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Abstract

This paper describes the design and
implementation of two image-processing algorithms
using the  custom computing platform.  
is a reconfigurable system that can be tailored to
perform a wide variety of tasks.  The particular tasks
discussed here are the Hough transform, a well-known
technique for detecting lines in an image, and pyramid
generation, the process of transforming a single image
into a set of filtered images with successively lower
spatial resolution.  This paper describes how these
computationally intensive processes have been mapped
onto  hardware.  Both processes have been
designed to operate at high speed.  In particular, the
generation of both Gaussian (low-pass) and Laplacian
(band-pass) pyramids can occur concurrently in real
time using images from a video camera, assuming the
standard frame rate of 30 images per second. Results
are presented to illustrate the efficacy of reconfigurable
FPGA-based machines to image processing
applications.

1  Introduction
General-purpose workstations can provide acceptable
performance for many image-processing tasks when
high speed is not required.  However, for such
applications as robotic control, visual tracking, and
autonomous navigation, fast image processing is
essential.  Unfortunately, fast computation rates are
difficult to achieve because of the large amount of data
associated with images.  General-purpose machines are
overwhelmed not only by the numbers of computations
required, but also by the I/O requirements of real-time
image processing, which exceed 7 Megabytes per
second for typical monochrome video cameras.

When high performance is needed, the traditional
approach has been to develop application-specific

hardware.  The drawbacks of this approach are lengthy
design cycles and costly redesigns when new
algorithms are developed (or when mistakes are found
in the original design).  An attractive alternative is to
utilize reconfigurable FPGA-based platforms that can
be tailored to different applications without sacrificing
performance.

This paper examines the computational benefits of the
reconfigurable approach by presenting two case studies
using the  attached processor.  A brief overview
of   is given in Section 2.  The two tasks that are
presented are well known in the image-processing
community, and are substantially different in nature.
The first of these, described in Section 3, is a 23-FPGA
design to perform the Hough transform and related
preprocessing functions.  Section 4 describes two 10-
FPGA designs for generating real-time (and near real-
time) image pyramids at the standard video rate of 30
images per second.  Section 5 is a comparison and
summary of these designs.

2  The Splash 2 Architecture
 is a second-generation reconfigurable attached

processor designed by the Supercomputing Research
Center in Bowie, Maryland.  This section presents a
brief overview of the system;  refer to [Arno92] for
more details.

A  system consists of a Sun SPARC-2 host, an
interface board, and one or more array boards.  Up to
15  array boards are supported within a single
system, and each contains 17 Xilinx XC4010 FPGAs
arranged in a linear array and are fully connected
through a 16x16 crossbar.  (Refer to Figure 1.)  The 17
FPGAs are designated X0 - X16, and each has a local
256Kx16 RAM.  The principle data paths between
FPGAs are 36 bits in width, and can therefore
accommodate up to four 8-bit picture elements (pixels)
simultaneously along with a 4-bit control word.
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Figure 1.  The  architecture.  Up to 15 reconfigurable
array boards can be placed in a system.  Each board
contains 17 Xilinx FPGAs that are connected as a linear
array and through a crossbar.

Applications are "programmed" for  by creating
a VHDL model which is simulated, refined, and
synthesized to a gate list.  An alternative method is to
use schematic capture and supporting software such as
XBLOX [Xili91].  The gate list is finally mapped onto
the FPGA architecture using the Xilinx or the Synopsis
synthesis tools.  This design cycle is described more
thoroughly in [Arno93].

3  Line Detection using the
Hough Transform
3.1  The Hough Transform

The Hough transform is a procedure for detecting
straight lines in an image [Houg62, Duda72].  Line
detection is a very useful low-level operation,
particularly for image analysis of scenes that may
contain man-made objects such as buildings, roads, and
manufactured goods.  Extensions of the method may be
used to detect curves or other objects of known shape.

