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The Effect of LUT and Cluster Size
on Deep-Submicron FPGA

Performance and Density
Elias Ahmed and Jonathan Rose

Abstract—In this paper, we revisit the field-programmable gate-
array (FPGA) architectural issue of the effect of logic block func-
tionality on FPGA performance and density. In particular, in the
context of lookup table, cluster-based island-style FPGAs (Betz et
al. 1997) we look at the effect of lookup table (LUT) size and cluster
size (number of LUTs per cluster) on the speed and logic density of
an FPGA. We use a fully timing-driven experimental flow (Betz et
al. 1997), (Marquardt, 1999) in which a set of benchmark circuits
are synthesized into different cluster-based (Betz and Rose, 1997,
1998) and (Marquardt, 1999) logic block architectures, which con-
tain groups of LUTs and flip-flops. Across all architectures with
LUT sizes in the range of 2 to 7 inputs, and cluster size from 1 to
10 LUTs, we have experimentally determined the relationship be-
tween the number of inputs required for a cluster as a function of
the LUT size ( ) and cluster size ( ). Second, contrary to pre-
vious results, we have shown that clustering small LUTs (sizes 2
and 3) produces better area results than what was presented in
the past. However, our results also show that the performance of
FPGAs with these small LUT sizes is significantly worse (by almost
a factor of 2) than larger LUTs. Hence, as measured by area-delay
product, or by performance, these would be a bad choice. Also, we
have discovered that LUT sizes of 5 and 6 produce much better area
results than were previously believed. Finally, our results show that
a LUT size of 4 to 6 and cluster size of between 3–10 provides the
best area-delay product for an FPGA.

Index Terms—Architecture, clusters, computer-aided design
(CAD), field-programmable gate-array (FPGA), look-up table
(LUT), very large scale integration (VLSI).

I. INTRODUCTION

SEVERAL studies in the past have examined the effect of
logic block functionality on the area and performance of

field-programmable gate-arrays (FPGAs). The work in [15] and
[23], showed that a look-up table (LUT) size of 4 is the most area
efficient in a nonclustered context. In addition, it was demon-
strated in [13], [25], and [27] that using a LUT size of 5 to 6 gave
the best performance. The work in [12] has suggested that using
a heterogeneous mixture of LUT sizes of 2 and 3 was equiva-
lent in area efficiency to a LUT size of 4 and, hence, could be
a good choice. In addition, [1] states that a logic structure using
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two three-input LUTs was most beneficial in terms of area and
speed. However, it must be noted that both these last two papers
did not perform a full area or delay study where a range of LUT
sizes was examined.

Although these questions were addressed some time ago in
[11], [13], [14], [22], [23], and [27], several reasons compelled
us to revisit the issue. First, prior work focused on nonclustered
logic blocks, which are known to have a significant impact on
the area and delay [21]. Second, most prior studies tended to
look at area or delay, but not both as we will here. Third, prior
results were based on IC process generations that are several fac-
tors larger than current process generations, and so do not take
deep-submicron electrical effects into account. In the present
work, we perform detailed transistor-level design of circuits and
perform appropriate buffer and transistor sizing for all the logic
and routing elements, in the manner of [6]. Fourth, the com-
puter-aided design (CAD) tools available today for experimen-
tation are significantly better than those available over a decade
ago, when this question was first raised. Our new results show
that the superior tools give rise to different trends in the expla-
nation of the results. In addition to these reasons, we believe that
careful analysis in this kind of study, may well lead to sugges-
tions for better architectures. The work in [7] and [8] provides
a more detailed general background and overview of the issues
affecting FPGA architectures.

The focus of this paper is to determine the effect of the
number of inputs to the LUT ( ) (in a homogeneous archi-
tecture) and the number of such LUTs in a cluster ( ) on the
performance and density of an FPGA. A cluster [4], [5] is
group of basic logic elements (BLEs) that are fully connected
by a mux-based cross bar as illustrated in Fig. 2. The Altera
Flex 6 K, 8 K, 10 K, 20 K, Stratix, Cyclone and Xilinx 5200,
Virtex and VirtexII are commercial examples of such clusters
(although not all of these are fully connected).

