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Abstract 

Recently, high-level languages such as MATLAB have 
become popular in prototyping algorithms in domains such 
as signal and image processing. Many of these applications 
whose subtasks have diverse execution requirements, ofen 
employ distributed, heterogeneous, reconfigurable systems. 
These systems consist of an interconnected set of heteroge- 
neous processing resources that provide a variety of archi- 
tectural capabilities. The objective of the MATCH (MATlab 
Compiler for Heterogeneous computing systems) compiler 
project at Northwestern University is to make it easier for 
the users to develop efficient code for distributed, hetero- 
geneous, reconjirgurable computing systems. Towards this 
end we are implementing and evaluating an experimental 
prototype of a sofrware system that will take MATLAB de- 
scriptions of various applications, and automatically map 
them on to a distributed computing environment consisting 
of embedded processors, digital signal processors andfield- 
programmable gate arrays built from commercial off-the- 
shelf components, In this paper; we provide an overview 
of the MATCH compiler and discuss the testbed which is 
being used to demonstrate our ideas of the MATCH com- 
piler: We present preliminary experimental results on some 
benchmark MATLAB programs with the use of the MATCH 
compiler: 

1 Introduction 

A distributed, heterogeneous, reconfigurable computing 
system consists of a distributed set of diverse processing re- 
sources which are connected by a high-speed interconnec- 
tion network; the resources provide a variety of architectural 

capabilities and are coordinated to perform an application 
whose subtasks have diverse execution requirements. One 
can visualize such systems to consist of embedded proces- 
sors, digital signal processors, specialized chips, and field- 
programmable gate arrays ( P G A )  interconnected through 
a high-speed interconnection network; several such systems 
have been described in [9]. 

A key question that needs to be addressed is how to map 
a given computation on such a heterogeneous architecture 
without expecting the application programmer to get into 
the low level details of the architecture or forcing himher to 
understand the finer issues of mapping the applications on 
such a distributed heterogeneous platform. Recently, high- 
level languages such as MATLAB have become popular in 
prototyping algorithms in domains such as signal and im- 
age processing, the same domains which are the p r i m q  
users of embedded systems. MATLAB provides a very 
high level language abstraction to express computations in a 
functional style which is not only intuitive but also concise. 
However, currently no tools exist that can take such high- 
level specifications and generate low level code for such a 
heterogeneous testbed automatically. 

The objective of the MATCH (MATlab Compiler for 
distributed Heterogeneous computing systems) compiler 
project [3] at Northwestern University is to make it eas- 
ier for the users to develop efficient code for distributed 
heterogeneous computing systems. Towards this end we 
are implementing and evaluating an experimental prototype 
of a software system that will take MATLAB descriptions 
of various embedded systems applications, and automati- 
cally map them on to a heterogeneous computing environ- 
ment consisting of field-programmable gate arrays, embed- 
ded processors and digital signal processors built from com- 
mercial off-the-shelf (COTS) components. An overview of 
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Figure 1. A graphical representation of the 
objectives of our MATCH compiler. 

Figure 2. Overview of the Testbed to Demon- 
strate the MATCH Compiler 

the easy-to-use programming environment that we are try- 
ing to accomplish through our MATCH compiler is shown 
in Figure 1. The goal of our compiler is to generate ef- 
ficient code automatically for such a heterogeneous target 
while optimizing two objectives: (1) Minimizing resources 
(such as type and number of processors, FPGAs, etc) under 
performance constraints (such as delays, and throughput) 
(2) Maximizing performance under resource constraints. 

The paper is organized as follows. Section 2 provides an 
overview of the testbed which is being used to demonstrate 
our ideas of the MATCH compiler. We describe the vari- 
ous components of the MATCH compiler in Section 3. We 
present preliminary experimental results of our compiler in 
Section 4. We compare our work with other related research 
in Section 5,  and conclude the paper in Section 6. 

2 Overview of MATCH Testbed 

The testbed that we have designed to work with the 
MATCH project consists of four types of compute re- 
sources. These resources are realized by using off-the-shelf 
boards plugged into a VME cage. The VME bus provides 
the communication backbone for some control applications. 
In addition to the reconfigurable resources, our testbed also 
incorporates conventional embedded and DSP processors to 
handle the special needs of some of the applications. Real 
life applications often have parts of the computations which 
may not be ideally suited for the FPGAs. They could be ei- 
ther control intensive parts or could be even complex float- 
ing point applications. Such computations are performed 
by these embedded and DSP processors. An overview of 
the testbed is shown in Figure 2. 