The essence of the method is to transform edge points
in an image to curves in parameter space.  An
accumulator array is maintained to contain these
curves.  After all edge points have been processed,
peaks in the accumulator array (also called the "Hough
array") indicate the parameters of the lines in the
original image.

To see this, consider the following equation for a line:
d x y= +cos sinθ θ .  The variables x and y

correspond to horizontal and vertical image
dimensions, respectively.  As illustrated in Figure 2a,
the value d represents the perpendicular distance of the
line from the origin, and θ is the angle of the
perpendicular with the x-axis.  (The standard slope-
intercept equation is not used because of problems with
vertical lines.)  The problem of line detection is to
recover the two parameters d and θ  that pass through a
significant number of edge points in the image.  This is
done by mapping each edge point (x yi i, ) in the image

to a sinusoid in d-θ  parameter space, as illustrated in
Figure 2b.  For collinear edge points, all of the
corresponding sinusoids will intersect at the single
point (dj j,θ ) which corresponds to the line through

the edge points.

The standard Hough approach implements the
parameter space as an accumulator array, where each
quantized d-θ  cell in the array corresponds to a single
line in the image.  Each cell in the array is initialized to
0.  For each edge point, the corresponding sinusoid is
traced within the Hough array, incrementing each cell
that is visited.  In effect, each edge point "votes" for all
lines that pass through it.  After all edge points have
been processed in this manner, the array is examined.
Any large values are good candidates for lines that may
be present in the image.

3.2  Implementation

When detecting whether lines are present in a real
visual data stream, only boundaries of objects within
the visual field are of interest.  In other words, if one
wanted to characterize a gear or a wrench with a set of
lines, the colors and textures of these objects are not
relevant.  In order to accentuate object boundaries, the
image is first processed with a 3×3 Sobel edge
detector1.  The resulting high-pass data are

                                                       
1This function, along with the other pre-processing
operations, are also implemented on on a separate
processor board, and also operates in real-time on the input
data stream.
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Figure 2.  The Hough transformation to parameter space.
Edge points (x yi i, ) in the image (a) map to sinusoids in the

d-θ  parameter space (b).  In this example, the two sinusoids
intersect at the values d and θ  which determine the line that
passes through (x y1 1, ) and (x y2 2, ).

 filtered and thresholded to eliminate outlyers.  The
digitized raster-scan video signal consists of 512×512
8-bit pixels, which is clocked into  at a rate of
10 million pixels per second.

This filtered binary data stream tends to be relatively
sparse in '1's, which are present only around object
boundaries.  Figure 3 provides a high-level overview of
the complete tranformation process on the laboratory
platform.  The focus of this section is on the
construction of parameter space (BOARD 2 in Figure
3).

The operations that are to be realized in the 
platform are as follows:  1) extraction of x and y values
for edge points; 2) derivation of values for θ ; 3)
computation of xcosθ ; 4) computation of ysinθ ; 5)
calculation of d by adding the partial sums; 6) forming
an address into the accumulator array for every d-θ
pair; and 7) incrementing the value stored at that
address.  These operations have been mapped to 
  devices X0-X16 as shown in Figure 4.  The

components of this are described below.

There are fourteen Hough processors on a 
processor board.  In addition, one processing element
(PE) serves to queue the frame data (since throughput is
data dependent), and another PE serves as a task
dispatcher.  The task dispatcher examines each pixel
value.  If the pixel is an edge point, the pixel's column

and row within the image are passed to an available
Hough processing element.  The row and column serve
as x and y values, respectively.  This PE also serves to
broadcast the appropriate sine and cosine factors to the
slave PEs.  All of the PEs are in lock-step.

