
 
ComS / CprE 583 – Reconfigurable Computing 

Homework #2 
Assigned: September 7 

Due: September 26 (12:00pm) 
 
 
[Note from Joe: The four questions here relate directly to topics covered in the first three weeks 
of class. I have tried to make the expectations for each question clearer but much like in 
Homework #1, I am not going to be providing a direct path to any specific solution. Access to two 
commercial FPGA design tools (Xilinx ISE and Altera Quartus II) are needed to complete 
question 4. If you do not have access to the digital design lab in 1331 Coover, then you must 
download and install both the Xilinx ISE Webpack (http://www.xilinx.com/webpack) and the 
Altera Quartus II Web Edition software (http://www.altera.com). Both of these tools require you 
to create a free web account and will take some time to download and install.] 
 
 
1) We covered in some detail most of the various features used in the Xilinx series of FPGAs 
from the XCV3000 series all the way up to the current-day Virtex-4 and Virtex-5 families. On the 
flip side, we have only barely touched upon the Altera series of FPGAs, except to note that the 
base technology is very similar to that of Xilinx, with some changes in terminology.  
 

(a) Provide a 1:1 mapping of the terminology used by Altera in describing their FPGA 
architectural characteristics to that of Xilinx. Consider things like (1) device naming, (2) 
logic clusters, (3) interconnect, (4) I/O, (5) DSP functionality, (6) memory. Limit your 
listing to FPGA-specific terms. You should be able to find at least 15 examples by going 
through the provided Altera documentation. Please be specific. [Example from class: 
Xilinx refers to their clustering of LUTs as a Configurable Logic Block (CLB), whereas 
Altera refers to a similar clustering as a Logic Array Block (LAB). The fact that they both 
use the term “RAM” or “Adder” in their documentation would not count.]  

 
(b) Looking now at only the Xilinx Virtex-4 LX and the Altera Stratix II GX device families, 

describe how a large random logic function might appear differently on each. How about 
a large adder (requiring fast-carry logic)? How about a large multiplier using built-in 
multiplier resources? How about a large memory using built-in RAM resources? 

 
All of the Xilinx and Altera documentation required to perform this analysis is available on the 
CprE 583 course web page: http://class.ece.iastate.edu/cpre583. 
 
 
2) We discussed in class two different ways of representing numbers that have fractional 
components, and how these representations would affect the hardware implementation of the 
basic arithmetic operators (addition, multiplication, etc.). 

 
(a) Examine both the Q9.23 fixed-point and IEEE 754 single-precision floating-point 

representations. What are the ranges of values (smallest number, largest number) that can 
be represented by each? We know that for any 32-bit binary representation, there are 232 
possible combinations of 0s and 1s. Given this fact, are there numbers that can be 
represented in IEEE 754 single-precision but not in Q9.23? Also, are there numbers that 



can be represented in Q9.23 but not in IEEE 754? If your answer to either of these two 
questions is yes, please provide an example.  

 
(b) Design an architecture (at the block diagram-level) that can perform addition or 

multiplication of two numbers represented in any arbitrary QI.F fixed-point notation. 
[You can keep a practical limit to both I and F (64 or 128 would be fine), and use +, *,  
and mux operators as your building blocks. Worry more about how the input fixed-point 
numbers would have to be modified to be able to be added or multiplied together using 
standard binary adders and multipliers.] 

 
 
3)  Most of the second week of class was spent on mapping various Boolean circuits to LUT-
based computational structures. The following claim was made: a LUT of k inputs (k-LUT) can 
be programmed to implement any single-output logic function of k variables. The total number of 
possible logic functions / k-LUT truth table variations was calculated to be 2^2^k, or 65536 for 
k=4. It was also pointed out that many of these 2^2^k functions are redundant, as multiple truth 
tables can be obtained by just re-arranging the inputs of a single function. For example, given 
F(A,B) = ((not A) and B) and G(A, B) = ((not B) and A), than either F or G are not unique as 
F(A,B) = G(B,A). 