We use an off-the-shelf multi-FPGA board from An- 

napolis Microsystems [2] as the reconfigurable part of our 
testbed. This WildChiZdTM board has 8 Xilinx 4010 FP- 
GAS (each with 400 CLBs, 512KB local memory) and a 
Xilinx 4028 FPGAs (with 1024 CLBs, 1MB local mem- 
ory). A Transtech TDM-428 board is used as a DSP re- 
source. This board has four Texas Instruments TMS320C40 
processors (each running at 60MHz, with 8MB RAM) in- 
terconnected by an on board 8 bit wide 20MBIsec com- 
munication network. The other general purpose compute 
resource employed in the MATCH testbed is a pair of Mo- 
torola MVME2604 boards. Each of these boards hosts a 
PowerPC-604 processor (each running at 200 MHz, with 
64 MB local memory) running Microware's OS-9 operating 
system. These processors can communicate among them- 
selves via a lOOBaseT ethemet interface. 

A Force 5V board with MicroSPARC-I1 processor run- 
ning Solaris 2.6 operating system forms one of the compute 
resources that also plays the role of a main controller of the 
testbed. This board can communicate with other boards ei- 
ther via the VME bus or via the Ethernet interface. 

3 The MATCH Compiler 

We will now discuss various aspects of the MATCH 
compiler that automatically translates the MATLAB pro- 
grams and maps them on to different parts of the target sys- 
tem shown in Figure 2. The overview of the compiler is 
shown in Figure 3. 

MATLAB is basically a function oriented language and 
most of the MATLAB programs can be written using pre- 
defined functions. These functions can be primitive func- 
tions or application specific. In a sequential MATLAB 
program, these functions are normally implemented as se- 
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shape algebra which can be used to infer types and shapes 
of variables in MATLAB programs [6]. 

Often, it may not be possible to infer these attributes, 
in which case our compiler takes the help of user direc- 
tives which allow the programmer to explicitly declare the 
typekhape information. The directives for the MATCH 
compiler start with %!match and hence appear as comments 
to other MATLAB interpreterskompilers. An extensive set 
of directives have been designed for the MATCH compiler 

The maximum performance from a parallel heteroge- 
neous target machine such as the one shown in Figure 2 can 
only be extracted by efficient mapping of various parts of 
the MATLAB program onto the appropriate parts of the tar- 
get. The MATCH compiler incorporates automatic mecha- 
nisms to perform such mapping. It also provides ways using 
which an experienced programmer well versed with the tar- 
get characteristics can guide the compiler to fine tune the 
mapping in the form of directives. 

[31.. 

Figure 3. The MATCH Compiler Components 
3.1 Compilation Overview 

quential code running on a conventional processor. In the 
MATCH compiler however, these functions need to be im- 
plemented on different types of resources (both conven- 
tional and otherwise) and also some of these need to be 
parallel implementations to take best advantage of the par- 
allelism supported by the underlying target machine. 

MATLAB also supports language constructs using 
which a programmer can write conventional procedural 
style programs (or parts of it) using loops, vector notation 
and the like. Our MATCH compiler needs to automatically 
translate all such parts of the program into appropriate se- 
quential or parallel code. 

MATLAB being a dynamically typed language, poses 
several problems to a compiler. One of them being the well 
known type inferencingproblem. The compiler has to figure 
out not only whether a variable was meant to be a floating 
point variable, but also the number of dimensions and ex- 
tent in each dimension if the variable happens to be an array. 
For example, when the compiler sees a MATLAB statement 
a = b * c, it might mean one of several things: a, b, 
c are scalar variables (either integer, or short, or float, or 
double-precision); or a can be a one-dimensional vector, 
b can be a two-dimensional matrix, and c can be a one- 
dimensional vector; or a ,  b, c can be two-dimensional 
matrices; or a ,  b can be matrices, and c can be a scalar; 
or a ,  c can be matrices, and b can be a scalar. Clearly, 
when a compiler has to generate the code, the correct type 
needs to be declared or inferred by the compiler. Our com- 
piler provides mechanisms to automatically perform such 
inferencing which is a crucial component of any compiler 
for a dynamically typed language. We have developed a 

The first step in producing parallel code from a MAT- 
LAB program involves parsing the input MATLAB pro- 
gram based on a formal grammar and building an abstract 
syntax tree. After the abstract syntax tree is constructed the 
compiler invokes a series of phases. Each phase processes 
the abstract syntax tree by either modifying it or annotating 
it with more information. 