Within each Hough PE, the generated Hough array is
stored in a static RAM (attached to each PE), and is
quantized to 512 values of θ  (corresponding to the
range [-90°, 90°) in steps of 180/512 degrees) and 512
discrete values of d (covering the range [-722, 721) ).
Each Hough processor performs the computations
xcosθ  and ysinθ  in a four-step process.  Each PE
accepts the two 9-bit quantities x and y (indicating the
address of the edge point in image space), uses a 9-bit
counter to increment from 0 to 511 for each quantized
value of θ , accepts broadcast values for cosθ  from
the task dispatcher, and performs a 13×13-bit signed
multiplication to compute xcosθ .  Likewise, values
for sinθ, are accepted from the task dispatcher, and
another 13×13-bit multiplication is performed to
compute ysinθ .  An adder is used to generate
d x y= +cos sinθ θ .  An address into the Hough

array is generated by concatenating the 9-bit quantity θ
and a scaled 9-bit quantity d.  This 18-bit value is used
as an index into the attached RAM.  A 4-clock read-
modify-write operation is used to increment the
indexed RAM location.  As mentioned earlier, all of
these operations are combined into a 4-clock pipeline.

Task
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a=x cos θ θ
b=a +
    y sin θθ 

Array #1

PE #2
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Figure 4.  Architecture for the Hough transform.
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implementation.
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 3.3.  Discussion
The amount of processing required by the Hough
transform is data dependent.  For each edge point in the
image, a constant number of calculations are needed for
tracing through the accumulator array.  Post-processing
is needed to combine separate Hough arrays from each
PE, and to detect peaks in the composite array.
Considering only arithmetic operations (disregarding
internal data movement), and neglecting operations
associated with input edge detection, this task performs
approximately 310 million operations per second.2

This application is easily extendible to multiple 
processor boards for higher throughput.

A sample image processed by the Hough transform is
provided in Figure 8.

4  Pyramid Generation
4.1  Image Pyramids

Multiresolution image processing techniques have
emerged over the past decade as important components
of advanced image analysis systems.  Such computer
vision tasks as stereo matching, motion analysis and
object recognition routinely utilize image information
at different levels of detail.  This is done for reasons of
efficiency and simplicity.  For example, the photograph
of a building may consist of large-scale objects such as
walls, small-scale objects such as doorknobs and bricks,
and medium-scale objects of intermediate size.  These
different entities can best be detected by using
techniques that operate at the appropriate level of
image resolution.

A standard data structure which contains image data at
different levels of resolution is the image pyramid.  An
image pyramid is constructed by recursively filtering
and subsampling an input image, creating a hierarchy
of images of decreasing size and spatial resolution.
Although a number of pyramid types have been
developed, the most popular are the Gaussian and
Laplacian pyramids [Burt82] which are illustrated in
Figure 9.  Each image in a Gaussian pyramid is formed
by smoothing and subsampling the image at the
previous level.  Laplacian pyramids contain band-pass
versions of the images, so that each level represents
intensity edges at a particular resolution..

                                                       
2Formal definitions of MIP ratings (or other benchmarks) for
custom computing machines remain undefined.

After a pyramid has been constructed for a given
image, analysis can begin at the lower-resolution
portion of the pyramid to guide processing at higher-
resolution levels.  For some tasks (such as surveillance
and road following) this approach can greatly reduce
the overall amount of processing required.

4.2  Gaussian Pyramid Generation

The standard technique for generating a Gaussian
pyramid is described in [Burt82].  The original image
g0 is processed to generate the lower-resolution image
g1, which is in turn processed to generate the lower-
resolution image g2, etc.  The sequence of images g0,
g1, . . ., gN −1 is called the Gaussian pyramid.  Each
image gk  is at half the resolution (in both dimensions)
as gk−1, so that the number of pixels at each level is
one quarter of the number at the previous level.

This is illustrated in Figure 5.  Each pixel value in gk

is obtained by a weighted sum of pixels from gk−1,
computed over a 5x5 neighborhood as follows:

g i j w m n g i m j nk k
nm

( , ) ( , ) ( , )= + +−
=−=−
∑∑ 1

2

2

2

2

2 2 .