 
(a) Design an algorithm that takes as its input k and calculates the number of non-redundant 

Boolean functions of k inputs. What would be the approximate run-time of your solution, 
as a function of k? What would be the approximate storage requirements of your solution, 
as a function of k? [An exhaustive search algorithm is acceptable here.] 

 
(b) Implement the algorithm you came up with in part a) in any programming language of 

your choosing. Use your program to calculate the total number of unique LUT 
configurations for k=2, 3, 4. Attach your source file in a final .zip file to be included with 
your entire submission. [I recommend being fairly confident in your solution to part a) 
before starting on this part. You should be able to manually determine the answer for the 
k=2 and k=3 cases in order to check your code. Based on what was discussed in class, 
the answer for k=4 should be on the order of (2^2^k / k!).]  

 
(c) Time how long it takes to obtain the answers in part b). Given these data points and the 

algorithmic analysis of part a), how long would you expect it to take to find all the unique 
k-LUT representations for k=5? For k=6? [If C is your programming language of choice, 
you can reuse the gettimeofday() timing calls in the BubbleSort.c I provided in the first 
assignment. Many other timing analysis tools will give 0 time required for the k=2 and 
k=3 cases since it will be fairly quick.] 

 
  
4) See attached file hw2.zip which contains a partially-completed hardware implementation of the 
quadratic equation Ax2 + Bx + C. Specifically, you should find the following files: 

• Adder.vhd – a VHDL structural implementation of an addition operator, with output 
register. 

• Multiplier.vhd – a VHDL structural implementation of a multiplication operator, with 
output register. 

• Quadratic.vhd – a partial implementation of the quadratic equation, using the Adder 
and Multiplier modules described above. This design contains the instantiations 
of all the necessary adders and multipliers but they are not yet wired together. 



• altera/ – a sample Quartus II project directory for the Quadratic module [not 
guaranteed to work with everyone’s install of Quartus II.] 

• xilinx/ – a sample ISE 8.1 project directory for the Quadratic module [not 
guaranteed to work with everyone’s install of ISE.] 

 
(a) Complete the implementation of the quadratic equation design. In a zip file, provide both 

the completed Quadratic.vhd file along with the Modelsim waveform file that shows 
correct values being computed for various inputs of variable x. 

 
(b) Choose four FPGA devices to use for the following experiments. Two must be from 

Xilinx, and two from Altera. Choose at least 1 older device that does not have any built-
in block multipliers. Provide a brief description of each of the FPGAs you’ve selected 

 
(c) Synthesize the quadratic equation design onto each of your selected FPGAs, varying the 

input data width from {8, 16, 24, 32} bits by modifying the gDATA_WIDTH VHDL 
generic. Provide a chart detailing the area and performance characteristics of each of the 
designs on the four FPGAs. [I’m looking for things like LUT/CLB usage, I/O usage, and 
estimated clock frequency. Both tools should provide a synthesis log file from which you 
can gather these numbers. The clock frequency after synthesis is only an estimate but it 
suffices for this purpose.] 

 
(d) There are four main components of the quadratic equation design: an adder, a constant 

adder, a multiplier, and a constant multiplier. For each of your selected FPGAs describe 
the RTL and technology schematic for the synthesized design of each component. How 
do these differ across devices? [Check the Quartus II and ISE documentation for how to 
view these post-synthesis schematics. If it difficult to separate the components of the 
quadratic design in the schematic, you can synthesize them individually using the 
Adder.vhd and Multiplier.vhd files.] 

 
(e) Fully implement the design (place-and-route) on one Xilinx and one Altera FPGA. 

Describe the routed design schematic of each component in the design. How do these 
differ across devices? [By implement here, I am referring to the Xilinx terminology. It’s 
called “Fitter” in Altera Quartus II.]  

 