Increasing either LUT size ( ) or cluster ( ) increases the
functionality of the logic block, which has two positive effects: it
decreases the total number of logic blocks needed to implement
a given function, and it decreases the number of such blocks
on the critical path, typically improving performance. Working
against these positive effects is that the size of the logic block in-
creases with both and . The size of the LUT is exponential
in [23] and the size of the cluster is quadratic in [4]. Further-
more, the area devoted to routing outside the block will change
as a function of and , and this effect (since routing area
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Fig. 1. Island-style FPGA [6].

typically is a large percentage of total area) has a strong effect
on the results. The choice of the logic block granularity, which
produces the best area-delay product, lies in between these two
extremes. In exploring these tradeoffs, we seek to answer the
following questions.

1) An expensive part of a clustered architecture is the
number of inputs to the cluster, which we will refer to as

. For a cluster-based logic block with LUTs of size
and inputs to the cluster, what should the value of

be so that 98% of the LUTs in the cluster can be fully
utilized? (Certainly setting will do this, but a
value less than this, which is cheaper, may also suffice.)

2) What is the effect of and on FPGA area?
3) What is the effect of and on FPGA delay?
4) Which values of and give the best area-delay

product?
More crucially, we would like to clearly explain the results,

which may give rise to insights that lead to better architectures.
An earlier version of this work appeared in [2]. That work tar-

geted a 0.35- m CMOS process whereas this work is based on
a 0.18- m process. The work presented here also includes more
extensive analysis of the results as well as incorporating new
benchmark circuits. This paper is outlined as follows. Section II
describes the global architecture of the FPGA we employ, as
well as the internal structure of the clustered logic blocks used
throughout this paper. Section III details the experimental CAD
flow and steps that were performed to produce the results. Sec-
tion IV describes the logic and routing architectures, and some
details of the area and delay modeling. Section V presents the
results from these experiments. Finally, we conclude in Sec-
tion VII.

II. GLOBAL ARCHITECTURE AND INTERNAL

STRUCTURE OF CLUSTERS

The basic FPGA architecture we employ is an “island-style”
structure where an array of logic blocks are surrounded by
routing channels as shown in Fig. 1. The I/O pads are evenly
distributed around the perimeter of the FPGA.

The structure of the cluster-based logic block used in our ex-
periments is illustrated in Fig. 2(b). Each cluster contains
basic logic elements (BLEs) fed by I cluster inputs. The BLE,
illustrated in Fig. 2(a), consists of a -input LUT and register,
which feed a two-input mux that determines whether the regis-
tered or unregistered LUT output drives the BLE output.

Fig. 2. (a) Structure of the basic logic element (BLE) and (b) logic cluster
assuming a LUT size (K) of 4 [6].

For clusters containing more than one BLE, we assume a
“fully connected” [4] approach; this means that all cluster in-
puts and outputs can be programmably connected to each of
the inputs on every LUT. These are implemented using the
multiplexers shown in the Fig. 2(b), which are not necessary for
clusters of size .1 It should be mentioned that a fully con-
nected logic cluster is not the only approach, and recent work
[16], [17] has explored the effects of a depopulated cluster. As
stated earlier, the Stratix FPGA [18], as well as Virtex and Virtex
II, are commercial examples of architectures which employ de-
populated logic clusters.

III. EXPERIMENTAL METHODOLOGY

The best known and most believable method of determining
the answers to the questions posed in the introduction is to
experimentally synthesize real circuits using a CAD flow into
the different FPGA architectures of interest, and then measure
the resulting area and delay [6], [7], [13]. Fig. 3 illustrates the
CAD flow that we employ. First, each circuit passes through
technology independent logic optimization using the SIS
program [24]. It is worth noting that, from this point on, the
entire CAD flow is fully timing driven. Timing-driven tools
are necessary because our goal is to make conclusions about
the speed performance of the architectures we will explore.
Technology mapping (which converts the logic expressions
into a netlist of -input LUTs), was performed using the
FlowMap and FlowPack tools [10]. Then, all the registers and
LUTs were packed into logic clusters using the timing driven
packing algorithm (T-VPACK) [21]. This was followed by
timing-driven placement using a timing-enhanced version [21]
of VPR [6]. Then full path-based and timing-driven routing is
performed using VPR [6].

