
Configurable Computing: Technology and Applications, November. 2-3, 1998
Proceedings of SPIE Vol. 3526

Comparing Computing Machines

Andr�e DeHon

University of California at Berkeley� Soda Hall ������ Berkeley� CA

ABSTRACT

Recon�gurable computing devices are emerging as a viable alternative to �xed�function components and pro�
grammable processors� To expand our knowledge of the role and optimization of these devices� it is increasingly
imperative for us to compare implementations of tasks and subroutines across this wide spectrum of implementa�
tion options� The fact that most processors� FPGAs� ASICs� and memories are fabricated in a uniform technology
medium� CMOS VLSI� where area scaling is moderately well understood eases our comparison task� Nonetheless� the
rapid pace of technology� limited device size selection� and economic artifacts complicate the picture� In this paper�
we look at the task of comparing computing machines� reviewing normalization techniques and many important
issues which arise during comparisons� This paper includes examples intended to underscore the methodology and
comparison issues� but does not attempt to make de�nitive conclusions about the merits of the technology alterna�
tives from the small sample set� The immediate intent of this work is to help designers faced with tradeo�s between
technological alternatives� The longer term intent is to help the community collect and analyze the broad�based data
needed to better understand the range of available computing options�

Keywords� Con�gurable Computing� FPGA� Programmable Architectures� Performance Comparison� Computa�
tional Density

�� INTRODUCTION

There is a growing literature documenting cases where recon�gurable machines outperform select programmed proces�
sors and� occasionally� even custom ICs� These design points have fueled interest in this emerging �eld of con�gurable
computation� This absolute performance quanti�cation has been essential�justifying consideration of this computing
style and showing us what is achievable�

However� absolute performance without costs leaves one wondering whether the superior performance arises from
intrinsic features of the recon�gurable architecture� or whether it simply comes from the use of more silicon for the
computation� Are the FPGAs using the silicon more e�ciently such that they get greater performance with the
same or less silicon� If the performance bene�ts are only in proportion to the greater amount of silicon used� do the
FPGA solutions o�er better scaling characteristics than alternatives� The earliest FPGA systems were built from
boards containing tens of FPGAs� yet were often compared to microprocessors or single ASICs� so the answers to
these questions are not immediately obvious without some careful normalization�

For a perfect comparison� we would prefer to compare systems solving the same problem� using the same fabrica�
tion technology� and using equal amounts of silicon or achieving equivalent performance levels� Unfortunately� it is
seldom feasible for a single research e�ort to develop all such implementations� and even if it were� the rapid advance
of silicon technology makes it impractical to fully standardize on a single level of technology� As an alternative�
we must often pick best�in�class implementations from the literature for comparisons� This� inevitably� leads to
di�erences in technology� area� and performance�

In this paper� we explore several issues associated with cost normalization in cross technology and implementation
style comparisons� We do not provide a single �gure of merit to address all comparisons� but rather suggest a number
of viewpoints and metrics which are useful in characterizing the cost	performance of an implementation� We draw
heavily from the published literature in order to illustrate these points� The data points included here were selected
based on data availability and do not necessarily make up a representative set of application requirements� We also
make recommendations on the data which should be collected and reported to make design points most useful for
broad analysis and comparison�

author E�mail� andre�acm�org

Configurable Computing: Technology and Applications, November. 2-3, 1998
Proceedings of SPIE Vol. 3526

The next section emphasizes the role and importance of normalized comparisons for today
s system designers�
We then review CMOS technology scaling �Sections � and
� to motivate proper comparisons across technology
generations� and we take a look at what resources a task actually consumes �Section ��� We focus on a speci�c �gure
of merit which is useful for high throughput tasks in Section �� and then review a number of others which may be
useful in various situations in Section �� Section � comments brie�y on how area and cost may diverge downstream
from fabrication� We make our suggestions for reporting performance in Section ��

�� VIEWPOINT AND IMPORTANCE

Why should we bother quantifying implementations and comparing them�

Today
s designer at the system� board� and IC level is faced with the question of what to implement in custom
silicon �ASICs� embedded macros�� on processors �stand�alone or embedded cores�� or in recon�gurable arrays �FP�
GAs� embedded arrays�� An important goal of comparisons between implementation options is to help the system
designer make these tradeo�s�

If the designer knows a particular class of subtasks generally achieve the same level of performance with one tenth
area in a custom implementation compared to an FPGA implementation� he can then decide when it is better to
include multiple� specialized macros which may not be used simultaneously� versus when to include a �exible array�
For example� if the designer knows he only needs one of four di�erent functions he might be better o� including
custom silicon for all four function even if only one is used at a time� Alternately� if he needs one of
� di�erent
functions� the �exible array may provide a superior alternative�

Similarly� if the designer knows a class of applications runs in one tenth of the time on an FPGA versus a processor
of comparable area� he can reason about the merits of implementing the function on either� If the throughput required
from the task is su�ciently high to keep the FPGA continuously busy� the FPGA may be the better option� However�
if the throughput required from the task is less than one�tenth of that o�ered by the FPGA and there are other tasks
which need to be run in the system� the processor may be able to implement the collection of tasks in less area than
the FPGA�s��

Documented FPGA�based implementations potentially provide value to the system designer by�

� showing the area� time� and power capacity required for an important computational subtask

� highlighting the techniques employed to achieve the design point�s�

Capacity comparisons allow the designer to make up�front architectural judgments and �rst�pass partitioning esti�
mates before committing signi�cant resources to developing the details of a particular application�s��

�� CHIP �� CHIP

How do we characterize implementation resource costs�

All chips are not created equal� Even limiting ourselves to a common technology media� CMOS VLSI� chips vary
in die size and feature size� This is fairly obvious when we realize an XC���
 and an XC
���� require very di�erent
amounts of raw silicon resources� Similarly� a Pentium requires substantially more resources than an ����� and a
���K�
 SRAM requires much more than a �K�� SRAM� Even in the same technology� there may be considerable
variation in die sizes from part to part� The XC
���� for instance� is certainly smaller than an XC
��� when both
are implemented in the same ����m process�

When we talk about an IC� we need to qualify that with its size � i�e� the silicon area which it represents�
However� a square millimeter in one technology is not equal to a square millimeter in a technology with a di�erent
feature size� Smaller geometries allow us to pack more functions into each square millimeter of silicon area� To
capture this e�ect� it is worthwhile to measure silicon area in feature�size units rather than in absolute units�

Lambda ��� is the typical unit used to characterize a MOS VLSI process� One lambda is de�ned as half the
minimum drawn feature size on a process� Typically processes are named by the minimum transistor channel width
and lambda is half this value� So a ����m CMOS process would have � � ����m� As long as all features shrink
uniformly� a die or macro will occupy the same �� area as feature geometry shrinks� For example� in Ref� �� Intel

Configurable Computing: Technology and Applications, November. 2-3, 1998
Proceedings of SPIE Vol. 3526

describes ����m and ����m implementations of the Pentium� The ����m die is ��
mm� or ��������m�

�����m����
� ����G���

while the ����m die is ���mm� or ��	�����m�

���	�m����
� ����G���

Processes� of course� have many di�erent parameters and not all processes with the same feature size are equiv�
alent� Di�erent numbers of metal layers at the same feature size will� for example� yield di�erent feature densities�
Nonetheless� processes are generally optimized in order to make densities track feature size �e�g� Ref� �� Ref�
�� As
such� lambda normalized area generally gives a good estimate of the area required to implement a die or macro�
usually within ����

As a result� this uniform media normalization allows us to compare the area real�estate required for micropro�
cessors� ASICs� memories� and FPGAs broadly across the CMOS family of technologies� Further� the common area
metric allows us to calculate an aggregate area estimate for multi�IC systems�

�� TIME

Just as IC dies vary widely and are not a good normalizing metric for area� clock cycles also vary widely and are not
a good normalizer for time� As we saw in the CISC versus RISC debates over a decade ago� it is often possible to
execute more� simple cycles in less time than fewer� more computationally loaded cycles� What matters is not how
fast each cycle is or how much gets done between clock ticks� but the product of these two factors � i�e� the amount
of time it takes to complete a task or the data throughput rate� When comparing two implementations using the
same basic technology level� absolute time �e�g� seconds� or throughput �results	second� is the best time unit for
comparison�

As features sizes shrink� intrinsic delays will also shrink� If voltage is scaled along with �� gate delays will also
scale with �� However� wire transit times� which are becoming an increasingly signi�cant fraction of cycle time�
are not scaling down at this rate� Consequently� the cycle time reduction associated with feature size scaling is not
as clean as the area scaling� This e�ect is exacerbated by the fact that device voltages remained at �V for many
technology generations then made a discrete jump to ���V� rather than scaling along with feature size�

E�g� consider the aforementioned Pentium shrink� The ����m version ran at ��MHz on a �V supply� while the
����m version ran at ���MHz on a ���V supply� The ��� reduction in feature size accompanied by a ��� reduction
in supply voltage gave a ��� reduction in cycle time�

When comparing technologies with close features sizes ��������� the speed di�erence is usually in the noise for
this level of comparison and absolute times can be used� When comparing large di�erence in technology �e�g� factor
of two or more in feature size�� it is worthwhile to be aware of potential di�erences in device speeds�

�� WHAT TO INCLUDE�

How much of the IC or system area do we �charge� to a task�

The trivial answer is to sum up all the IC areas in the entire system and take that as a number� For tasks which
truly consume all of a system
s resources this is certainly a reasonable metric� However� it is often the case that we
are looking at subtasks which may co�exist and operate along with other tasks� For example� a data encoder may
take up ��� CLBs� while leaving room for other functions to be implemented simultaneously on other parts of the
system or even in the same FPGA� Similarly� a decoding function running on a microprocessor may require ����
processor cycles for each input symbol� but if each input symbol only arrives once every ������ processor cycles� ���
of the capacity of the processor is available to perform other functions�

Taking a macro or subtask view� it is worthwhile to separate out the area actually consumed by each task� This
selection can requires some judgment about resource consumption and bottlenecks� We de�ne the amount of a
resource which is consumed as that fraction which cannot be used for other purposes while the task is running� E�g�

� Basic logic blocks � the blocks assigned to a subtask are consumed by that task and should be charged to it�
Where possible this should also include any additional basic logic block area which is required to route the
task� e�g� if a �� CLB macro can only be routed in a ���� grid� �� CLBs would be a better estimate of the
area consumed than ���

Configurable Computing: Technology and Applications, November. 2-3, 1998
Proceedings of SPIE Vol. 3526

� Processor cycles � conventional microprocessors do not allow independent� concurrent execution� so each pro�
cessor cycle consumes the entire processor area� Since processors can change their operation from cycle to
cycle� they can e�ectively be time�sliced making it worthwhile to charge a limited throughput task a prorated
area in proportion to the fraction of the processor
s cycles required to achieve that throughput�

Note that a processor may also be fully utilized when it still has spare compute cycles if its instruction storage
area is fully consumed�

� Memory � memory may be consumed in one of many ways and it is worthwhile to �gure out which demand is
limiting and is the best estimate of memory consumption�

� attached unit � if a memory is rigidly attached to some device� it may be consumed when the attached
device is consumed whether or not the memory i	o bandwidth or storage capacity is fully utilized� In this
case� the memory is consumed because it cannot be used for any purpose other than the use extracted by
the attached device�

� i	o bandwidth � memories typically have a single i	o port� When the i	o bandwidth is fully utilized� the
entire memory is consumed regardless of the amount of unused memory inside� If i	o bandwidth is limited
and the memory can be shared between tasks� memory area should be charged in a prorated fashion like
processor area�

� storage capacity � memories have a �xed size� When memories are free to be used for many purposes and
the i	o bandwidth is not in danger of being saturated� they are consumed in proportion to their storage
capacity allocated to a task�

� Fixed function device � an ASIC or �xed�function macro is generally fully consumed by a task�

� If it needs to maintain signi�cant state between operations� it cannot be time�sliced as the processor�

� If it has minimal state and spare i	o and controller bandwidth� its use may be pro�rated in proportion to
usage as per the processor� if it is likely that its function will be useful for other� simultaneously operating
tasks�

�� THROUGHPUT DENSITY

How do we roll this area and time information together to compare among implementations�

Normalizing throughput to implementation area provides a throughput density metric which is easy to calculate
and appropriate when the throughput requirement is very high as is the task concurrency� This provides a good
measure of the area cost required to achieve various throughput levels and a good basis for comparing implementa�
tions�

To be speci�c� when we say the throughput requirement is high� we mean the desired throughput for the task is
either unbounded or bounded at some �xed rate faster than a single hardware instance can achieve� For example� in
applications like data searching� sorting� or numerical simulation� we often want to process data as fast as possible�
In some signal processing and video coding applications� even a single� custom processing element cannot achieve
reasonable throughput requirements� it is instead necessary to exploit problem concurrency to achieve the requisite
throughput�

In these cases� knowing the normalized area which provides a given throughput gives us a good estimate of the
e�ciency of the implementation� If we want to implement a particular throughput level� then the implementation
with the highest throughput density metric will admit the smallest implementation� Or� if we are willing to dedicate
a particular amount of area to a task� the implementation with the highest throughput	area metric will provide the
most throughput in the �xed area� Of course� this assumes ��� there is adequate parallelism in the problem to admit
replication and ��� composition overhead is negligible such that replication of the basic unit will achieve essentially
linear scaling above the measured point�

In the remainder of this section� we will illustrate this throughput density metric by revisiting several familiar
tasks from the literature�

Configurable Computing: Technology and Applications, November. 2-3, 1998
Proceedings of SPIE Vol. 3526

Architecture Design Feature Area and Time ����� ���

Size ��� mpy
��s

scale
��s

mpy
��s

scale
��s

Custom ����� � �����m ���M���
� ns ��� ��� ��� ���
Custom ��� � �����m ���M���
�� ns �� ��

Gate�Array ����� � �����m ��M��� ��ns ��� ��� ��� ���
FPGA XC
K� �����m ����M��	CLB ����� ���
 ���� ���

� ����� ��� CLBs� �� ns
� �����c �
 CLBs�
� ns
�� ��� ��� CLBs� ���� ns
� ���c �� CLBs� �� ns

��b DSP �� �����m ���M��� �� ns ����� ����� ����� �����
RISC �� �����m ���M��� �� ns	cycle ������ ����� ������ �����

�no multiplier� �� �����

 cycles
�����c � cycles

��� �
 cycles
���c
 cycles

Table �� Multiplier Throughput Comparison

Architecture Reference Feature Area and Time

Size ��� TAPs
��s

��b RISC �� �����m ���M��� �� ns	cycle���cycles	TAP �����
��b DSP �� �����m ���M��� �� ns	TAP �����

��b RISC	DSP �
 �����m ���G���
� ns	TAP �����
�
b RISC �� �����m ���G��� ��� ns	TAP ����

FPGA XC
K�� �����m �
� CLBs� �
�� ns	��TAPs ���

Altera �K�
 �����m �� LEs�����M��	LE� �� ns	TAP ���
Full Custom �� �����m
��M���
� ns	�
 TAPs ���

�� �����m �
�M��� �� ns	�� TAPs ���
�� �����m ��M��� �� ns	�� TAPs ��

��xed coe�cient� �� �����m ��
M��� ��� ns	
� TAPs ��
�n�b� ��b samples�

Table 	� FIR Throughput Comparison � �b sample� �b coe�cient

Multiply Table � shows throughput comparisons across �xed� programmable� and recon�gurable architectures for
four multiplication tasks� The �scale� problems are for the case where one operand is a constant� while both operands
are variables in the �mpy� cases� Since multiplies have been highly studied in the literature� it was possible to select
a set of custom� DSP� and processor implementations for comparison which have feature sizes moderately close to
that of the FPGA�

Not surprisingly� the full�custom implementations achieve the greatest performance density� The FPGA im�
plementations achieve higher raw multiply throughput than the DSP despite the fact the DSP includes a custom
multiplier� this� too� is unsurprising when you realize the multiplier makes up only ����� of the area on the DSP die�
with the rest going largely to instruction control� and instruction and data storage� The RISC processor without a
custom multiplier achieves the lowest density since it must synthesize the multiply operation out of many primitive
ALU operations�

FIR Finite Impulse Response �FIRs� have achieved considerable attention in the FPGA literature since they
easily admit to systolic implementation� and they have shown good performance on FPGAs� Table � summarizes
the performance of processor� DSP� FPGA� and custom FIRs for low�precision FIR computations� The custom

Configurable Computing: Technology and Applications, November. 2-3, 1998
Proceedings of SPIE Vol. 3526

Architecture Reference Feature Area and Time ��b �
b

Size ��� TAPs
��s

TAPs
��s

��b DSP �� �����m ���M��� ��� ns	biquad ����� �����
FPGA XC
K�� �����m ��b � �� CLBs� ��� ns	biquad ���

 �����

��b �
� CLBs� ��� ns	biquad
Full Custom �� �����m ��M��� ���� ns	
 biquads ���

Table �� IIR Throughput Comparison

Architecture Reference Feature Area Keys�Second

Size ���
Keys
��s

DES IC �
 ����m ����M�� ���K �����
FPGA Altera �K�� �����m ����� ����M��� ���K �������
RISC �� �� �����m ���G��
�K ��������

Table
� DES Key Search

implementations all have feature sizes in the ��������m range� comparable to the Xilinx XC
K FPGA� the ��b DSP�
and the ��b RISC shown� The Altera FPGA and the larger RISC processor datapoints have feature sizes which are
��
� smaller than this range so may merit some speed normalization�

The surprising observation from this comparison is that the FPGAs implementations have comparable throughput
density to the custom implementations which allow programmable coe�cients� However� compared to the custom
implementation with �xed coe�cients� the FPGA implementation is ������ less dense� We also see here that the
FPGA FIRs are ��� more dense than the DSPs� underscoring the reason for the high interest in FPGAs for this
application�

IIR Table � contains a similar comparison for biquads� the core computation for In�nite Impulse Response �IIR�
computations� Here the multipliers cannot be specialized around the coe�cient� so the FPGA su�ers a full ���
density penalty versus a programmable� custom IC for IIR� While the FPGA is still denser than the DSP� the
advantage is only
� in density for same size task� As the precision drops� the FPGA advantage relative to the DSP
does improve�

DES Search In a class project�� Berkeley students compared the e�ectiveness of FPGAs for brute�force DES key
search� The major FPGA and processor results along with a custom IC are shown in Table
� The custom IC is
on a much older process� so probably deserves a ��
� speed normalization versus the FPGA and processor which
are both fabricated in ����m processes� While the FPGA implementation is actually faster than the given custom
silicon implementation� it achieves this speed with ��� the normalized silicon area�

This is a good example of the kind of task for which the throughput density metric is ideal� The brute�force
search problem can be trivially parallelized� and desirable throughput rates are certainly larger than even a single
custom device will provide� An attacker might want to either spend as little money as possible to achieve a given
search rate� or achieve as high a search rate possible given limited funds�

Sequence Matching DNA sequence matching on SPLASH was one of the earliest successes of FPGA�based
computing machines� Table � normalizes the throughput data provided in Chapter � of Ref� ���

As shown along with the table� the areas for the SPLASH implementations were approximated by their major
components � FPGAs and memories� For SPLASH �� the omission of the � crossbars may make the estimate a bit
optimistic� Both workstations were estimated simply as their processor area� this� too� may be optimistic since the
�rst SPARCs had no on�chip data caches and even the SuperSparc cache is too small to hold the data required in
this computation� However� none of these omissions is going to change the total by more than a factor of two�

Configurable Computing: Technology and Applications, November. 2-3, 1998
Proceedings of SPIE Vol. 3526

Architecture Reference Feature Area Cell Updates
Size ��� per Second cu

��s

Custom �� ����m ���M�� ���My ���
FPGA

�SPLASH �� �� �����m
�G�� �����M �����
�SPLASH� �� �����m ��G�� ���M �����

RISC
�SparcStation I� �� �����m ���M�� ����M ������
�SparcStation ��� �� ��
��m ���G�� ���M �������

y � This number comes via direct calculation from Ref� �� and not the test setup in Ref� ���

For purposes of this comparison� silicon content is approximated as follows�

P�NAC �
 components ����M�� each�
SPLASH � �� XC
���s ����M�� each� � �� ���K��� SRAMs ��G�� each�
SPLASH �� XC����s �
��M�� each� � �� ���K�� ����M�� each� SRAMs
Sparc I SPARC CPU
Sparc �� SuperSparc CPU

Table �� DNA Sequence Matching

We see here that most of the
��� advantage which SPLASH exhibited over the SparcStation I came from its use
of greater silicon area� However� as noted in Ref� ��� SPLASH was handicapped at one�tenth its potential throughput
by the low�bandwidth i	o� Fixing this de�ciency was one of design objectives for SPLASH �� and we see that it does
achieves a �� throughput density advantage over the original SPLASH�

	� OTHER FIGURES OF MERIT

While throughput density tells the story for high throughput� parallelizable operations� this certainly does not cover
all the cases we might care about� Other metrics of interest include�

� area required to achieve some low� �xed throughput rate

� performance achievable within a �xed area budget

� performance achievable given a �xed power budget

In the cases with adequate parallelism and high throughput requirements we were able assume a linear area�
time relationship in the region of interest� Note that the area�time curve will not necessarily be ideal below certain
points � e�g� a �� increase in compute time will not necessarily allow a ��� reduction in area� While the regular�
concurrent portions of a task running on an FPGA can be scaled down with decreasing throughput requirements�
residual control and irregular operations are often left�

FIR To illustrate� Figure � shows the area�time curve for a ���TAP FIR implemented in custom silicon� a Xilinx
FPGA� and a DSP� It takes ��� ns to evaluate each �lter output value on the DSP��� Below this point� the DSP
area scales linearly assuming we have other tasks which can be scheduled between �lter evaluations� The custom
FIR component�� can perform one evaluation of the �lter every �� ns� However� the hardwired silicon requires the
same amount of area regardless of the how much slower it is run� Of course� a di�erent custom FIR component
could be built at a di�erent area�time point� if one is able to select the FIR throughput before fabrication� Di�erent
styles can be used in the FPGA implementation�� depending on the application throughput requirements� There is�
however� a minimum area con�guration for the FPGA below which further throughput reduction does not allow the
area of the implementation to be compressed further�

Configurable Computing: Technology and Applications, November. 2-3, 1998
Proceedings of SPIE Vol. 3526

� DSP
� FPGA
� Custom

|

10
| | | | | | | | |

100
| | | | | | | | |

1000

|1

|
|

|
||

||
||10

|
|

|
||

||
||100

|
|

|
||

||
||1000

|
|

|
||

||
||10000

 C
om

pu
ta

tio
na

l T
im

e
[n

s]

 Area [Mλ2]

�

�

�

�

�

�

�

�

�

Figure �� Area�Time Curve for �� TAP� �b FIR

This de�nes an interesting design space� worth understanding when allocating resources for an implementation�
For limited throughput tasks� we need to look at the task throughput requirements to best rank the options� In
the ��������MHz region� the FPGA is the smallest implementation� with its advantage over the DSP diminishing
towards the lower end of that region� Below ����MHz� the DSP implementation requires the least area�

� COST VIEWPOINTS

Using area as a normalizer is a good cost metric from the viewpoint of the silicon designer� Silicon area is the limited
resource constraining design at this level� If the designer is allocating space on the same die� area is exactly the
commodity of trade�allocating ���M�� to FPGA resources must come at the expense of that ���M�� being used for
custom logic or other programmable structures� Downstream from the silicon designer� however� costs may diverge
from silicon area for several reasons� E�g�

� Actual fabrication costs in advanced fabs will be higher per �� than more mature� less dense� processes �
especially during the learning curve for the fab and the design when yields are low�

� One tends to pay a premium for the highest density and largest dies�

� Gate arrays will cost less per �� than full�custom at the same feature size since they require less custom
processing�

� Price to an end user re�ects customer valuation and volume demand rather than raw material costs� A G��

of silicon in a high�volume� commodity part will be less expensive to board designers buying o��the�shelf parts
than a G�� of silicon in a specialized� custom IC�

� At the board level� non�silicon costs accrue in packaging� inter�chip interconnect� and handling�

One can normalize for these costs� but the normalized results tell us more about the current economic picture than
the intrinsic resource costs� That is� such selling price normalized metrics may be accurate at one point in time for
low�volume� board�level component consumers� but will not remain stable or accurate across shifts in component
supply and demand�

Configurable Computing: Technology and Applications, November. 2-3, 1998
Proceedings of SPIE Vol. 3526

�� REPORTING PERFORMANCE

When analyzing or reporting FPGA applications� it is generally worthwhile to report the area� time� and energy
requirements for the task� When all of these basic quantities are included� it is possible to normalize the results as
suitable for various application requirements as noted in the previous sections�

� Area � as noted in Section �� the area includes the type and number of basic logic blocks �or fraction of a
particular FPGA�� memories� and �xed components consumed by the application� When using standard parts�
the feature size is often implicit in the type of part used� When using custom parts� the die size and feature
sizes of the custom parts should be included as well to allow normalization as per Sections � and
�

� Time � use the absolute time taken to complete a task� or the absolute throughput rate �Section
��

� Energy � where possible� include the energy required to perform a task or process each input or output�
equivalently� the power required to achieve a given computational rate provides the same information�

Of course� where possible providing or describing the area�time curve for the FPGA implementation will help one
understand how the FPGA solution adapts to various throughput requirements� In the future it may also be
interesting to explore area�power curves as well�

��� SUMMARY

FPGAs are universal computing structures� Consequently� we know a priori that we can perform any computable
function using an FPGA�based system� The real question to answer when assessing the quality of an implementation
is� How well we can perform a particular task on an FPGA�based machine relative to the alternatives� Further�
FPGAs are very scalable on highly concurrent tasks� Absolute performance �gures are interesting� but by themselves
they do not tell us if the FPGA solution is e�cient or even superior to its alternatives� To understand the e�ciency
of FPGA solutions� we need to normalize the delivered performance to the cost of the solution in terms of critical
resources such as area and power� This normalization tasks is eased by the fact that most of today
s computing
components are built in CMOS VLSI� Thus� we can use the area in the underlying silicon implementations as a
normalizer to measure the area cost of an implementation� This metric is particularly relevant to silicon designers�
but also provides a useful basis for general comparisons� Throughout this paper we have detailed issues in this
cross�architectural comparison and illustrated the comparison using several common applications from the literature�

Acknowledgments

This research is supported by the Defense Advanced Research Projects Agency under contract numbers F�������
�
C����� and DABT���C���
��

Thanks to Krste Asanovic� Timothy Callahan� John Hauser� Dzung Hoang� and John Wawrzynek for reviewing
early drafts of this paper�

REFERENCES

�� Xilinx� Inc�� ���� Logic Drive� San Jose� CA ����
� The Programmable Logic Data Book� ���
�

�� J� Schultz� �A ���v ����m bicmos superscalar microprocessor�� in ���� IEEE International Solid�State Circuits
Conference	 Digest of Technical Papers� pp� �������� IEEE� February ���
�

�� M� Bohr� �Mos transistors� Scaling and performance trends�� Semiconductor International � pp� ������ June
�����

� M� Bohr� �Interconnect scaling � the real limiter to high performance ulsi�� in International Electron Devices
Meeting ���
 Technical Digest� pp� �
���

� Electron Devices Society of IEEE� December �����

�� J� Fadavi�Ardekani� �m� n booth encoded multiplier generator using optimized wallace trees�� IEEE Transac�
tions on Very Large Scale Integration �VLSI� Systems �� pp� �������� June �����

�� D� Somasekhar and V� Visvanathan� �A ����mhz half�bit level pipelinined multiplier using true single�phase
clocking�� IEEE Transactions on Very Large Scale Integration �VLSI� Systems �� pp�
���
��� December �����

�� G� Boudun� P� Mollier� J� Nuez� and F� Wallart� �A ��ns���b programmable arithmetic operator�� in ��
� IEEE
International Solid�State Circuits Conference	 Digest of Technical Papers� pp� �
���� IEEE� February �����

Configurable Computing: Technology and Applications, November. 2-3, 1998
Proceedings of SPIE Vol. 3526

�� T� Isshiki and W� W��M� Dai� �High�level bit�serial datapath synthesis for multi�fpga systems�� in Proceedings of
the ACM�SIGDA International Symposium on Field�Programmable Gate Arrays� pp� �������� ACM� February
�����

�� K� D� Chapman� �Fast integer multipliers �t in fpgas�� EDN ��� p� ��� May �� �����

��� C��J� Chou� S� Mohanakrishnan� and J� B� Evans� �Fpga implementation of digital �lters�� in International
Conference on Signal Processing Applications and Technology� �����

��� K� Kaneko� T� Nakagawa� A� Kiuchi� Y� Hagiwara� H� Ueda� and H� Matsushima� �A ��ns dsp with parallel pro�
cessing architecture�� in ��
� IEEE International Solid�State Circuits Conference	 Digest of Technical Papers�
pp� �������� IEEE� February �����

��� J� Yetter� M� Forsyth� W� Ja�e� D� Tanksalvala� and J� Wheeler� �A �� mips ��b microprocessor�� in ��
� IEEE
International Solid�State Circuits Conference	 Digest of Technical Papers� pp� ������ IEEE� February �����

��� D� J� Magenheimer� L� Peters� K� Pettis� and D� Zuras� �Integer multiplication and division on the hp pre�
cision architecture�� in Proceedings of the Second International Conference on the Architectural Support for
Programming Languages and Operating Systems� pp� ������ IEEE� �����

�
� K� Nadehara� M� Hayashida� and I� Kuroda� A Low�Power	 ���bit RISC Processor with Signal Processing Ca�
pability and its Multiply�Adder� vol� VIII of VLSI Signal Processing� pp� ������ IEEE� �����

��� P� Gronowski et al�� �A
��mhz �
b quad�issue risc microprocessor�� in ���� IEEE International Solid�State
Circuits Conference	 Digest of Technical Papers� pp� �������� IEEE� February �����

��� B� Newgard� �Signal processing with xilinx fpgas�� �http���www�xilinx�com�apps�appnotes�sd�xdsp�pdf��
June �����

��� Altera Corporation� ���� Orchard Parkway� San Jose� CA ����
������ AN ��� Implementing FIR Filters in
FLEX Devices� January ����� �http���www�altera�com�document�an�an��	��
�ps��

��� P� Ruetz� �The architectures and design of a ���mhz real�time dsp chip set�� IEEE Journal of Solid�State Circuits
	
� pp� �����
�� April �����

��� C� Golla� F� Nava� F� Cavallotti� A� Cremonesi� and G� Casagrande� ����msamples	s programmable �lter pro�
cessor�� IEEE Journal of Solid�State Circuits 	�� pp� ���������� December �����

��� D� Reuver and H� Klar� �A con�gurable convolution chip with programmable coe�cients�� IEEE Journal of
Solid�State Circuits 	�� pp� ���������� July �����

��� J� Laskowski and H� Samueli� �A ����mhz
��tap half�band �r digital �lter in �����m cmos generated by silicon
compiler�� in Proceedings of the IEEE ���� Custom Integrated Circuits Conference� pp� ���
������
�
� IEEE�
May �����

��� A� Picco� J� C� Michalina� B� Laurier� D� Fuin� P� Menut� and J� Laborie� �The st���
�	
�� An advanced
single�chip digital signal processors�� in Proceedings of the ��
� IEEE International Symposium on Circuits and
Systems� pp� ���������� IEEE� May �����

��� M� Hatamian and K� K� Parhi� �An ���mhz fourth�order programmable iir digital �lter chip�� IEEE Journal of
Solid�State Circuits 	�� pp� �������� February �����

�
� I� Verbauwhede� F� Hoornaert� J� Vandewalle� and H� J� De Man� �Security and performance optimization of a
new des data encryption chip�� IEEE Journal of Solid�State Circuits 	�� pp� �
������ June �����

��� I� Goldberg and D� Wagner� �Architectural considerations for cryptanalytic hardware�� CS��� Report �http�
��www�cs�berkeley�edu��iang�isaac�hardware��� May �����

��� R� Lipton and D� Lopresti� �A systolic array for rapid string comparison�� in ��

 Chapel Hill Conference on
VLSI� H� Fuchs� ed�� pp� �������� �����

��� D� Buell� J� Arnold� and W� Kleinfelder� Splash �� FPGAs in a Custom Computing Machine� IEEE Computer
Society Press� ����� Los Vasqueros Circle� PO Box ���
� Los Alamitos� CA ���������
� �����

��� M� Gokhale� W� Holmes� A� Kopser� S� Lucas� R� Minnich� D� Sweely� and D� Lopresti� �Building and using a
highly programmable logic array�� IEEE Computer 	
� pp� ������ January �����

��� L� Quach and R� Chueh� �Cmos gate array implementation of sparc�� in Digest of Papers COMPCON�

�
pp� �
���� IEEE� Februrary �����

��� F� Abu�Nofal et al�� �A three�million�transistor microprocessor�� in ���� IEEE International Solid�State Circuits
Conference	 Digest of Technical Papers� pp� �������� IEEE� February �����

��� D� Lopresti� �P�nac� A systolic array for computing nucleic acid sequences�� IEEE Computer 	
� pp� ������
July �����

