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ABSTRACT

Reconfigurable computing devices are emerging as a viable alternative to fixed-function components and pro-
grammable processors. To expand our knowledge of the role and optimization of these devices, it is increasingly
imperative for us to compare implementations of tasks and subroutines across this wide spectrum of implementa-
tion options. The fact that most processors, FPGAs, ASICs, and memories are fabricated in a uniform technology
medium, CMOS VLSI, where area scaling 1s moderately well understood eases our comparison task. Nonetheless, the
rapid pace of technology, limited device size selection, and economic artifacts complicate the picture. In this paper,
we look at the task of comparing computing machines, reviewing normalization techniques and many important
issues which arise during comparisons. This paper includes examples intended to underscore the methodology and
comparison issues, but does not attempt to make definitive conclusions about the merits of the technology alterna-
tives from the small sample set. The immediate intent of this work is to help designers faced with tradeoffs between
technological alternatives. The longer term intent is to help the community collect and analyze the broad-based data
needed to better understand the range of available computing options.

Keywords: Configurable Computing, FPGA, Programmable Architectures, Performance Comparison, Computa-
tional Density

1. INTRODUCTION

There is a growing literature documenting cases where reconfigurable machines outperform select programmed proces-
sors and, occasionally, even custom ICs. These design points have fueled interest in this emerging field of configurable
computation. This absolute performance quantification has been essential—justifying consideration of this computing
style and showing us what 1s achievable.

However, absolute performance without costs leaves one wondering whether the superior performance arises from
intrinsic features of the reconfigurable architecture, or whether it simply comes from the use of more silicon for the
computation. Are the FPGAs using the silicon more efficiently such that they get greater performance with the
same or less silicon? If the performance benefits are only in proportion to the greater amount of silicon used, do the
FPGA solutions offer better scaling characteristics than alternatives? The earliest FPGA systems were built from
boards containing tens of FPGAs, yet were often compared to microprocessors or single ASICs, so the answers to
these questions are not immediately obvious without some careful normalization.

For a perfect comparison, we would prefer to compare systems solving the same problem, using the same fabrica-
tion technology, and using equal amounts of silicon or achieving equivalent performance levels. Unfortunately, it is
seldom feasible for a single research effort to develop all such implementations, and even if it were, the rapid advance
of silicon technology makes it impractical to fully standardize on a single level of technology. As an alternative,
we must often pick best-in-class implementations from the literature for comparisons. This, inevitably, leads to
differences in technology, area, and performance.

In this paper, we explore several issues associated with cost normalization in cross technology and implementation
style comparisons. We do not provide a single figure of merit to address all comparisons, but rather suggest a number
of viewpoints and metrics which are useful in characterizing the cost/performance of an implementation. We draw
heavily from the published literature in order to illustrate these points. The data points included here were selected
based on data availability and do not necessarily make up a representative set of application requirements. We also
make recommendations on the data which should be collected and reported to make design points most useful for
broad analysis and comparison.
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The next section emphasizes the role and importance of normalized comparisons for today’s system designers.
We then review CMOS technology scaling (Sections 3 and 4) to motivate proper comparisons across technology
generations, and we take a look at what resources a task actually consumes (Section 5). We focus on a specific figure
of merit which is useful for high throughput tasks in Section 6, and then review a number of others which may be
useful in various situations in Section 7. Section 8 comments briefly on how area and cost may diverge downstream
from fabrication. We make our suggestions for reporting performance in Section 9.

2. VIEWPOINT AND IMPORTANCE

Why should we bother quantifying tmplementations and comparing them?

Today’s designer at the system, board, and IC level is faced with the question of what to implement in custom
silicon (ASICs, embedded macros), on processors (stand-alone or embedded cores), or in reconfigurable arrays (FP-
GAs, embedded arrays). An important goal of comparisons between implementation options is to help the system
designer make these tradeoffs.

If the designer knows a particular class of subtasks generally achieve the same level of performance with one tenth
area in a custom implementation compared to an FPGA implementation, he can then decide when it is better to
include multiple, specialized macros which may not be used simultaneously, versus when to include a flexible array.
For example, if the designer knows he only needs one of four different functions he might be better off including
custom silicon for all four function even if only one is used at a time. Alternately, if he needs one of 40 different
functions, the flexible array may provide a superior alternative.