In our approach to modeling the area of an FPGA required
by any given circuit, we determine the minimum number of

1In this case, every LUT input must be accessible to the channel. Note that
Fig. 2 does not show the channel tracks to cluster input multiplexers—these can
be seen in Fig. 5.
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Fig. 3. Architecture evaluation flow.

tracks needed to successfully route each circuit, . Clearly
this is not possible in real FPGAs, but we believe this is mean-
ingful as part of a logic density metric for an architecture
because it measures the routing demand of each circuit in each
architecture. The area model, which makes use of this min-
imum track count, is described more fully in Section IV. In
order to determine the minimum number of tracks per channel,
to route each circuit, we continuously route each circuit, re-
moving tracks from the architecture until it fails to route. We
call the situation where the FPGA has the minimum number
of tracks needed to route a given circuit a “high stress” routing
since the circuit is barely routable. We believe that measuring
the performance of a circuit under these high-stress conditions
is unreasonable and atypical, because FPGA designers do not
like working just on the edge of routability. They will typically
change something to avoid it, such as using a larger device, or
removing part of the circuit.

For this reason, we add 30% more tracks to the minimum
track count and then perform final “low stress” routing, and use
that to measure the critical path delay. From the output of the
router, and using the area and delay models described in the next
section, we can compare different architectures.

IV. FPGA ARCHITECTURE MODELING

In this section, we give a brief description of the area and
delay modeling developed by Betz et al. [6]. The level of
detail present in these models goes far beyond any modeling
previously used in this kind of experimental analysis. Research
done previous to Betz et al. [6] has modeled the area by pa-
rameterizing the size of wires [23] or counting routed pins [11]
on the logic blocks, and then guessing scaling factors between
logic and routing area. Prior research has modeled delay by
counting the number of programmable switches present in a
path, or by using a simple unit delay model for each level

Fig. 4. Definition of a minimum-width transistor area [6].

of LUT [27]. In this paper, all device parameters and circuits
are modeled using SPICE simulations of a 0.18- m CMOS
process. We make the following assumptions about the basic
island-style architecture.

1) The number of routing tracks in each channel between
logic blocks is uniform throughout the FPGA.

2) All wire parameters were derived assuming minimum
width and spacing on metal layer 3.

3) Each circuit is mapped into the smallest square
grid possible given the number of logic clusters it

requires. However, it is important to note that the area
metric we count is not the total area required by the square

block on the FPGA. Rather, we use the exact
number of clusters required to implement the circuit. For
example, a circuit which requires 800 logic blocks will be
routed in 29 29 FPGA grid which results in 841 blocks.
We use the area of the logic and routing surrounding 800
clusters as opposed to 841.

A. Area Model

The area modeling procedure used by Betz et al. [6] was
to create the detailed, transistor-level circuit design of all of
the logic and routing circuitry in the FPGA. This includes cir-
cuits for the LUTs, flip-flops, intracluster muxes, intercluster
routing muxes and switches, and all of the associated pro-
gramming bits. The basic assumption was that the total area
of the FPGA was determined by the transistors, which tends to
be true when there are many layers of metal. Two commercial
programmable logic device (PLD) vendors have confirmed
this assumption.

The design process includes proper sizing of all of the gates
and buffers, including the pass transistors in the routing. Betz et
al. use the number of “minimum-width transistor areas” as the
area metric. The definition of a minimum-width transistor area
is the smallest possible layout area of a transistor that can be
processed for a specific technology plus the minimum spacing
surrounding the transistor as shown in Fig. 4. The spacing is dic-
tated by the design rules for that particular technology. Any tran-
sistors in the circuit design that are sized larger than minimum
are counted as a greater number of minimum-width transistors,
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Fig. 5. Structure and speed paths of a logic cluster [6].