For simplicity, this process is referred to as REDUCE
when computed for all values (i, j) at level k:

gk  = REDUCE (gk−1)

To simplify computational requirements, the 5x5 filter
w is typically made separable:
w m n w n w mx y( , ) ( ) ( )= .  In addition, it is usually

normalized, symmetric, and unimodal so that it
resembles the Gaussian function.  The weighting
patterns that have been chosen for   are [1/16
1/4  3/8  1/4  1/16] for wx  and the transpose of this for

wy .  Because w is separable, an image can be filtered

by the one-dimensional (1D) filters wx  and wy  in

sequence.  The two 1D filters are considerably simpler
to implement in hardware than the single 2D filter that
they replace.  Powers of 2 have been chosen for the
denominators so that filtering can be accomplished
using only shift-and-add circuitry.

4.3  Implementation for Gaussian Pyramids

A block diagram of the   implementation for
real-time Gaussian pyramid generation is given in
Figure 6.  The FPGA designated as X0 simply receives
image pixels and passes them to FPGA X1 through the
crossbar.  Four 8-bit pixels are presented within each
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Figure 5.  One dimensional representation of Gaussian
pyramid generation.  Each row of dots represents an image
within one level of the pyramid.  Each dot represents one
pixel, which is computed as the weighted average of 5 pixel
values from the level below it.  Notice that the pixel spacing
doubles from one level to the next, while the same weighting
pattern is used to generate all new levels.  (Adapted from
[Burt82].)

36-bit word, and the input data is updated every four
  clock periods.  The processing steps, in

sequence, are horizontal convolution by wx , (X1),

vertical convolution by wy  (X2 and X3), storage of g1

(X4), generation and storage of g2 through g4 (X5-
X8), and output selection (X9).  Image resolutions are
reduced from 512x512 (for g0) to 32x32 (g4).  X1
performs the convolution by wx , resamples to
eliminate half of the pixels per image row, and passes
the result to X2.  Some buffering is required because
each computation involves the weighted sum of five
pixels, whereas only four are received at a time.

Figure 6.    implementation of a 5-level Gaussian
pyramid generator.  This design can generate the upper 4
levels at video frame rates of 30 images/second.  Xilinx chips
X5-X8 duplicate the circuitry in X1-X4.

Devices X2 and X3 work together to perform the
convolution by wy .  Each computation requires five

image pixels from five successive rows.  This requires
that four previous rows must be stored and accessed
simultaneously.  To accomplish this, X2 and X3
redundantly store image rows in their respective RAMs.
The crossbar is used to pass the untouched pixel stream.
X2 computes three of the five partial sums, and passes
this result to X3 directly.  X3 adds this to the remaining
two partial sums.  This result is passed to X4, which
resamples the image in the vertical dimension and
stores the complete image g1 in memory.

Xilinx devices X5-X8 generate the remaining three
levels of the pyramid.  The design is such that these
devices duplicate the circuitry contained in X1-X4.
Because of the reduction in image sizes, each
successive level of the pyramid takes one forth of the
time required at the previous level.  Working at the
same clock rate, X5-X8 are able to generate g2 through
g4 (by recirculating from X8 to X5) in less than one
third the time required to generate g1.  X9 multiplexes
the results from X4 and X8 to deliver g1 through g4 as
output, in sequence, simultaneously while the next
image is entering the pipeline.

4.4  Laplacian Pyramid Generation

A Laplacian pyramid may be described as a sequence
of "difference images," where each image is the
difference between two successive levels of the
Gaussian pyramid [Burt82].  To accomplish this, the
resolution of the image at level k+1 must be increased
to the resolution at level k before subtraction can occur.
This operation is known as EXPAND, and is
accomplished by up-sampling the image produced at
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level k+1 (by inserting zeros between each sample),
and interpolating with a second reconstruction filter.
Like the REDUCE operation, the reconstruction filter is
implemented using a 5×5 separable window filter.

If the Laplacian image at level k in the pyramid is
represented by hk , then operation to be performed may
be written as h gk k= − EXPAND (gk+1).  Since image
gN  does not exist, it is customary to define
h gN N− −=1 1.