Similarly, if the designer knows a class of applications runs in one tenth of the time on an FPGA versus a processor
of comparable area, he can reason about the merits of implementing the function on either. If the throughput required
from the task is sufficiently high to keep the FPGA continuously busy, the FPGA may be the better option. However,
if the throughput required from the task is less than one-tenth of that offered by the FPGA and there are other tasks
which need to be run in the system, the processor may be able to implement the collection of tasks in less area than

the FPGA(s).
Documented FPGA-based implementations potentially provide value to the system designer by:

e showing the area, time, and power capacity required for an important computational subtask

o highlighting the techniques employed to achieve the design point(s)

Capacity comparisons allow the designer to make up-front architectural judgments and first-pass partitioning esti-
mates before committing significant resources to developing the details of a particular application(s).

3. CHIP # CHIP

How do we characterize implementation resource costs?

All chips are not created equal. Even limiting ourselves to a common technology media, CMOS VLSI, chips vary
in die size and feature size. This is fairly obvious when we realize an XC2064 and an XC4025' require very different
amounts of raw silicon resources. Similarly, a Pentium requires substantially more resources than an 8086, and a
256K x4 SRAM requires much more than a 2K x8 SRAM. Even in the same technology, there may be considerable
variation in die sizes from part to part. The XC4005, for instance, 1s certainly smaller than an XC4013 when both
are implemented in the same 1.2um process.

When we talk about an IC, we need to qualify that with its size — 7.e. the silicon area which it represents.
However, a square millimeter in one technology is not equal to a square millimeter in a technology with a different
feature size. Smaller geometries allow us to pack more functions into each square millimeter of silicon area. To
capture this effect, it is worthwhile to measure silicon area in feature-size units rather than in absolute units.

Lambda (A) is the typical unit used to characterize a MOS VLSI process. One lambda is defined as half the
minimum drawn feature size on a process. Typically processes are named by the minimum transistor channel width
and lambda is half this value. So a 1.0um CMOS process would have A = 0.5um. As long as all features shrink
uniformly, a die or macro will occupy the same A? area as feature geometry shrinks. For example, in Ref. 2, Intel
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describes 0.8pm and 0.6gm implementations of the Pentium. The 0.8pm die is 284mm? or 284x10%m° 1.78GA2,

(0.4pm/X)*?
while the 0.6um die is 163mm? or % = 1.81G)\%

Processes, of course, have many different parameters and not all processes with the same feature size are equiv-
alent. Different numbers of metal layers at the same feature size will, for example, yield different feature densities.
Nonetheless, processes are generally optimized in order to make densities track feature size (e.g. Ref. 3, Ref. 4). As

such, lambda normalized area generally gives a good estimate of the area required to implement a die or macro,
usually within 20%.

As a result, this uniform media normalization allows us to compare the area real-estate required for micropro-
cessors, ASICs, memories, and FPGAs broadly across the CMOS family of technologies. Further, the common area
metric allows us to calculate an aggregate area estimate for multi-IC systems.

4. TIME

Just as IC dies vary widely and are not a good normalizing metric for area, clock cycles also vary widely and are not
a good normalizer for time. As we saw in the CISC versus RISC debates over a decade ago, it is often possible to
execute more, simple cycles in less time than fewer, more computationally loaded cycles. What matters is not how
fast each cycle is or how much gets done between clock ticks, but the product of these two factors — 7.e. the amount
of time it takes to complete a task or the data throughput rate. When comparing two implementations using the
same basic technology level, absolute time (e.g. seconds) or throughput (results/second) is the best time unit for
comparison.

As features sizes shrink, intrinsic delays will also shrink. If voltage is scaled along with A, gate delays will also
scale with A. However, wire transit times, which are becoming an increasingly significant fraction of cycle time,
are not scaling down at this rate. Consequently, the cycle time reduction associated with feature size scaling is not
as clean as the area scaling. This effect is exacerbated by the fact that device voltages remained at 5V for many
technology generations then made a discrete jump to 3.3V, rather than scaling along with feature size.

E.g. consider the aforementioned Pentium shrink. The 0.8pm version ran at 66MHz on a 5V supply, while the
0.6pm version ran at 100MHz on a 3.3V supply. The 256% reduction in feature size accompanied by a 33% reduction
in supply voltage gave a 33% reduction in cycle time.