TABLE I
LOGIC CLUSTER DELAYS FOR FOUR-INPUT LUT USING 0.18-�m CMOS PROCESS

taking into account the fact that a double size transistor takes
less than twice the layout area. One advantage of this metric is
that it is a somewhat process-independent estimate of the FPGA
area.

B. Logic Circuit Design and Delay Model

The circuit design process described above is also necessary
to determine accurate delay measurements of the final placed
and routed circuit. In deep-submicron IC design processes, the
effect of wire resistance and capacitance becomes more preva-
lent. We account for these effects in this delay modeling. Fig. 5
shows the detailed logic block circuit. The timing values given
are based on SPICE simulations of a 0.18- m 1.8-V CMOS
process. The paths have been simulated with their actual loads
in place and the input driven by what would actually be driving
it in a real FPGA.

As the cluster size increases, the buffers shown in Fig. 5
must be sized larger because of larger loading from the internal
muxes, which results in an increase in the basic BLE delay. This
is shown in Table I which gives the logic delays as the cluster
size increases for the paths indicated in Fig. 5 for a BLE based
on a four-input LUT.

Similarly, the design of the larger LUTs must be done care-
fully, with proper buffer sizing and, in some cases, insertion of
buffers within the tree of pass-transistors. Table II presents the
LUT delay as a function of the LUT size.2

2The small variations in BLE delay (from C to D) is due to the fact that the
buffers for each LUT and cluster size have been sized differently to optimize
the delay for each given architecture. The result is that a small amount of noise
is introduced in the SPICE simulations for each LUT.

TABLE II
LUT DELAYS USING 0.18-�m CMOS PROCESS

C. Routing Architecture

The target routing architecture of the CAD flow used in these
experiments is one that Betz et al. [6] indicate is a good choice.
This architecture has the following parameters.

1) Routing segments have a logical length of four (the log-
ical length of a segment is defined as the number of logic
block clusters that it spans).

2) 50% of these segments use tri-state buffers as the pro-
grammable switch and 50% use pass transistors.

The experiments conducted in [6], which were used to de-
termine these routing architecture settings were based on logic
clusters of size and LUT size . We will assume
that the above architecture choices are reasonable for all of the
values of and were presented in this paper. It is possible
that this assumption is not correct, but time and space constraints
limit the extent of the architectural space we can explore.

However, the LUT and cluster size does affect the sizing
of the buffers used to drive the programmable routing, both
from the block itself and the tri-state buffers internal to the pro-
grammable routing. As the logic block cluster increases in size,
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TABLE III
MCNC BENCHMARK CIRCUIT DESCRIPTIONS

the size of each logic tile is larger and, therefore, the length of the
wires being driven by each buffer increases. Since this increases
the capacitive loading of each wire, the buffers must be sized ap-
propriately. Betz et al. [6] indicate that for a cluster size of four
and a LUT size of four, the best routing pass transistor width
was ten times the minimum width, while the best tri-state buffer
size was only five times the minimum. We size our buffers in di-
rect proportion to the length of this tile. That is, if the tile length
has doubled, then we double the size of the routing buffers.

V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of syn-
thesizing benchmark circuits through the CAD flow described
in Section III with the area delay modeled as described in Sec-
tion IV. The benchmark circuits used in these experiments were
the twenty largest from MCNC [30] along with eight new bench-
marks.3 Table III gives a description of the circuits, including
the name, number of four-input LUTs, and number of nets.4

Each circuit was mapped, placed, and routed with the LUT
size varying from 2 to 7 and cluster sizes from 1 to 10. With six
different LUT sizes and ten different cluster sizes this gives a
total of 60 distinct architectures.

A. Cluster Inputs Required Versus LUT and Cluster Size

Before answering the principal questions raised in the intro-
duction, we need to determine an appropriate value for , the

3The eight new benchmarks are from the University of Toronto, Toronto, ON,
Canada, from two computer vision applications. The eight benchmarks are {dis-
play_hip, img_alc, img_nterp, input_hip, peak_hip, scale125_hip, scale2_hip,
warping}.