Using rigorous datdcontrol flow analysis and taking 
cues from the programmer directives (explained in Sec- 
tion 3.5.2), this AST is partitioned into one or more sub 
trees. The nodes corresponding to the predefined library 
functions directly map on to the respective targets and any 
procedural style code is encapsulated as a user defined pro- 
cedure. The main thread of control is automatically gener- 
ated for the Force V processor which keeps making remote 
procedure calls to these functions running on the processor 
(or processors) onto which they are mapped. 

In the following sections we go into the details of these 
aspects of the MATCH compiler. 

3.2 MATLAB Functions on FPGAs 

In this section we describe our effort in the development 
of various MATLAB libraries on the Wildchild P G A  board 
described earlier. These functions are developed in Register 
Transfer Level (RTL) VHDL using the Synplify logic syn- 
thesis tool from Synplicity to generate gate level netlists, 
and the Alliance place-and-route tools from Xilinx. Some 
of the functions we have developed on the FPGA board 
include matrix addition, matrix multiplication, one dimen- 
sional FFT and FIRAIR filters [4]. In each case we have de- 

41 



Matrix 
Size 

64x64 
128x128 
248x248 
496x496 

3.2.1 Matrix Multiplication 

The MATLAB function C = A * B performs the multipli- 
cation of two matrices A and B and stores the result in the 
matrix C. Our specific implementation of this function can 
be used to multiply two matrices of size up to 500x500 el- 
ements in 16-bit fixed-point fractional 2's complement for- 
mat. The configuration and compute times for Matrix Mul- 
tiplication are displayed in Table l. It is evident that the 
data transfer and configuration times dominate the evalua- 
tion time. However, host compute time is about two orders 
of magnitude longer than FPGA compute time. 

Config Download Compute Compute 
Time +Readback FPGA host 
2620 31+7=38 1.95 300 
2620 58+24=82 15 2380 
2620 155+91=246 103 17702 
2620 603+358=961 795 142034 

3.2.2 Filter Function 

Filtering is one of the most common operations performed 
in signal processing. Most filters belong to one of two 
classes - FIR for Finite Impulse Response and IIR for In- 
finite Impulse Response filter. We have implemented the 
general MATLAB library function$filfer(B,A,x) [22] which 
applies the digital filter H(z) = B(z)/A(z) to the input sig- 
nal x. Our specific implementation of the filter function al- 
lows a maximum order of 64 on vectors of maximum size 
250,000 elements. The data precision used is 8 bits fixed- 
point in fractional 2's complement format. The cascaded 
form of the digital filter lends well to implementation on 
the multi-FPGA architecture of the WILDCHILD system 
due to the presence of near-neighbor communication capa- 
bility via the systolic bus. Several FPGAs can be strung 
together in series to implement the required filter operation. 
The performance characteristics of this filter implementa- 
tion for various number of taps and various data sizes is 
shown in Table 2. These characterizations are used by the 
automated mapping algorithm of the MATCH compiler de- 
scribed in Section 3.6. l. 

Vector 
Size 
16K 
64K 
256K 
16K 
64K 
256K 
16K 
64K 
256K 

Table 2. Performance characterization of the 
MATLAB filter function on the Wildchild FPGA 
board of the MATCH testbed. Runtimes in 
milli-seconds are shown for various number 
of taps and various data sizes. 

Config Download 
Time +Readback 
2600 132+15=147 
2600 188+58=246 
2600 440+230=670 
2600 132+15=147 
2600 188+58=246 
2600 440+230=670 
2600 132+15=147 
2600 188+58=246 
2600 440+230=670 

Filter 

256 
256 
256 

Compute 

3 
13 
52 
13 
52 
210 
52 
210 
840 

Table 3. Performance characterization of the 
MATLAB FFT function on the Wildchild FPGA 
Board. Times in milli-seconds 

3.2.3 Fast Fourier Tkansform 

The discrete Fourier transform (DFT) algorithm is used to 
convert a digital signal in the time domain into a set of 
points in the frequency domain. The MATLAB function 
B ( x )  computes the frequency content of a signal x and re- 
turns the values in a vector the same size as x. 