When comparing technologies with close features sizes (10-20%), the speed difference is usually in the noise for
this level of comparison and absolute times can be used. When comparing large difference in technology (e.g. factor
of two or more in feature size), it is worthwhile to be aware of potential differences in device speeds.

5. WHAT TO INCLUDE?

How much of the IC or system area do we “charge” to a task.

The trivial answer is to sum up all the IC areas in the entire system and take that as a number. For tasks which
truly consume all of a system’s resources this is certainly a reasonable metric. However, it 1s often the case that we
are looking at subtasks which may co-exist and operate along with other tasks. For example, a data encoder may
take up 300 CLBs, while leaving room for other functions to be implemented simultaneously on other parts of the
system or even in the same FPGA. Similarly, a decoding function running on a microprocessor may require 1000
processor cycles for each input symbol, but if each input symbol only arrives once every 10,000 processor cycles, 90%
of the capacity of the processor i1s available to perform other functions.

Taking a macro or subtask view, it is worthwhile to separate out the area actually consumed by each task. This
selection can requires some judgment about resource consumption and bottlenecks. We define the amount of a
resource which is consumed as that fraction which cannot be used for other purposes while the task is running. E.g.

e Basic logic blocks — the blocks assigned to a subtask are consumed by that task and should be charged to it.
Where possible this should also include any additional basic logic block area which is required to route the
task; e.g. if a 70 CLB macro can only be routed in a 9x10 grid, 90 CLBs would be a better estimate of the
area consumed than 70.
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e Processor cycles — conventional microprocessors do not allow independent, concurrent execution, so each pro-
cessor cycle consumes the entire processor area. Since processors can change their operation from cycle to
cycle, they can effectively be time-sliced making 1t worthwhile to charge a limited throughput task a prorated
area in proportion to the fraction of the processor’s cycles required to achieve that throughput.

Note that a processor may also be fully utilized when it still has spare compute cycles if its instruction storage
area 1s fully consumed.

e Memory — memory may be consumed in one of many ways and it is worthwhile to figure out which demand is
limiting and is the best estimate of memory consumption:

— attached unit — if a memory 1s rigidly attached to some device, it may be consumed when the attached
device is consumed whether or not the memory i/o bandwidth or storage capacity is fully utilized. In this
case, the memory is consumed because it cannot be used for any purpose other than the use extracted by
the attached device.

— i/o bandwidth — memories typically have a single i/o port. When the i/o bandwidth is fully utilized, the
entire memory is consumed regardless of the amount of unused memory inside. If i/o bandwidth is limited
and the memory can be shared between tasks, memory area should be charged in a prorated fashion like
processor area.

— storage capacity — memories have a fixed size. When memories are free to be used for many purposes and
the i/o bandwidth is not in danger of being saturated, they are consumed in proportion to their storage
capacity allocated to a task.

e Fixed function device — an ASIC or fixed-function macro is generally fully consumed by a task.

— If it needs to maintain significant state between operations, it cannot be time-sliced as the processor.

— If it has minimal state and spare i/o and controller bandwidth, its use may be pro-rated in proportion to
usage as per the processor, if it is likely that its function will be useful for other, simultaneously operating
tasks.

6. THROUGHPUT DENSITY

How do we roll this area and time information together to compare among implementations?

Normalizing throughput to implementation area provides a throughput density metric which is easy to calculate
and appropriate when the throughput requirement is very high as is the task concurrency. This provides a good
measure of the area cost required to achieve various throughput levels and a good basis for comparing implementa-
tions.

To be specific, when we say the throughput requirement is high, we mean the desired throughput for the task is
either unbounded or bounded at some fixed rate faster than a single hardware instance can achieve. For example, in
applications like data searching, sorting, or numerical simulation, we often want to process data as fast as possible.
In some signal processing and video coding applications, even a single, custom processing element cannot achieve
reasonable throughput requirements; it is instead necessary to exploit problem concurrency to achieve the requisite
throughput.

In these cases, knowing the normalized area which provides a given throughput gives us a good estimate of the
efficiency of the implementation. If we want to implement a particular throughput level, then the implementation
with the highest throughput density metric will admit the smallest implementation. Or, if we are willing to dedicate
a particular amount of area to a task, the implementation with the highest throughput/area metric will provide the
most throughput in the fixed area. Of course, this assumes (1) there is adequate parallelism in the problem to admit
replication and (2) composition overhead is negligible such that replication of the basic unit will achieve essentially
linear scaling above the measured point.

