
FPD’96 -- Fourth Canadian Workshop of Field-Programmable Devices

May 13-14, 1996, Toronto, Canada

Dynamically Programmable Gate Arrays:
A Step Toward Increased Computational Density

André DeHon
andre@mit.edu

(617) 253-5868
MIT Artificial Intelligence Laboratory

NE43-791, 545 Technology Sq., Cambridge, MA 02139
FAX: (617) 253-5060

Abstract

Field-Programmable Gate Arrays are interesting,
general-purpose computational devices because (1) they
have high computational density and (2) they have fine-
grained control of their computational resources since each
gate is independently controlled. The earlier provides
them with a potential 10 � advantage in raw peak perfor-
mance density versus modern microprocessors. The later
can afford a 32 � advantage on random bit-level compu-
tations. Nonetheless, typical FPGA usage seldom extracts
this full density advantage. DPGAs are less computation-
ally dense than FPGAs, but allow most applications to
achieve greater, yielded computational density. The key to
unraveling this potential paradox lies in distinguishing in-
struction density from active computing density. Since the
storage space for a single instruction is inherently smaller
than the computational element it controls, packing several
instructions per computational unit increases the aggregate
instruction capacity of the device without a significant re-
duction in computational density. The number of different
instructions executed per computational task often limits
the effective computational density. As a result, DPGAs
can meet the throughput requirements of many computing
tasks with 3-4 � less area than conventional FPGAs.

1 Computational Area

“How big is a computation?”

The design goal for “general-purpose” computing de-
vices is to develop a device which can:� implement desired computational tasks� perform the computation at the desired latency or

throughput

� realize the implementation at minimal cost – usually
silicon area

As device designers we are concerned with the area which a
computational element occupies and its latency or through-
put.

We know, for example, that a four input Lookup Table
(4-LUT) occupies roughly 640K

� 2 (e.g. 0.16mm2 in a 1 �
CMOS processor (

���
0 � 5 �)) [1] [9]. Thus, we get a

4-LUT density of 1.6 4-LUTs per one million
� 2 of area.

At the same time, we notice that the descriptive density
of 4-LUT designs can be much greater than the 4-LUT
density just observed. That is, the LUT configuration is
small compared to the network area so that an idle LUT
can occupy much less space than an active one.

For illustrative purposes, let us assume that it takes
200 bits to describe the configuration for one 4-LUT, which
is typical of commercial FPGA devices. A 64Mb DRAM
would hold 335K such configurations. Since a typical
64Mb DRAM is 6G

� 2, we can pack 56 4-LUT descrip-
tions per one million

� 2 of area – or about 35 � the density
which we can pack 4-LUTs. In fact, there is good reason
to believe that we can use much less than 200 bits to de-
scribe each 4-LUT computation [3], making even greater
densities achievable in practice.

Returning to our original question, we see that there are
two components which combine to define the requisite area
for our general-purpose device:

1. �	� – the total number of 4-LUTs in the design – the
descriptive complexity

2. �	
 – the total number of 4-LUTs which must be evalu-
ated simultaneously in order to achieve the desired task
time or computational throughput – the parallelism re-
quired to achieve the temporal requirements

In an ideal packing, a computation requiring �	
 active

FPD’96 -- Fourth Canadian Workshop of Field-Programmable Devices

May 13-14, 1996, Toronto, Canada

K−LUT

Memory

Context ID
�

D
ec

od
e

Context ID
�

D
ec

od
e

Figure 1: DPGA LUT and Interconnect Primitives

compute elements and � � total 4-LUTs, can be imple-
mented in area:��
�������������� �
�� �����! #" �	� � �$�!�!
��&%('*),+ �-�&� .

1 /
In practice, a perfect packing is difficult to achieve due to
connectivity and dependency requirements such that �10��2� � configuration memories are required.

2 DPGAs

When � � 2 �	
 , it is advantageous to associate multi-
ple, ideally 35463�7 , LUT descriptions with each active LUT.
Dynamically Programmable Gate Arrays (DPGAs), do just
that, packing several configuration memories for each ac-
tive LUT and switching element (Figure 1).