Our specific implementation of the FFT function can 
compute the Fast Fourier Transform of up to 1024 points 
where each point is a complex number with real and imag- 
inary parts in 8-bit fixed-point fractional 2's complement 
format. The FFT operation exhibits a high level of paral- 
lelism during the initial stages of computation but commu- 
nication between processors becomes high during the final 
stages. The Fast Fourier Transform was run at 8 MHz and 
results are displayed in Table 3. 

3.3 MATLAB Functions on DSPs 

In this section we will describe our effort in the devel- 
opment of various MATLAB library functions on the DSPs. 
These functions are developed on the Transtech DSP boards 
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to take advantage of multiple resources that can exploit data 
Table 4. Performance characterizations of the 
MATLAB matrix multiplication function on the 

parallelism. 

Transtech DSP board for various matrix sizes 
and processor configurations. Runtimes are 
in seconds. 

3.4.1 Code Generation for Embedded and DSP 

Our MATCH compiler generates sequential and message- 
passing parallel C code for the embedded and DSP pro- 

erate scalarized C code. 

and sizes of the variables accessed in the statement are ei- 

cessors. If the target is a single processor, then we gen- 
For example, corresponding to 

a MATLAB array assignment statement, the types, shapes 

2.57 1 1.44 I 1.527 I 1.61 1 ther inferred or declared through directives; a scalarized C 
code is subsequently generated which has a set of nested 
f o r  loops whose loop bounds are determined by the sizes 
of the arrays being referenced in the assignment statement. 

utilizing multiple DSPs using message-passing among mul- 
tiple processors in C using our own custom implementa- 
tion of MPI. We subsequently used the PACE C compiler 
from Texas Instruments to generate the object code for the 
TMS320C40 processors. Our current set of functions in- 
cludes real and complex matrix addition, real and complex 
matrix multiplication ,one and two dimensional FFT. Each 
of these libraries has been developed with a variety of data 
distributions such as blocked, cyclic and block-cyclic dis- 
tributions. In the next section, we go through the imple- 
mentation details of one of these functions, namely, matrix 
mu1 tiplication . 

3.3.1 Matrix Multiplication 

We have implemented the MATLAB matrix multiplication 
function on the Transtech DSP board containing 4 proces- 
sors. We designed our matrix multiplication function to be 
generic enough to handle data distributed differently. We 
assume that for the matrix multiplication C = A * B, the 
matrices A and B can be arbitrarily distributed on the pro- 
cessors in a general block cyclic distribution. Table 4 
shows the results of matrix multiplication on the Transtech 
DSP board. The speedup for the matrix multiplication is 
also around 2.54 on 4 processors for data distributed in a 
cyclic(4),cyclic(4) manner. 

3.4 Automatic Generation of User functions 

Since MATLAB allows procedural style of programming 
using constructs such as loops and control flow, the parts of 
the program written in such a style may not map to any of 
the predefined library functions. All such fragments of the 
program need to be translated appropriately depending on 
the target resource onto which they are mapped. As shown 
in Figure 3, we wish to generate C code for the DSP and 
embedded processors and VHDL code for the FPGAs. In 
most cases we need to translate them into parallel versions 

Detailed issues of scalarization have been reported in [6]. 
The particular paradigm of parallel execution that we 

have presently implemented in our compiler is the single- 
program-multiple-data (SPMD) model, where all proces- 
sors execute the same program but on different portions of 
array data. The way the computations are distributed among 
processors by the compiler is the owner computes rule in 
which operations on a particular data element are executed 
by only those processors that actually "own" the data ele- 
ment. Ownership is determined by the alignments and dis- 
tributions that the data is subjected to. 