In the remainder of this section, we will illustrate this throughput density metric by revisiting several familiar
tasks from the literature.
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Architecture Design | Feature Area and Time 16x16 8x8
Size () SR [ sele | BRY | seate
Custom 16x16 5 0.63um 2.6MAZ, 40 ns 9.6 9.6 9.6 9.6
Custom 8x8 6 0.80pum 3.3MA2, 4.3 ns 70 70
Gate-Array 16x16 7 0.75pm 26MA?, 30ns 1.3 1.3 1.3 1.3
FPGA XC4K! 0.60um 1.25M)\?/CLB 0.097 0.24 0.30 1.5
8 16x16 | 316 CLBs, 26 ns
9 16x16¢c | 84 CLBs, 40 ns
10 8x8 | 220 CLBs, 12.1 ns
9 8x8c | 22 CLBs, 25 ns
16b DSP 11 0.65um 350M A2, 50 ns 0.057 0.057 | 0.057 0.057
RISC 12 0.75um 125MM\?, 66 ns/cycle 0.0028 | 0.017 | 0.0051 | 0.030
(no multiplier) 13 16x16 | 44 cycles
16x16¢c | 7 cycles
8x8 | 24 cycles
8x8c | 4 cycles
Table 1. Multiplier Throughput Comparison
Architecture Reference | Feature Area and Time
Size (\) ngfs
32b RISC 12 0.75um | 125MA%, 66 ns/cyclex6+cycles/TAP | 0.020
16b DSP 11 0.65um 350M A2, 50 ns/TAP 0.057
32b RISC/DSP 14 0.25pum 1.2G A2, 40 ns/TAP 0.021
64b RISC 15 0.18um 6.8GAZ, 2.3 ns/TAP 0.064
FPGA XC4K 16 0.60um 240 CLBs, 14.3 ns/8-TAPs 1.9
Altera 8K'7 0.30pum 30 LEsx0.92MA2/LE, 10 ns/TAP 3.6
Full Custom 18 0.75pum 400MA?, 45 ns/64 TAPs 3.6
19 0.60pum 140M)2, 33 ns/16 TAPs 3.5
20 0.75um 82M A2, 50 ns/10 TAPs 2.4
(fixed coefficient) 21 0.60pm 114MA?, 6.7 ns/43 TAPs 56
(n.b. 16b samples)

Table 2. FIR Throughput Comparison — 8b sample, 8b coefficient

Multiply Table 1 shows throughput comparisons across fixed, programmable, and reconfigurable architectures for
four multiplication tasks. The “scale” problems are for the case where one operand 1s a constant, while both operands
are variables in the “mpy” cases. Since multiplies have been highly studied in the literature, it was possible to select
a set of custom, DSP, and processor implementations for comparison which have feature sizes moderately close to

that of the FPGA.

Not surprisingly, the full-custom implementations achieve the greatest performance density. The FPGA im-
plementations achieve higher raw multiply throughput than the DSP despite the fact the DSP includes a custom
multiplier; this, too, is unsurprising when you realize the multiplier makes up only 5-10% of the area on the DSP die,
with the rest going largely to instruction control, and instruction and data storage. The RISC processor without a
custom multiplier achieves the lowest density since it must synthesize the multiply operation out of many primitive
ALU operations.

FIR Finite Impulse Response (FIRs) have achieved considerable attention in the FPGA literature since they
easily admit to systolic implementation, and they have shown good performance on FPGAs. Table 2 summarizes
the performance of processor, DSP, FPGA, and custom FIRs for low-precision FIR computations. The custom
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Architecture | Reference | Feature Area and Time 16b 10b
Size () TAPs | TAPs
16b DSP 22 0.60pum 200M A2, 500 ns/biquad 0.010 0.010
FPGA XC4K™ 0.60um | 16b — 60 CLBs, 320 ns/biquad | 0.044 0.093
10b — 43 CLBs, 200 ns/biquad
Full Custom 23 0.90pum 68MAZ, 11.8 ns/4 biquads 5.0

Table 3. IIR Throughput Comparison

Architecture | Reference | Feature Area Keys/Second
Size (\) K)\(zzs
DES IC 24 1.5um 11.1MA? 310K | 0.028
FPGA Altera 8K?® 0.30pum | 81188 (930MA?) 800K | 0.00086
RISC 2,25 0.30pm 1.8GA? 41K | 0.000023

Table 4. DES Key Search

implementations all have feature sizes in the 1.2-1.5pm range, comparable to the Xilinx XC4K FPGA, the 16b DSP,
and the 32b RISC shown. The Altera FPGA and the larger RISC processor datapoints have feature sizes which are
2-4x smaller than this range so may merit some speed normalization.

The surprising observation from this comparison is that the FPGAs implementations have comparable throughput
density to the custom implementations which allow programmable coefficients. However, compared to the custom
implementation with fixed coefficients, the FPGA implementation is 10-30x less dense. We also see here that the
FPGA FIRs are 30x more dense than the DSPs; underscoring the reason for the high interest in FPGAs for this
application.

ITR. Table 3 contains a similar comparison for biquads, the core computation for Infinite Impulse Response (ITR)
computations. Here the multipliers cannot be specialized around the coefficient, so the FPGA suffers a full 50x
density penalty versus a programmable, custom IC for IIR. While the FPGA is still denser than the DSP, the
advantage 1s only 4% in density for same size task. As the precision drops, the FPGA advantage relative to the DSP
does improve.

DES Search In a class project?® Berkeley students compared the effectiveness of FPGAs for brute-force DES key
search. The major FPGA and processor results along with a custom IC are shown in Table 4. The custom IC is
on a much older process, so probably deserves a 2-4x speed normalization versus the FPGA and processor which
are both fabricated in 0.6um processes. While the FPGA implementation is actually faster than the given custom
silicon implementation, it achieves this speed with 80x the normalized silicon area.

This 18 a good example of the kind of task for which the throughput density metric is ideal. The brute-force
search problem can be trivially parallelized, and desirable throughput rates are certainly larger than even a single
custom device will provide. An attacker might want to either spend as little money as possible to achieve a given
search rate, or achieve as high a search rate possible given limited funds.

Sequence Matching DNA sequence matching on SPLASH was one of the earliest successes of FPGA-based
computing machines. Table 5 normalizes the throughput data provided in Chapter 8 of Ref. 27.

As shown along with the table, the areas for the SPLASH implementations were approximated by their major
components — FPGAs and memories. For SPLASH 2, the omission of the 9 crossbars may make the estimate a bit
optimistic. Both workstations were estimated simply as their processor area; this, too, may be optimistic since the
first SPARCs had no on-chip data caches and even the SuperSparc cache is too small to hold the data required in
this computation. However, none of these omissions is going to change the total by more than a factor of two.
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Architecture Reference | Feature | Area Cell Updates
Size (\) per Second | £
Custom 26 2.0um | 270MA2 500MT
FPGA
(SPLASH 2) 27 0.60um | 43G\? 3,000M | 0.070
(SPLASH) 28 0.60um | 33G\? 370M | 0.012
RISC
(SparcStation ) 29 0.75um | 273M\? 0.87M | 0.0032
(SparcStation 10) 30 0.40pm | 1.6G\? 1.2M | 0.00075

1 — This number comes via direct calculation from Ref. 26 and not the test setup in Ref. 31.

For purposes of this comparison, silicon content 1s approximated as follows:

P-NAC 34 components (7.8MA? each)

SPLASH 2 17 XC4010s (500MA? each) + 17 256K x 16 SRAMs (2GA? each)
SPLASH 32 XC3090s (420MA? each) + 32 128K x8 (600MA? each) SRAMs
Sparc 1 SPARC CPU

Sparc 10 SuperSparc CPU

Table 5. DNA Sequence Matching

We see here that most of the 400x advantage which SPLASH exhibited over the SparcStation I came from its use
of greater silicon area. However, as noted in Ref. 28, SPLASH was handicapped at one-tenth its potential throughput
by the low-bandwidth i/o. Fixing this deficiency was one of design objectives for SPLASH 2, and we see that it does
achieves a 6x throughput density advantage over the original SPLASH.

7. OTHER FIGURES OF MERIT

While throughput density tells the story for high throughput, parallelizable operations, this certainly does not cover
all the cases we might care about. Other metrics of interest include:

e area required to achieve some low, fixed throughput rate
e performance achievable within a fixed area budget

e performance achievable given a fixed power budget

In the cases with adequate parallelism and high throughput requirements we were able assume a linear area-
time relationship in the region of interest. Note that the area-time curve will not necessarily be ideal below certain
points — e.g. a 2x increase in compute time will not necessarily allow a 50% reduction in area. While the regular,
concurrent portions of a task running on an FPGA can be scaled down with decreasing throughput requirements,
residual control and irregular operations are often left.

