,1| >
|xt,2| > · · · > |xt,m|.

– Compute the smallest St such that
Σj≤St |xt,i|

2 > 99.9%x′
txt, set thresh-

old αt = |xt,St |.
• Average αt over t, α = Σtαt

Ltrain
.

(b) Zero out “compressible” coefficients
• For t = 1 : Ltrain, if |xt,i| < α, set xt,i = 0.
SetNt = {i ∈ [1 : m] : |xt,i| ≥ α}.

2. Estimate Q using nonzero coefficients. Compute δi := {t :
xt,i − xt−1,i 
= 0}

• ForQ with different diagonal values,
– if |δi| ≥ 1, (σ2

sys)i = 1
|δi|

ΣLtrain
t=2 (xt,i −

xt−1,i)
2.

– if |δi| = 0, (σ2
sys)i = 0.9 min{j:|δj |≥0}(σ

2
sys)i

– Set Qdiff = diag((σ2
sys)i).

• ForQ with equal diagonal values,
– Compute

σ2
sys = 1

Σj (|δj |)
Σm

i=1Σ
Ltrain
t=2 (xt,i−xt−1,i)

2. Set
Qsame = σ2

sysI .

of [7] to develop an algorithm to select γ and n using training data.
Let Λ be the nonzero set of xt which we want to estimate. The exact
recovery coefficient,ERC(Λ) := 1−||A†

ΛAΛc ||l1 > 0 is one of the
conditions for Theorem 8 to hold. Here, † denotes pseudoinverse.

Selecting n: Given yt and the ground truth data xt. Threshold
xt to define its nonzero set Nt. Find the smallest value of n such
that ERC(Nt \ Nt−1) > 0 for at least 90% of times.

Selecting γ: Theorem 8 of [7] guarantees that if γ is large
enough (its correlation condition is satisfied), the BPDN estima-
tor will have no falsely nonzero coefficients, but may end up not
adding the small coefficients. For sufficiently sparse signal se-
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Fig. 2. Comparison of KF-CS with different model of Q. n =
308,m = 1024 and σ2

obs = 25. Q∞ denotes Q = ∞.Gauss-BPDN
is labeled as Gauss-Lasso by mistake.
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Fig. 3. Fig 3(a) is for a sparsified cardiac sequence. If deletion step is not used false additions become too large (result in unobservable KF
and hence larger error). Fig 3(b), 3(c) are for the true cardiac sequence.Gauss-BPDN is labeled as Gauss-Lasso by mistake.

quences, one can use the correlation condition given in this result
to find the minimum value of γ required for a given training se-
quence. This can be done as follows. Starting with T0 = N0, do
the following for t = 1 to Ltrain: (a) compute Δt = Nt \ Tt−1;
(b) compute ERC(Δt); and (c) run step 2 of Algorithm 1 with

γ = γt =
||ỹt,f−AΔt

A
†
Δt

ỹt,f ||

ERC(Δt)
. Use γERC = maxt γt for test data.

In practice, for compressible data, using γ = γERC adds too
few coefficients. In this case we compute γERC using a sparsified
version of the true training sequence, but use a smaller value of γ for
the test data. This allows more coefficient additions.

4. EXPERIMENT RESULTS
We evaluated our algorithm on cardiac and a brain image sequences.
Fig. 1 is the comparison of KF-CS reconstructed image sequence
with that of CS for brain data. Notice the white region in the
center is much more blurred in CS reconstruction than in KFCS.
For the results of Fig 2 and 3, we selected a 32x32 region in the
cardiac data and used its sequence as test data. MRI was simu-
lated by taking the 2D-DFT of the given image sequence, selecting
a random set of n Fourier coefficients using the variable-density
undersampling scheme proposed in [2] and adding i.i.d. Gaus-
sian noise to them. In the plots of Fig 2, 3, we plot MSE/energy
:= E||xt − x̂t||

2
l2/E||xt||

2
l2 which was computed by averaging over

50 Monte Carlo simulations for the cardiac sequence. Fig. 2 com-
pares KF-CS using Qdiff , Qsame and using Q = ∞ (replacing KF
by LS). n = 308 observations were taken while |Nt| ≈ 130 and
|Δt| ≤ 20. Since σ2

obs is large, KF-CS which makes use of prior
model knowledge performs much better than LS-CS. Also, KF-CS
withQdiff outperforms KFCS with Qsame.

In Fig3(a), we show that KF-CS with γERC = 2 (we use
a slightly simplified version of the method of section 3.2 for
computing this) outperforms KF-CS with a larger choice of γ
(γ = γcs = 2

√
2 log2 mσobs), KF-CS (only additions), Gauss-

BPDN and CS[2]. The comparison is done for sparsified cardiac
sequence(image sequence obtained by zeroing out small wavelet
coefficients and computing inverse wavelet transform). KF-CS(only
additions) refers to algorithm proposed in [1], in which we kept
adding new additions to the nonzero coefficients set at each twithout
dealing with false additions. For Gauss-BPDN, we first estimated
nonzero set by BPDN, followed by LS on it (similar to Gauss-
Dantzig[9]). Genie-aided KF (GA-KF)is a KF that knowsNt at each
t. This serves as a MSE lower bound. Fig3(b) and Fig3(c) compare
KF-CS with KF-CS(only additions), CS and Gauss-BPDN for true
(not sparsified) cardiac data. In Fig3(b), we set γ = 2 < γERC with
n = 512 and m = 1024. In Fig3(c), we set γ = 0.005 << γERC

while n = 308 << 512. When n is very small, we use smaller γ

and only run KF on ”larger” coefficients while use x̂CSF E as final
output.

5. CONCLUSIONS AND FUTUREWORK
In this paper, we have developed the KF-CS idea for causal re-
construction of medical image sequences from MR data and have
shown greatly improved reconstruction results on cardiac dynamic
and brain fMRI data, as compared to CS [2] and its modifications.
This is the first real application of KF-CS and is considerably more
difficult than simulation data because the measurement matrix for
MR is not as incoherent as a random Gaussian matrix and because
the different wavelet coefficients have vastly different magnitudes
and variances. Future work will involve a rigorous analysis of the
proposed algorithmic ideas and using it to propose a novel KF-CS
based algorithm for compressible sequences.
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