4.5  Implementation for Simultaneous
Gaussian and Laplacian Pyramids

Additional circuitry is needed when the Laplacian
pyramid is to be generated along with the Gaussian
pyramid.  The design discussed here requires six more
FPGAs, placing the total above those available on one

  board.  It was decided to reduce the
computational speed to half of video frame rate by
devoting X5-X8 to Laplacian pyramid generation
(rather than to the Gaussian pyramid as in the earlier
section).

This is illustrated in Figure 7.  Devices X1-X4 operate
as before, except that X4 can now feed back through
the crossbar to X1 to permit recirculation of Gaussian
pyramid levels.  By adopting this approach, only
alternate video frames will be processed.  X5 and X6
are now devoted to the EXPAND operation.  X7 and
X8 accept data from X4 and X6 and perform pixel-by-
pixel subtraction to generate a difference image.  X9
and X10 reformat the images for output.

4.6  Discussion

The implementations described above compare
favorably with a custom VLSI design developed at
Sarnoff Research Center [vand92]. This chip, known as
PYR, can produce both a Gaussian and Laplacian
pyramid for a 512 x 480 image in 22.7 ms, using a
clock rate of 15.7 MHz.  The chip size is approximately
300x300 mil, and is packaged in an 84-pin PLCC.

The pyramid implementations described in this paper
are almost as sophisticated.  The   designs are
currently limited to a fixed input image size of 512×512
pixels, unlike the PYR chip, and the 
implementation is considerably larger.  However, the
processing speeds are comparable, particularly if a
second   board is used to accommodate both
pyramid types at frame rate.  Considering only
arithmetic operations, this application performs in
excess of 500 million operations per second.  Example

images that have been computed using   are
shown in Figure 9.

5  Summary
This paper has described the design and
implementation of two nontrivial image-processing
algorithms on the   custom computing platform.
The two algorithms -- the Hough transform and
Gaussian/Laplacian pyramid generation -- are common
in image analysis and are computationally intensive.
Both may be described as mappings from an input
image to data structures containing new images.

Gaussian pyramid generation has been designed for
real-time operation at the standard video frame rate of
30 images/second.  The processing rate for generating
Hough arrays is more difficult to quantify.  This is
because Hough processing is linear in the number of
edge points in the input image.  The design given here
can utilize a PE (consisting of one FPGA and one static
RAM) that can be replicated over the number of 
  boards that are available.

It is significant that   can be configured to
perform either task at performance levels that rival or
equal those of dedicated, application-specific hardware.
Furthermore, with a sufficient number of   array
boards, these two tasks (along with others) could be
pipelined to operate concurrently.

Perhaps the major architectural limitation of 
for real-time image processing is the local FPGA-to-
RAM interface.  Since dual-port RAMs are not
provided, a read-modify-write operation requires 4
clock cycles.  This operation is used extensively in the
designs discussed here.  A secondary architectural issue
is data routing.  The crossbar offers great flexibility, but
image-processing applications always seem to beg for
slightly higher bandwidth than is available.

Other applications operational on the laboratory
VTSplash system include:

• 2-D Fast Fourier Transform (using floating point).
• Expandable 8×8 convolver (online filter

adjustment).
• Pan and zoom.
• Median filtering.
• Morphologic operators
• Histogram and graphical display.
• Region detection and labeling
• Profile classifier.
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Figure 8. Hough transform example: a) input image, b)  iput image after edge detection, c) Hough representation of input image, and d)
overlay of detected lines onto the input image.
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Figure 9.  (a) Gaussian (low-pass) and (b) Laplacian (band-pass) pyramids.  As one progresses toward higher levels of the Gaussian
pyramid, increasingly larger image details are removed.  The same is true for the Laplacian pyramid, except that edge information is
represented.  The top level of the Laplacian pyramid is missing in this example.
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