3.4.2 Code Generation for FPGAs 

Each user function is converted into a process in VHDL. 
Each scalar variable in MATLAB is converted into a vari- 
able in VHDL. Each array variable in MATLAB is assumed 
to be stored in a RAM adjacent to the FPGA, hence a cor- 
responding read or write function of a memory process is 
called from the FPGA computation process. Control state- 
ments such as IF-THEN-ELSE constructs in MATLAB are 
converted into corresponding IF-THEN-ELSE constructs in 
VHDL. Assignment statements in MATLAB are converted 
into variable assignment statements in VHDL. Loop con- 
trol statements are converted into a finite state machine as 
shown in Figure 4. 

For each loop statement, we create a finite state machine 
with four states. The first state performs the initialization 
of loop control variables and any variables used inside the 
loop. The second state checks if the loop exit condition is 
satisfied. If condition is valid, it transfers control to state 
4, which is the end of the loop. If condition is not valid, 
it transfers control to state 3, which performs the execution 
of statements in the loop body. If there is an array access 
statement (either read or write), one needs to generate ex- 
tra states to perform the memory readwrite from external 
memory and wait the correct number of cycles. 

The above steps described how VHDL code is gener- 
ated on a single FPGA. When we have multiple FPGAs on 
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MATLAE PROORAM 

function sum() 
sum = 0; 
iori=1:100 

end 
sum = sum + a(i); 

Regisler Tranrler Lwol VHDL PROORAM 

p e s  sum 
i i  ribing-&ge(clockJ 
case state If 
when inl: sum := 0; 1:- 0; 

state := 2; 
when 2: i/ (1 < 1 W )  m f e  :- 3; 

else stafe := 5; 
when 3: RAMaddr:=a + /; 

Readmenmy:= 1; 
state := 4; 

sum :=sum + RAh-cut: 
i :=i+ 1; 
state := 2; 

r e s u ~ s u m  :P sum; 
state := init; 

when 4: 

when 5: 

endproCeSS 

Figure 4. Example compilation of a MATLAB program 
with loops into RTL VHDL. On the top left we show an 
example MATLAB code which performs a summation of 
elements of an array. We show the state diagram of a fi- 
nite state machine to perform the same computation in the 
bottom left. On the right we show the corresponding RTL 
VHDL code. 

a board such as the WILDCHILD board, we generate the 
VHDL code using the owner-computes rule assuming the 
SPMD style of programming described in the previous sec- 
tion. Since the FPGAs have limited computation power, we 
do not have a general communication library such as MPI 
running on the FPGAs, but a very basic set of communica- 
tion functions to perform data transfers among the FPGAs 
using the cross-bar network on the board. 

3.5 Mapping the Program Fragments onto the 
Target 

The MATCH compiler supports both automated as well 
as user directed mapping to cater to a wide range of appli- 
cations. While the automated mapping is meant to produce 
reasonably good results with no user intervention, the user 
directed approach is intended to give a greater control to 
an experienced programmer to fine tune the program. Both 
approaches are complimentary and can be selectively com- 
bined in a given application. 

3.5.1 Automated Mapping 

When possible, the MATCH compiler tries to automatically 
map the user program on to the target machine taking into 
account the specified timing constraints, device capabili- 
ties and costs. The automatic mapping is formulated as a 
mixed integer linear programming problem with two opti- 
mization objectives: (1) Optimizing resources (such as type 
and number of processors, FPGAs, etc) under performance 

constraints (such as delays, and throughput) (2) Optimizing 
performance under resource constraints. The performance 
characterization of the predefined library functions and the 
user defined procedures guide this automatic mapping. Ex- 
amples of performance characterizations are illustrated in 
Table 2 for the P G A  board and Table 4 for the DSP board 
in our MATCH testbed. 

We have developed an automatic mapping tool called 
SYMPHANY [5]  which takes as input (a) a control and data 
flow graph of a MATLAB program which represents vari- 
ous MATLAB functions as nodes (b) Characterizations of 
the MATLAB functions on various resources such as sin- 
gle or multiple FPGAs and DSP processors in terms of de- 
lays and costs (c) Performance constraints in the form of 
throughput and delays. The SYMPHANY tool uses a mixed 
integer linear programming formulation and solution for 
the time constrained resource optimization problem to solve 
the resource selection, pipelining, and scheduling problems 
while optimizing the resources. 

3.5.2 User Guided Mapping 

In cases where such an automatic mapping is not satisfac- 
tory or if the programmer is in a better position to guide 
the compiler, special user directives are provided for this 
purpose. These directives describe the target architectures 
to the compiler, the availability of predefined libraries on 
them and other relevant characteristics. 