4Nets are electrically equivalent signals within a circuit.

Fig. 6. Number of inputs required for 98% logic block utilization.

number of logic block cluster inputs (see Section II for a def-
inition of ). The value of should be a function of (the
LUT size) and (the number of LUTs in a cluster). This is
of concern since the larger the number of inputs the larger and
slower the multiplexers feeding the LUT inputs will be, and
more programmable switches will be needed to connect exter-
nally to the logic block. Indeed, one of the principal advantages
of fully-connected clusters is that they require fewer than the
full number of inputs to achieve high logic utilization.
There are several reasons for this.

1) Some of the inputs are feedbacks from the outputs of
LUTs within the same clusters, saving inputs.

2) Some inputs are shared by multiple LUTs in the cluster
3) Some of the LUTs do not require all of their -inputs to

be used. Indeed this is often the case, as pointed out in
[12].

Betz et al. [4], [5] showed that when and is set to
the value , then 98% of all of the 4-LUTs in a cluster
would typically be used. Other unpublished work has shown
that the value of 98% is a reasonable choice for total area ef-
ficiency. Higher utilization values require more inputs that in-
crease the area of the cluster without a commensurate decrease
in total number of clusters. Lower values increase the number
of clusters and the total area. We would like to find a similar
relation, but one that includes the variable .

To determine this relation, we ran several experiments, using
only the first three steps illustrated in Fig. 3: logic synthesis,
technology mapping and packing. For each possible value of
and , we ran experiments varying the value of (the maximum
number of inputs to the cluster allowed by the packer) from 1 to

. Following [4], we chose the lowest value of that
provided 98% utilization of all of the BLEs present in the circuit.
Fig. 6 is a plot of the relationship between the number of inputs
( ) required to achieve 98% utilization and the cluster size ( )
and the LUT size ( ). Typically, the value of must be between
50 and 60% of the total possible BLE inputs, .

By inspection we have generalized the relationship as

(1)
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Fig. 7. Total area for clusters of size 1–5.

This equation provides a close fit to the results in Fig. 6. The
average percentage error across all possible data points is only
10.1% with a standard deviation of 7.6%.

B. Area as a Function of and

In this section, we present and discuss the experimental re-
sults that show the area of an FPGA as a function of and .
Note that was set to the value determined in (1). These results
are for the 28 benchmark circuits. Area, as discussed above, is
measured in terms of the total number of minimum-width tran-
sistors required to implement all of the logic and routing.

1) Total Area: Figs. 7 and 8 give a plot of the geometric
average (across all 28 circuits) of the total area required as a
function of cluster size and LUT size. Several observations can
be made from this data:

• LUT sizes of 4 and 5 are the most area efficient for all
cluster sizes.

• There is a reduction in total area as the cluster size is in-
creased from 1 to 3 for all LUT sizes. However, as clusters
are made larger there is very little impact on total
FPGA area.

Fig. 8 illustrates this last observation very well as all the
curves are quite close to each other for any given LUT size.
Increasing cluster size results in more BLEs being added to a
cluster and connections that normally would have been routed
externally are now absorbed internal to the cluster. This reduces
the intercluster area which is usually much larger than the intr-
acluster area and thus has a positive impact on total area. How-
ever, the reason the total FPGA area does not decrease is be-
cause increasing logic capacity within a cluster generally trans-
lates into a direct increase in the number of input and output pins
on the cluster. The effect of this is an increase in track count. It
must also be remembered that the logic block area is also in-
creasing due to the LUT area and the multiplexer area.

It is instructive to break out the components of the data in
Figs. 7 and 8 in order to achieve both insight and inspiration
on how to make more area-efficient FPGAs. The total area can
be broken into two parts, the logic block area (including the
muxes inside the clusters) and the routing area, which is the
programmable routing external to the clusters. Throughout the

Fig. 8. Total area for clusters of size 6–10.