From our own experience with the DPGA [9]:�����! 8
560K

� 2�$���9
���%:'�);+ �-�&� 8
20K

� 2

The base LUT area is generally consistent with other FPGA
implementations. Our

� �!�!
��&%('*),+ �5���
is based on a

DRAM cell design which is 600
� 2 per memory bit, mak-

ing the memory cells 2 � smaller than an SRAM imple-
mentation. A static memory would be closer approximated
as: � ���9 <&�
 �=)=

��&%('*),+ �5��� 8

40K
� 2

An aggressive DRAM cell should realize a 300
� 2 memory

cell, making:�$���9 �?> %
 ��)=

���%:'�);+ �5��� 8
10K

� 2

In all these cases the configuration size is at least an
order of magnitude smaller than the active LUT:

14 @ �$�!�! � ���!
��&%('*);+ �-�&� @ 56

if (c >= 0x30 && c <= 0x39)
res = c-0x30;

else if (c >= 0x40 && c <= 0x46)
res = c - 0x40 + 10;

else if (c >= 0x60 && c <= 0x66)
res = c - 0x60 + 10;

else
res = 0;

Table 1: ASCII Hex A Binary Task Description

Single context devices running designs where the de-
scriptive complexity, �	� , is large compared to the num-
ber of requisite parallel operations, �
 , are, consequently,
much larger than they need to be since they require �	�CB	�

more active LUTs than are necessary to support the task at
the desired computational speed.

3 ASCII Hex D Binary: Extended Example

Of course, there are many issues and details associ-
ated with multicontext computing devices. In this section,
we will walk through a specific design example in order
to make the previous discussion more concrete and in or-
der to motivate additional issues. We will take an ASCII
Hex A binary converter as our example.

Figure 1 describes the basic conversion task. Assuming
we care about the latency of this operation, a mapping
which minimizes the critical path length using SIS [8] and
Chortle [4] has a path length of 3 and requires 21 4-LUTs.
Figure 2 shows the LUT mapping both in equations and
circuit topology.

3.1 Traditional Pipelining for Throughput

If we cared only about achieving the highest through-
put, we would fully pipeline this implementation such that
it took in a new character on each cycle and output its en-
coding three cycles later. This pipelining would require an
additional 7 LUTs to pipeline data which is needed more
than one pipeline stage after being generated (i.e. 4 to re-
time c E 3:0 2 for presentation to the second stage and 3
to retime c E 3 2 , c E 1 2 and i1 for presentation to the fi-
nal stage). Consequently, we effectively evaluate a design
with �F� � � ���! 6�G&H�IKJML � 21 4-LUTs with � 0� � �
 � 28
physical 4-LUTs. Typical LUT delay, including a mod-
erate amount of local interconnect traversal, is 7 ns [9]
[1]. Assuming this is the only limit to cycle time, the im-

FPD’96 -- Fourth Canadian Workshop of Field-Programmable Devices

May 13-14, 1996, Toronto, Canada

INORDER = C<7> C<6> C<5> C<4> C<3> C<2> C<1> C<0> ;
OUTORDER = O<3> O<2> O<1> O<0> ;
stage 1 – 8 LUTs [C<3:0> pass through]
i0 = !C<1> * !C<2> ;
i1 = C<4> * C<5> * !C<6> * !C<7> ;
i3 = C<0> * C<1> * !C<2> ;
i4 = !C<3> * !C<4> * C<6> * !C<7> ;
i6 = !C<0> * C<2> ;
i7 = !C<0> * C<1> ;
i8 = C<0> * !C<1> ;
i11 = !C<7> * C<6> * !C<4> * !C<3> ;
stage 2 – 9 LUTs [i1,C<3>,C<1> pass through]
i5 = i0 * i1 + i3 * i4 ;
i9 = i6 * i4 + i7 * i4 + i8 * i4 ;
i10 = C<3> + i3 * i4 ;
i12 = i3 * i4 + i6 * i4;
i13 = i1 * !C<3> * C<2> ;
i14 = C<2> * !C<1> * i11 ;
i15 = i8 * i4 + i7 * i4 ;
i16 = i7 * i4 + i6 * i4 ;
i17 = i1 * !C<3> * C<0> + C<0> * i0 * i1 ;
stage 3 – 4 LUTs
O<3> = (i10+i9)*(i5+i9);
O<2> = i12 + i13 + i14 ;
O<1> = i1 * !C<3> * C<1> + i15 ;
O<0> = i16 + i17 ; c0

c1

c2

c3

c4

c5

c6

c7

i0

i1

i3

i4

i6

i7

i8

i11

i5

i9

i10

i12

i13

114

i15

i16

i17

o0

01

o3

o2

Figure 2: 4-LUT Mapping of ASCII Hex A Binary

plementation could achieve 140 MHz operation. Notice
that the only reason we had to have any more LUTs or
LUT descriptions than strictly required by the task descrip-
tion was in order to perform signal retiming based on the
dependency structure of the computation. Spatially, this
implementation requires:�N��)O���5�

28 � 560K
� 2 " 28 � 20K

� 2 � 16240K
� 2

3.2 Multicontext Implementation – Temporal
Pipelining

If, instead, we cared about the latency, but did not need
140 MHz operation, we could use a multicontext device
with 3 LUT descriptions per active element. To achieve
the target latency of 3 LUT delays, we need to have enough
active LUTs to implement the largest stage – the middle
one. If the inputs are arriving from some other circuit which
is also operating in multicontext fashion, we must retime
them as before. Consequently, we require 3 extra LUTs
in the largest stage, making for a total �	
 �

12. Note
that the 4 retiming LUTs added to stage 1 also bring its

total LUT usage up to 12 LUTs. We end up implementing� � � 21, with �	
 � 12 and �10� � 36. If c E 7:0 2 were
inputs which did not change during these three cycles, we
would only need one extra retiming LUT in stage 2 for i1,
allowing us to use �	
 � 10.

The multicontext implementation requires:� �=);�-�QPR�*)O��� �
12 � 560K

� 2 " 36 � 20K
� 2 � 7440K

� 2

In contrast, a non-pipelined, single-context implementation
would require �10� � �	
 � 21 LUTs, for an area of:� %S��%*��)O��� �

21 � 560K
� 2 " 21 � 20K

� 2 � 12180K
� 2

If we assume that we can pipeline the configuration read,
the multicontext device can achieve comparable delay per
LUT evaluation to the single context device. The total
latency then is 21 ns, as before. The throughput at the
7 ns clock rate is 48 MHz. If we do not pipeline the
configuration read, as was the case for the DPGA prototype
[9], the configuration read adds another 2.5 ns to the LUT
delay, making for a total latency of 28.5 ns and a throughput
of 35 MHz.

FPD’96 -- Fourth Canadian Workshop of Field-Programmable Devices

May 13-14, 1996, Toronto, Canada

3.3 Further Temporal pipelining

If the 35-48 MHz implementations are still faster than
required by the application, we can reduce �
 even further.
Ideally, if we did not have to worry about retiming issues:

�
 � �F�T RU 7WV J�G U�YX�Z:[\�]�\=^ G:_
That is, if we can afford `
 >
�aO� � RU 7WV J�G U�YX�Z:[\�]�\=^ G LUT delays,
and we can evaluate �	
 LUTs per cycle, we only need
enough active LUTs such that `
 >
�aO� � �	
 � � � . E.g. if
we required less than 4 MHz operation, we should need
only one active LUT.