3.6 Final Code Generation 

After generating the ASTs for each of the individ- 
ual parts of the original MATLAB program, these ASTs 
are suitably translated for appropriate target processors. 
Depending on the mapping (performed as discussed in 
Section 3 . 3 ,  the targets for each of these ASTs could 
be different. The ASTs corresponding to FPGAs are 
translated to RTL VHDL and those corresponding to 
Host/DSP/Embedded processors are translated into equiv- 
alent C language programs. At nodes corresponding to op- 
erators and function calls, the annotated information about 
the operands and the operatorlfunction are checked. De- 
pending upon the annotated information a call to a suitable 
C function is inserted that accomplishes the task of the oper- 
atodfunction call (pre defined or user written) in the MAT- 
LAB program. For example, to invoke the@ function on 
the cluster of DSP processors, the compiler generates a call 
to a wrapper functionfl(DSe ....), instead of the set of ac- 
tual calls needed to invoke the fft on the DSP processors 
cluster. This wrapper contains the mechanism to invoke the 
function on respective resource. Finally, these generated 
programs are compiled using the respective target compil- 
ers to generate the executable/configuration bit streams. 
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4 Experimental Results 

Size I ForceRTE I DSP 

We have implemented a preliminary version of the 
MATCH compiler. In this section we will report results of 
the MATCH compiler on some benchmark MATLAB pro- 
grams. 

FPGA 
4.1 Matrix Multiplication 

64x64 
128x128 We first report on results of the siaple matrix multipli- 

cation function on various parts of the testbed. We perform 
the same matrix multiplication function on three targets on 
the testbed. The following MATLAB code represents the 
matrix multiplication test benchmark. We use directives to 
map the same matrix multiplication computation to three 
targets in our heterogeneous testbed. The compiler calls the 
appropriate library functions and the related host code. 

The results of executing the code on the testbed are 
shown in Table 5. The column shown as “Force” refers to 
a matrix multiplication library running on the Force board 
using the RTEXPRESS library [7] from Integrated Sen- 
sors Inc., using 32 bit real numbers. The column shown 
as “DSP’ refers to a matrix multiplication library written 
in C using one processor on the Transtech DSP board, us- 
ing 32 bit real numbers. The column shown as “FPGA” 
refers to a matrix multiplication library function written in 
VHDL in the Wildchild FPGA board, using 8-bit fractional 
numbers. The numbers in parenthesis under the column for 
FPGA refers to the FPGA configuration and data read and 
write times off the board. It can be seen that even including 
the FPGA configuration and data download times it is faster 
to perform matrix multiplication on the Wildchild FPGA 
board. It should be noted however that the FPGA board is 
operating at a smaller clock cycle (20 MHz) instead of the 
Force board running at 85 MHz and the DSP board running 
at 60 MHz. However the FPGA board has more parallelism 
since it has 8 FPGAs working in parallel; also the data pre- 
cision on the FPGA computation is only 8 bits while the 
Force board and DSP boards are operating on 32 bit integer 
numbers. 

(85 MHz, 32 bit) (60 MHz, 32 bit) (20 Mhz, 8 bit) 
0.36 0.08 0.002 (0.038) 
2.35 0.64 0.015 (0.082) 

4.2 Fast Fourier Ransform 

We next report on results of a one-dimensional Fast 
Fourier Transform function on various parts of the testbed. 
We perform the same FFT function on four targets on the 
testbed using a program similar to the previous matrix mul- 
tiplication example. 

The results are shown in Table 6. The column shown 
as “Force” refers to the FFT running on the Force board 
with the RTEXPRESS Library [7] from ISI, using 32 bit 
real numbers. The column shown as “DSP” refers to the 
FFT written in C using one processor on the Transtech DSP 

Table 5. Comparisons of runtimes in seconds 
of the matrix multiplication benchmark on 
various targets of the testbed 

. .  
248x248 I 16.48 4.6 I 0.103 (0.246) 
496x496 I 131.18 36.7 I 0.795 (0.961) 

I 
1 -  I I 1 

. ,  

Table 6. Comparisons of runtimes in seconds 
of the FFT benchmark on various targets of 
the testbed. 