Fig. 9. Total logic block cluster area.

rest of this paper, these will be referred to as the intracluster area
and intercluster area respectively.

We will first explore the intracluster area. Fig. 9 shows the
total intracluster area component of the total area (again, geo-
metrically averaged over the 28 circuits) as a function of the
LUT size. The data shows that the intracluster area increases as

increases. This area is the product of the total number of clus-
ters times the area per cluster. A plot of these two components
for a cluster size of 1 is given in Fig. 10.

The logic block area grows exponentially with LUT size as
there are bits in a -input LUT. In addition, larger LUT
sizes require larger intracluster multiplexers because the size
of each multiplexer is . As

increases, though, the number of clusters decreases (because
each LUT can implement more of the logic function) as shown
by the downward curve in Fig. 10. However, the rate of decrease
in the number of clusters is far outweighed by the increase in the
size of the cluster as increases, and hence the upward trend
in Fig. 9.

Fig. 11 decomposes the intracluster area into two parts: a)
intracluster multiplexer area and b) LUT area. The results illus-
trate that the local intracluster routing area cannot be ignored
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Fig. 10. Number of clusters and cluster area versusK (for N = 1).

Fig. 11. Intracluster multiplexer area and LUT size.

and can be quite significant for larger clusters. Observing the ab-
solute values in Figs. 7 to 9, we see that the intracluster routing
area typically takes up about only 25% to 35% of the total area,
except when the LUT size reaches 6 and 7, at which point intr-
acluster area becomes a dominant factor.

The key effect, as always in FPGAs, is with the intercluster
area. Fig. 12 is a plot of the total intercluster routing area as a
function of the LUT size and cluster size, and shows that the
intercluster routing area decreases in a linear fashion with in-
creasing LUT size. This particular result is interesting since pre-
vious work from [23] has shown that the routing area achieved a
minimum between and , and increased for values
of K beyond this.

To explain this observed behavior, observe Fig. 13 which de-
composes the total routing area into two separate components:
the number of clusters and the (external) routing area per cluster.
These curves are given for a cluster size of 1, but are represen-
tative for all cluster sizes. The product of these two curves gives
the total intercluster routing area. The reason why the routing
area decreases linearly with LUT size is that as we increase the
LUT size, the number of clusters decreases much faster than the
rate at which the routing area per cluster increases. The differ-
ence in results from [23] and our current results can be attributed

Fig. 12. Intercluster routing area.

Fig. 13. Number of clusters and routing area per cluster versusK (forN = 1).

to the fact that we are now using better CAD tools with more so-
phisticated algorithms; in particular the quality of the placement
tool and the routing tool is significantly better, and uses signifi-
cantly less wiring. In addition, for clustered logic blocks, more
of the routing is being implemented within the cluster itself.

C. Performance as a Function of and

The second key metric for FPGAs is critical path delay, or
performance. The total critical path delay is defined as the total
delay due to the logic cluster combined with the routing delay.
Fig. 14 shows the geometric average of the total critical path
delay across all 28 circuits as a function of the cluster size and
LUT size. Observing the figures, it is clear that increasing or

decreases the critical path delay. These decreases are signif-
icant: an architecture with and has an average
delay of 45 ns while and has an average critical
path delay of just 14 ns. There are two trends that explain this
behavior. As the LUT and cluster size increases

1) the delay of the LUT and the delay through a single cluster
increases;

2) the number of LUTs and clusters in series on the critical
path decreases.

We will discuss these effects in more detail below.
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Fig. 14. Total delay for clusters of sizes 1–10.

Fig. 15. Total intracluster delay for clusters of sizes 1–10.