In practice, as long as we have to retime intermediates
through LUTs as noted above, there will be a limit to our
ability to reduce the maximum stage size by adding tem-
poral pipeline stages. Even if we only had to arrange for
the four LUT inputs needed for a single LUT evaluation in
stage ` , we would have to deploy at least 4 LUTs in stage`bB 1 to carry the signals needed by that single LUT in
stage ` . If the only place where intermediate signals can
exist is on LUT outputs, as assumed so far, we eventually
reach a lower limit on our ability to serialize active re-
source usage – decreasing active resource requirements by
reusing them to evaluate different LUTs in sequence. The
limit arises from signal connectivity requirements. For
the ASCII Hex A binary mapping considered above, the 3
cycle, �F
 � 12 case is the effective limit.

To achieve further reductions it is necessary to relax the
restriction that all inputs to an evaluation stage be deliv-
ered from active LUT outputs from the immediately prior
evaluation stage. One way to achieve this is to associate
a pool of memory with each active LUT. This pool serves
the same role as a register file in a traditional processor.
VEGA [7] uses this approach achieving:�
������*���Y� 8 � � � � ���! � �?<M
�c?) �*�
Where:

120K
� 2 @ � ���9 � �?<M
�cM)O�*� @ 170K

� 2

when:

256 @ �F��F
 @ 2048

A similar alternative is to move the flip-flop which nor-
mally lives at the output of a LUT to its inputs and to
replicate this for each described LUT rather than only asso-
ciating such flip-flops with active LUTs. Figure 3 contrasts
this scheme with the scheme used in the original DPGA

 DPGA
Array Element

2 2

context
 select

2 2

 FPGA
Array Element

2 2

output
select

load
input
select

load
input
select

 Multicontext
 Array Element
w/ Input Latches

Figure 3: Input Latches versus Output Latches

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

Timestep
d in

0
in

1

in
2

in
3

LUT Memory

Input Register

Timestep
 Memory

Timestep
Compare

LUT Mux

Output Mux

out

Context
 Select

Figure 4: Separately Latched Inputs

prototype and with traditional LUT organizations. The ba-
sic idea is to latch each LUT input on the cycle which it is
produced even when the LUT will not be evaluated on im-
mediately subsequent cycle. Figure 4 elaborates upon this
configuration. Since each virtual LUT in a group shares
each input line, it is not possible to load two different sig-
nals into the same input location of different LUTs on the
same cycle. Also, since all the inputs to a virtual LUT
are latched, the LUT output can be produced on multiple
cycles if routing restrictions such as these require it to be
generated multiple times.

Adding these matching units and input flip-flops will, of

FPD’96 -- Fourth Canadian Workshop of Field-Programmable Devices

May 13-14, 1996, Toronto, Canada

course, make the described contexts larger.�
��=e � � �!�!
���%('*);+ �-�&� "f� ���9 �N��e"hg � �$);%��*��� �
 �Y
�i��
������*���Y�j� �
�� �$'*),e�� � %S����" �	� � �k
��=e
From our own experience, we estimate:�$);%*����� �
 �Y
�i 8

20K
� 2� ���! lm�on 8

10K
� 2�$'*),e�� � %S���p8

500K
� 2� ���9
���%:'�);+ �-�&� 8

40K
� 2

Together, this gives us:�
������*���Y� 8 �	
 � 500K
� 2 " � � � 130K

� 2

In the most extreme serial case, �
 � 1, �	� � 21. This
implementation requires area:� <M�&cM)
 a � 1 � 500K

� 2 " 21 � 130K
� 2 � 3230K

� 2

Running at a 9.5 ns LUT cycle, this implementation has a
200 ns latency achieving 5 MHz operation.

3.4 Interleaved Computation

Excessive serialization is expensive since we need to
add resources to hold intermediate values. Another way to
share resources while meeting a lower computational rate
is to overlay multiple, independent computations into the
same space. This allows each computation to have wide
stages as in Section 3.2, while still taking advantage of low
throughput requirements.