Execution ?Tme(in secs) 

0.668 O.ooOo5 (0.51) 
3.262 0.00013 (0.51) 

board, using 32 bit real numbers. The column shown as 
“FPGA” refers to the FFT written in VHDL in the Wildchild 
FPGA board, using 8 bit fractional numbers. It can be seen 
that even including the FPGA configuration and data down- 
load times it is faster to perform the FFT on the Wildchild 
FPGA board. It should be noted however that the FPGA 
board is operating at a smaller clock cycle (9 MHz) instead 
of the Force board running at 85 MHz and the DSP board 
running at 60 MHz. 

4.3 Image Correlation 

After investigating simple MATLAB functions, we now 
look at slightly more complex MATLAB programs. One 
benchmark that we investigated is the image correlation 
benchmark whose code is shown below. The MATLAB 
program takes two 2-dimensional image data, performs a 
2-dimensional FFT on each, multiplies the result and per- 
forms an inverse 2-dimensional FFT on the result, to get the 
correlation of two images. The MATLAB program anno- 
tated with various directives appears as follows. The type 
and shape directives specify the size and dimensions of the 
arrays. The USE directives specify where each of the li- 
brary functions should be executed. It specifies that the two 
FFTs and the inverse FFT should be executed on the DSP 
board, and the matrix multiplication should be executed on 
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Figure 5. Performance (runtimes in seconds) of the 
MATCH compiler for the Image Correlation Application 
for am image size of 256 X 256 on various platforms. 

the FPGA board. 
The performance of this correlation benchmark using the 

MATCH compiler is shown for various platforms in Fig- 
ure 5. It can be seen that the results of the RTEexpress li- 
brary is faster on the SUN Ultra 5 workstation (200 MHz 
Ultra Sparc) over the Force board (85 MHz microsparc 
CPU). However, the implementation of the custom matrix 
multiplication library on the FPGA board and the custom 
FIT library function on the DSP board is much faster than 
the RTExpress libraries. This is because the RTExpress li- 
braries perform a lot of memory allocations and copies of 
data structures before they perform the actual computations 
~71. 

4.4 Space Time Adaptive Processing 

The next benchmark we studied is the coded for Space 
Time Adaptive Processing. We took a MATLAB version of 
the STAP code from Air Force Research Labs and imple- 
mented various parts of the code on the testbed. The perfor- 
mance of this pulse compression function from the STAP 
benchmark using the MATCH compiler is shown for vari- 
ous platforms in Figure 6. Again, it can be seen that the 
results using the RTEexpress library is faster on the SUN 
Ultra 5 workstation (200 MHz Ultra Sparc) over the Force 
board (85 MHz microsparc CPU). The results using the RT- 
Express library on the host and FFT library on the DSP is 
faster than the complete implementation on the host, but 
not fast enough to outperform the results on the SUN Ultra 
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Figure 6. Performance (runtimes in seconds) of the 
MATCH compiler for the Pulse Compression Function 
from the STAP Application for am image size of 256 X 256 
on various platforms. 

5 workstation. 

5 Related Work 

In this section we review related work in the area of soft- 
ware environments for heterogeneous computing. 

5.1 High-Performance MATLAB Projects 

Several projects have involved running parallel MAT- 
LAB interpreters in parallel, such as the Multi-MATLAB 
[23] which targeted both parallel machines such as the IBM 
SF9 and network of workstations, and the Parallel Toolbox 
[24] which runs on a network of workstations. These sys- 
tems are different from our MATCH compiler in that the 
processors execute MATLAB interpreters, rather than com- 
piled code. 

There are several projects that involve MATLAB compil- 
ers or translators. The MCC compiler from MATHWORKS 
Corporation [22]. translates MATLAB into C code suitable 
for compilation and execution in single processors. The 
MATCOM compiler from MathTools [2 11 translates MAT- 
LAB into C++ code suitable for compilation and execu- 
tion in single processors. DeRose and Padua developed the 
FALCON compiler [20] at the University of Illinois which 
translates MATLAB scripts into Fortran 90 code. Quinn 
et a1 [ 191 developed the OTTER compiler which translates 
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MATLAB programs directly into SPMD C programs with 
calls to MPI. Banerjee et a1 extended the PARADIGM com- 
piler which translated MATLAB programs to calls to the 
SCALAPACK library [26]. The RTExpress Parallel Li- 
braries [7] from Integrated Sensors Inc. consist of efficient, 
parallel performance tuned implementations (using C plus 
MPI) of over 200 MATLAB functions. 