It is instructive to break the total delay into two components:
intracluster delay (which includes the delay of the muxes and
LUTs), and intercluster delay. Fig. 15 shows the portion of the
critical path delay that comes from the intracluster delay as a
function of and . There are two key points to observe here.
First, the intracluster delay decreases as the LUT size increases.
This is due to the fact that there is a reduction in the number
of BLE levels on the critical path and hence there will be fewer
logic levels to implement. This will translate into a reduction in
intracluster delay. Fig. 16 illustrates this concept more clearly
at the BLE level: it is a plot of BLE delay and number of BLEs
on the critical path versus LUT size for a cluster size of 1.5 The
number of BLE levels decreases quicker than the increase in
BLE delay and hence the decrease in logic delay. The second
behaviour that should be noticed is that the intracluster delay
increases for any given LUT size as the cluster size is increased.
This is because the intracluster muxes get larger and, therefore,
slower. However, the delay through these muxes is still much
faster than the intercluster delay, as shown in Fig. 15.

Fig. 17 shows the portion of the critical path delay that comes
from the intercluster routing delay as a function of and . As

increases there are fewer LUTs on the critical path, and this

5The BLE delay is defined as the delay from point B to D in Fig. 5.

Fig. 16. Number of BLEs on critical path and BLE delay versus K (for
N = 1).

Fig. 17. Total intercluster delay for clusters of sizes 1–10.

TABLE IV
CRITICAL PATH DELAY COMPARISON FOR K = 4

translates into fewer intercluster routing links, thus decreasing
the intercluster routing delay. Similarly, as is increased, more
connections are captured within a cluster, and again, the inter-
cluster routing delay decreases.

In discussing these tradeoffs, it is useful to follow an explicit
example: Table IV shows how the delay through one BLE and
multiplexer stage (delay from B to D on Fig. 5) rises from 0.556
to 0.702 ns when going from and to
and . Although the number of BLE levels on the critical
path remains fairly constant since we have not modified , the
total logic delay increases from 5.58 to 6.65 ns due to the in-
crease in the local cluster routing multiplexers. However, since
there are now four BLEs in every cluster as opposed to a single
BLE, more logic is implemented internally within the clusters.



296 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 3, MARCH 2004

Fig. 18. Number of cluster levels on critical path.

Nets that normally would have been routed externally are now
internal to the clusters. This translates in a reduction in the in-
tercluster routing delay from 19.4 ns when using ,
to 11.7 ns for and . The total critical path delay
decreases from 25.9 to 19.4 ns as originally shown in Fig. 14.

In general, intercluster routing delay is much larger than the
intracluster delay and, hence, the value of increasing the cluster
or LUT size. However, it is interesting that increasing cluster
size has little impact after a certain point (for ). Fig. 14
shows this clearly where for any fixed LUT size, the majority
of the improvement in critical path delay occurs as the cluster
size is increased from 1 to 3. Any further increases in cluster
size results in a very minimum delay improvement. This be-
haviour suggests that clustering has little effect after a certain
point. This is counter intuitive to what we expect. That is, em-
ploying larger clusters should always reduce the critical path.
Although, the total delay results from Fig. 14 do not contradict
this, what was surprising was how little of an improvement in
total delay that was achieved with larger clusters. To better un-
derstand this situation, it is interesting to examine the number
of intercluster “hops” on the critical path. Fig. 18 shows the
number of cluster levels as a function of cluster and LUT size.
The results clearly show the number of levels decreasing with
increasing cluster and LUT sizes. But, for any given LUT size
it can be seen that most of the reduction in the number of levels
occurs as the cluster size is increased from 1 to 3. Also, recall
that the majority of the critical path delay was reduced in this
range.

Another interesting trend to observe from Fig. 18, is that in-
creasing the cluster size has less of an effect for architectures
composed of larger LUTs. For example, increasing the cluster
size from 1 to 10 for a two-input LUT architecture results in
a 60% reduction in the number of cluster levels on the critical
path. Conversely, employing BLEs with a seven-input LUT and
varying the cluster size from 1 to 10 results in only a 22% re-
duction in logic levels. Hence, clustering proves to be more ef-
fective for smaller LUTs. To understand this more clearly, we
should examine the average BLE fanout for every LUT size.
Fig. 19 shows this and as we can see larger LUTs correlate to
larger average fanout. The reason smaller LUTs had a better re-

Fig. 19. Average BLE fanout.

Fig. 20. Area-delay product for clusters of sizes 1–10.

sponse to larger cluster sizes was due to the fact that each LUT
had a relatively small fanout and hence adding an extra BLE to
a cluster usually guaranteed some reduction in the number of
logic levels. The same cannot be said about larger LUTs since
they have a much larger average block fanout and it becomes
much more difficult to ensure that any subsequent BLE addi-
tion will result in fewer cluster levels on the critical path.

D. Area-Delay Product

So far, we have examined the effect of and on area and
performance of FPGAs. As area can often be traded for delay,
it is instructive to look at the area-delay product. This is simply
the product of the area in minimum width transistor areas times
delay in nanoseconds. Fig. 20 displays the area-delay product
versus and . This plot clearly shows that using a LUT size
of between 4–6 and clusters of 3–10 appear to give the best
area-delay results.

Notice that area-delay decreases significantly as the LUT size
is increased from 2 to 4 for all cluster sizes. This is because
their delay is poor due to the large amount of BLE levels on the
critical path combined with the fact that the total area require-
ments are slightly larger (by about 20%), and so they are a bad
choice. The area-delay product jumps for principally
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TABLE V
SUMMARY OF BEST AREA, DELAY, AND AREA-DELAY RESULTS

because the huge area cost for seven-input LUT outweighs the
modest performance gains it achieves. This latter observation
suggests that, if there was a way to achieve the depth properties
of a seven-input LUT without paying the heavy area price, then
such a seven-input input function may well be a good choice.

We have also observed that, for large clusters, a large portion
of the delay is taken up by the intracluster muxes. If this delay
could be reduced somehow, then significant speed wins could
be achieved. Also, Fig. 19 suggests that a heterogenous mixture
of larger LUTs and smaller LUTs could be beneficial.

E. Experimental Data

This discussion is only one of many ways to look at a large
quantity of data involving 60 architectures, 28 benchmark cir-
cuits and three results (area, delay, and area/delay product). The
raw data for these experiments can be found in [3].

VI. CAVEATS ON EMPIRICAL RESULTS

This section outlines some of the key underlying assumptions
that have been made in this research that could affect the re-
sults. First, the architectural results presented in this paper are
dependant on the quality of the CAD tools used in the imple-
mentation flow. While one of the tools comes with a nice op-
timality result (the Flowmap Technology mapper guarantees a
depth-optimal LUT mapping) the majority have heuristic algo-
rithms with no guarantees. Secondly, the results depend directly
on the nature of the benchmark circuits we employ. We used the
commonly-used MCNC [30] and some locally produced bench-
marks. It is possible that other circuits from specialized appli-
cation domains would produce different results. Yan et al. [29]
showed that some results could vary depending on the tools and
benchmarks used. However, some results were shown to be quite
consistent across tools and benchmarks. Third, some key routing
architecture parameters that were used in our experiments were
based on values that were derived from the cluster size
and LUT size architecture. These routing parameters
were then used for all values of and in our experiments. It
is possible that exploring the space of routing architectures for
each of the different and LUT and cluster sizes would produce
different results on the relative goodness of these architectures.
Time and space constraints prevented this broader exploration.

VII. CONCLUSION

We have studied the effect that different logic block architec-
tures have on FPGA area and performance. The main results are
summarized in Table V. In addition, we experimentally derived
a relationship between the number of cluster logic block inputs
required to achieve 98% utilization as a function of the LUT
size, and the cluster size, . This is ,
where I is the number of distinct cluster inputs.

Secondly, we have shown that small LUT sizes (two-input and
three-input LUTs) are not as area efficient as the four and five-
inputLUTsand theirperformancecharacteristicsareverypoor. If
area delay is the main criteria, then the use of clusters of between
3–10, and LUT sizes of 4–6 will produce the best overall results.
Finally, our work suggests two future directions: finding ways
to reduce the number of levels of logic without the expense of
large LUTs and reducing the delay of intracluster multiplexers.
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