In our example above, we might run 12 LUTs on the
same 21 cycle round to achieve 5 MHz throughput for the
ASCII conversion. The conversion itself only occupies
these 28 LUTs for 3 cycles, leaving 18 cycles during which
the array can be used for other tasks. Array costs are
now in line with Equation 1. The amortized cost for this
implementation is then:�),%:�Y��cWaO�
Wq � � r 3

21 s �Ct 12 � 560K
� 2 " 21 � 20K

� 2 u�
1020K

� 2

3.5 Area Comparison Summary

Table 2 summarizes the area for various implementa-
tion points described in this section. Also included is the

atoh:
//c in r1
//res in r2
//2-9 instructions

blt r1,#48,zero
bgt r1,#57,try40
sub r1,#48,r2
bne r0,r0,done

try40:
and r1,#223,r1
blt r1,#65,zero
bgt r1,#70,zero
sub r1,#55,r2
bne r0,r0,done

zero:
addi r0,r0,r2

done:

Figure 5: ASCII Hex A binary MIPS-X Assembly

effective area required for two different processor imple-
mentations of this task. The MIPS-X [6] assembly code is
shown in Figure 5; for the sake of comparison, we assume
the 4 cycle path which occurs when converting an ASCII
decimal digit. The DEC Alpha [5] implementation assumes
that the conversion is performed by table lookup and the
table is already loaded into the on-chip data cache; the con-
version takes one add and one lookup, each of which take
up half a cycle since the Alpha can issue two instruction per
cycle. The processor area comes from scaling the actual
area to meet the cycle time – this assumes that we either
deploy multiple processors to achieve a higher rate of ex-
ecution than the base processor cycle time or that the task
shares the processor with other tasks and area is amortized
accordingly.

In this section, we have examined one task in depth. See
[2] for a broader look at multicontext applications.

4 Device Sizing

One thing which is clear from Table 2 is that there is
an optimal ratio between � � and �	
 which varies with
the desired throughput requirements. Unfortunately, we
cannot expect to have a distinct DPGA design for every
possible number of contexts.

We can define a throughput ratio as the ratio of the

FPD’96 -- Fourth Canadian Workshop of Field-Programmable Devices

May 13-14, 1996, Toronto, Canada

Throughput Optimal FPGA MIPS-X Alpha
(chars/sec) Area Note Area Ratio Area Ratio Area Ratio

435M 48.7M
� 2 3 � pipe FPGA 48.7M

� 2 1.0 5.9G
� 2 0.0082 6.8G

� 2 0.0072
140M 16.2M

� 2 1 � pipe FPGA 16.2M
� 2 1.0 1.9G

� 2 0.0084 2.3G
� 2 0.0072

35M 7.4M
� 2 3 ctx DPGA 12.2M

� 2 0.61 480M
� 2 0.016 550M

� 2 0.014
5M 3.2M

� 2 21 ctx DPGA 0 12.2M
� 2 0.27 68M

� 2 0.048 78M
� 2 0.041

5M 1.0M
� 2 21 ctx DPGA 12.2M

� 2 0.084 68M
� 2 0.015 78M

� 2 0.013
interleaved

Values used for comparison

Parameter Value��lwvyx{zCP!n
68M

� 2��|{a �}i
 6 � 8G
� 2��~ox{�o| �!�!

580K
� 2����x{�o|

560K
� 2 " T 35463 7 _ � 20K

� 2����x{�o| 4 500K
� 2 " T 35463�7 _ � 130K

� 2� lwvWx{z
 >
�aO� 50 ns` lwvWx{z
 > aO�M<?�W
���% q ��cy<&)=��% 4� |{a ��i

 >
�aO� 2.3 ns` |{a ��i

 > aO�?<M�W
���% q ��cW<�)=��% 1� ~ox{�o|
7 ns� ��x{�o|
9.5 ns� ��x{�o| 4 9.5 ns�w�	� � 0 – DPGA with separate input latches (Figure 4)

Table 2: ASCII Hex A Binary Implementation Comparison

desired task throughput to the raw LUT throughput:

� � �$� �!�! �$� �
 <?� .
2 /

Here, we have been assuming
�$� �!�! 8

140 MHz for
conventional devices. When

� 2�2 1, single contexts are
very inefficient since far more active LUTs are provided
than necessary. When � 2�2 �

, where � is the number
of contexts supported, area is unnecessarily consumed by
context memory. Figure 6 plots

�
versus � showing the

relative efficiency of running a task with throughput ratio�
on a device with � contexts for both the DPGA context

sizes and DPGA 0 sizes.

One interesting design point to notice on both graphs
is that point where the area dedicated to the fixed LUT is
equal to the area of the contexts. This occurs at � � 28 for
the DPGA and � � 4 for DPGAs with input latches. At this
point, the efficiency never drops below 50% for any values
of
�

. This is interesting since the cross efficiencies at the
extremes in the graph shown drop down to 13%.

5 Typical Application

In a quick review of the FPD’95 proceedings, we see
FPGA task implementations running at frequencies be-
tween 6MHz and 80MHz, with most running between
10MHz and 20MHz. Thus, we see a decent number of
FPGA tasks implemented with 7 E � E 14. We might ask
why these applications have such large throughput ratios,�

. There are two main causes:

1. Task throughput requirements are low – an external
timing requirement dictates that there is no point for the
circuit to provide any higher throughput.

2. Critical path with cyclic constraints – throughput is
often limited by the critical path, especially when the
result from one round of computation are required at
the start of the next round of computation.

Regardless of the detailed reasons, in this range of opera-
tion, single context FPGAs arepaying a raw overhead factor
of 6-10 � for DPGAs or 3 � for DPGAs with input latches.
Even if the packing efficiency on the standard DPGAs is
only 50%, this still amounts to a 3-5 � area overhead.

FPD’96 -- Fourth Canadian Workshop of Field-Programmable Devices

May 13-14, 1996, Toronto, Canada

1

32

16

8

24

Throughput Ratio

1

32

16

8

24 Contexts

0.2

0.4

0.6

0.8

1.0

Efficiency

1

32

16

8

24

Throughput Ratio

1

32

16

8

24 Contexts

0.2

0.4

0.6

0.8

1.0

Efficiency

1

32

16

8

24

Throughput Ratio

1

32

16

8

24 Contexts

0.2

0.4

0.6

0.8

1.0

Efficiency

1

32

16

8

24

Throughput Ratio

1

32

16

8

24 Contexts

0.2

0.4

0.6

0.8

1.0

Efficiency

Left – DPGA; Right – DPGA 0 (input latches)

Figure 6: Task:LUT Throughput Ratio versus Number of Contexts

6 Conclusions

Multicontext FPGAs have the potential to pack typical
computational tasks into less area, delivering more compu-
tation per unit area – i.e. increased computational density.
The key properties they exploit are:

1. LUT throughput is often much greater than task
throughput.

2. A LUT instruction is smaller than the active LUT.

Sharing the active portion of the LUT among multiple in-
structions yields increased device usage efficiency when
the throughput ratio is large (

� 2�2 1).

Task dataflow dependencies require that a number of
signals be made available to each stage of computation.
The retiming requirements associated with satisfying these
dependencies can pose a limit to the effective serializability
of the task. In some cases we can avoid these limitations by
overlaying loosely or unrelated tasks on the same resources.
Alternately, we can architect intermediate data storage to
allow serialization, at the cost of larger context resources.
Architectural design of these multicontext structures and
synthesis for them is a moderately young area of research.
Interesting research possibilities exist in the areas of:� Temporally oriented synthesis to minimize retiming re-

quirements� Tighter structures for data retiming

� Hybrid structures with an intermediate amount of re-
timing resources

Acknowledgments:

Jeremy Brown, Derrick Chen, Ian Eslick, Ethan Mirsky,
and Edward Tau made the DPGA prototype possible. The
input latch ideas come from the TSFPGA architecture co-
developed with Derrick Chen. Many of the quantitative
details about the DPGA are the results of the collected
efforts of this team.

This research is supported by the Advanced Research
Projects Agency of the Department of Defense under Rome
Labs contract number F30602-94-C-0252.

FPD’96 -- Fourth Canadian Workshop of Field-Programmable Devices

May 13-14, 1996, Toronto, Canada

References

[1] Paul Chow, Soon Ong Seo, Dennis Au, Terrence Choy,
Bahram Fallah, David Lewis, Cherry Li, and Jonathan
Rose. A 1.2 � m CMOS FPGA using Cascaded Logic
Blocks and Segmented Routing. In Will Moore and
Wayne Luk, editors, FPGAs, pages 91–102. Abingdon
EE&CS Books, 15 Harcourt Way, Abingdon, OX14
1NV, UK, 1991.

[2] André DeHon. DPGA Utilization and Applica-
tion. In Proceedings of the 1996 International
Symposium on Field Programmable Gate Arrays.
ACM/SIGDA, February 1996. Extended version avail-
able as Transit Note #129, available via anonymous
FTPtransit.ai.mit.edu:transit-notes/
tn129.ps.Z. Anonymous FTP transit.ai.
mit.edu:papers/dpga-use-fpga96.ps.Z.

[3] André DeHon. Entropy, Counting, and Pro-
grammable Interconnect. In Proceedings of the
1996 International Symposium on Field Pro-
grammable Gate Arrays. ACM/SIGDA, February
1996. Extended version available as Transit Note
#128, available via anonymous transit.ai.mit.
edu:transit-notes/tn128.ps.Z. Anony-
mous FTP transit.ai.mit.edu:papers/
entropy-fpga96.ps.Z.

[4] Robert Francis. Technology Mapping for Lookup-Table
Based Field-Programmable Gate Arrays. PhD thesis,
University of Toronto, 1992.

[5] Paul Gronowski, Peter Bannon, Michael Bertone,
Randel Blake-Campos, Gregory Bouchard, William
Bowhill, David Carlson, Ruben Castelino, Dale
Donchin, Richard Fromm, Mary Gowan, Anil Jain,
Bruce Loughlin, Shekhar Mehta, Jeanne Meyer, Robert
Mueller, Andy Olesin, Tung Pham, Ronald Preston,
and Paul Robinfeld. A 433MHz 64b Quad-Issue RISC
Microprocessor. In 1996 IEEE International Solid-
State Circuits Conference, Digst of Technical Papers,
pages 222–223. IEEE, February 1996.

[6] Mark Horowitz, John Hennessy, Paul Chow, Glenn Gu-
lak, John Acken, Anant Agarwal, Chorng-Yeung Chu,
Scott McFarling, Steven Przybylski, Steven Richard-
son, Arturo Salz, Richard Simoni, Don Stark, Pe-
ter Steenkiste, Steven Tjiang, and Malcom Wing. A
32b Microprocessor with On-Chip 2K byte Instruction
Cache. In 1987 IEEE International Solid-State Circuits
Conference, Digst of Technical Papers, pages 30–31.
IEEE, February 1987.

[7] David Jones and David Lewis. A Time-Multiplexed
FPGA Architecture for Logic Emulation. In Proceed-
ings of the IEEE 1995 Custom Integrated Circuits Con-
ference, pages 495–498. IEEE, May 1995.

[8] Ellen M. Sentovich, Kanwar Jit Singh, Luciano
Lavagno, Cho Moon, Rajeev Murgai, Alexander Sal-
danha, Hamid Savoj, Paul R. Stephan, Robert K. Bray-
ton, and Alberto Sangiovanni-Vincentelli. SIS: A
System for Sequential Circuit Synthesis. UCB/ERL
M92/41, University of California, Berkeley, Depart-
ment of Electrical Engineering and Computer Science,
University of California, Berkeley, CA 94720, May
1992.

[9] Edward Tau, Ian Eslick, Derrick Chen, Jeremy Brown,
and André DeHon. A First Generation DPGA Imple-
mentation. In Proceedings of the Third Canadian Work-
shop on Field-Programmable Devices, pages 138–143,
May 1995. Anonymous FTP transit.ai.mit.
edu:papers/dpga-proto-fpd95.ps.Z.