All the above compiler projects target sequential or ho- 
mogeneous parallel processors. In contrast our MATCH 
compiler is generating code for heterogeneous processors. 
Finally, they have no notion of generation of compiled 
code to satisfy performance or resource constraints. Our 
MATCH compiler tries to perform automated mapping and 
scheduling of resources. 

5.2 Compilers for Configurable Computing 

Numerous projects in configurable computing have been 
described in [14, 13, 12, 10, 91. Several researchers have 
performed research. on the development of software which 
can help reduce the: amount of time to take a high level ap- 
plication and map it to a configurable computing system 
consisting of FPGAs. 

The Cameron project [ 171 at Colorado State University is 
an attempt to develop an automatic tool for image process- 
ing applications (VSIP libraries) in Khoros. The CHAM- 
PION project [ 181 at the University of Tennessee is build- 
ing a library of pre-compiled primitives that can be used as 
building blocks of image processing applications in Khoros. 
The CORDS [SI project has developed a hardwarekoftware 
co-synthesis system for reconfigurable real-time distributed 
embedded system. 

There have been several commercial efforts to generate 
hardware from high-level languages. The Signal Processing 
Workbench (SPW) from the Alta Group of Cadence, trans- 
lates from a block diagram graphical language into VHDL, 
and synthesizes the hardware. The COSSAP tool from Syn- 
opsys also takes a Block Diagram view of an algorithm and 
translates it to VHDL or Verilog. However, the levels that 
one has to enter the design in SPW or COSSAP is at the 
block diagram level with interconnection of blocks which 
resembles structural VHDL. The Renoir tool from Men- 
tor Graphics Corporation lets users enter state diagrams, 
block diagrams, truth tables or flow charts to describe dig- 
ital systems graphically and the tool generates behavioral 
VHDLNerilog automatically. Tools such as Compilogic 
from Compilogic Corporation translate from C to RTL Ver- 
ilog [27]. 

There have been several efforts at developing compilers 
for mixed processor-FPGA systems. The RAW project [ 141 
at MIT exposes its low-level hardware details completely 
to the software system and lets the compiler orchestrate 
computations and data transfers at the lowest levels. The 

BRASS group at the University of California, Berkeley has 
developed the GARP [13] architecture which combined a 
MIPS-I1 processor with a fine-grained FPGA coprocessor 
on the same die; a C compiler for the architecture has also 
been developed. The Transmogrifier C compiler takes a 
subset of C extended with directives and compiles it to a 
set of Xilinx FPGAs on a board. The RAPID project at 
the University of Washington has developed a RAPID-C 
compiler [ 161 which compiles a language similar to C with 
directives onto the RAPID reconfigurable pipelined datap- 
ath architecture. The Chimaera [ 121 project is based upon 
creating a new hardware system consisting of a micropro- 
cessor with an internal reconfigurable functional unit. A C 
Compiler for the Chimaera architecture has been developed 
[28]. The NAPA-lo00 Adaptive Processor from National 
Semiconductor [ 101 features a merging of FPGA and RISC 
processor technology. A C compiler for the NAPA 1000 
architecture has been developed as well [ 113. 

Our MATCH compiler project [3] differs from all of the 
above in that it is trying to develop an integrated compi- 
lation environment for generating code for DSP and em- 
bedded processors, as well as FPGAs, using both a library- 
based approach and automated generation of C code for the 
DSP and RTL VHDL code for the FPGAs. 

6 Conclusions 

In this paper we provided an overview of the MATCH 
project. As described in the paper, the objective of the 
MATCH (MATlab Compiler for Heterogeneous computing 
systems) compiler project is to make it easier for the users 
to develop efficient code for heterogeneous computing sys- 
tems. Towards this end we are implementing and evalu- 
ating an experimental prototype of a software system that 
will take MATLAB descriptions of various embedded sys- 
tems applications in signal and image processing, and au- 
tomatically map them on to an adaptive computing envi- 
ronment consisting of field-programmable gate arrays, em- 
bedded processors and digital signal processors built from 
commercial off-the-shelf components. 
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