FIR 'To illustrate, Figure 1 shows the area-time curve for a 16-TAP FIR implemented in custom silicon, a Xilinx
FPGA, and a DSP. It takes 800 ns to evaluate each filter output value on the DSP.'' Below this point, the DSP
area scales linearly assuming we have other tasks which can be scheduled between filter evaluations. The custom
FIR component!'? can perform one evaluation of the filter every 33 ns. However, the hardwired silicon requires the
same amount of area regardless of the how much slower it is run. Of course, a different custom FIR component
could be built at a different area-time point, if one is able to select the FIR, throughput before fabrication. Different
styles can be used in the FPGA implementation'® depending on the application throughput requirements. There is,
however, a minimum area configuration for the FPGA below which further throughput reduction does not allow the
area of the implementation to be compressed further.
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Figure 1. Area-Time Curve for 16 TAP, 8b FIR

This defines an interesting design space, worth understanding when allocating resources for an implementation.
For limited throughput tasks, we need to look at the task throughput requirements to best rank the options. In
the 0.55-8.0MHz region, the FPGA is the smallest implementation, with its advantage over the DSP diminishing
towards the lower end of that region. Below 0.55MHz, the DSP implementation requires the least area.

8. COST VIEWPOINTS

Using area as a normalizer is a good cost metric from the viewpoint of the silicon designer. Silicon area is the limited
resource constraining design at this level. If the designer is allocating space on the same die, area is exactly the
commodity of trade—allocating 500MA? to FPGA resources must come at the expense of that 500M\? being used for
custom logic or other programmable structures. Downstream from the silicon designer, however, costs may diverge
from silicon area for several reasons. F.g.

e Actual fabrication costs in advanced fabs will be higher per A? than more mature, less dense, processes —
especially during the learning curve for the fab and the design when yields are low.

e One tends to pay a premium for the highest density and largest dies.

o Gate arrays will cost less per A? than full-custom at the same feature size since they require less custom
processing.

o Price to an end user reflects customer valuation and volume demand rather than raw material costs. A GA?
of silicon in a high-volume, commodity part will be less expensive to board designers buying off-the-shelf parts
than a GA? of silicon in a specialized, custom IC.

e At the board level, non-silicon costs accrue in packaging, inter-chip interconnect, and handling.

One can normalize for these costs, but the normalized results tell us more about the current economic picture than
the intrinsic resource costs. That is, such selling price normalized metrics may be accurate at one point in time for
low-volume, board-level component consumers, but will not remain stable or accurate across shifts in component
supply and demand.
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9. REPORTING PERFORMANCE

When analyzing or reporting FPGA applications, it is generally worthwhile to report the area, time, and energy
requirements for the task. When all of these basic quantities are included, it i1s possible to normalize the results as
suitable for various application requirements as noted in the previous sections.

e Area — as noted in Section 5, the area includes the type and number of basic logic blocks (or fraction of a
particular FPGA), memories, and fixed components consumed by the application. When using standard parts,
the feature size is often implicit in the type of part used. When using custom parts, the die size and feature
sizes of the custom parts should be included as well to allow normalization as per Sections 3 and 4.

e Time — use the absolute time taken to complete a task, or the absolute throughput rate (Section 4).

e Energy — where possible, include the energy required to perform a task or process each input or output;
equivalently, the power required to achieve a given computational rate provides the same information.

Of course, where possible providing or describing the area-time curve for the FPGA implementation will help one
understand how the FPGA solution adapts to various throughput requirements. In the future it may also be
interesting to explore area-power curves as well.

10. SUMMARY

FPGAs are universal computing structures. Consequently, we know a priori that we can perform any computable
function using an FPGA-based system. The real question to answer when assessing the quality of an implementation
is: How well we can perform a particular task on an FPGA-based machine relative to the alternatives? Further,
FPGASs are very scalable on highly concurrent tasks. Absolute performance figures are interesting, but by themselves
they do not tell us if the FPGA solution is efficient or even superior to its alternatives. To understand the efficiency
of FPGA solutions, we need to normalize the delivered performance to the cost of the solution in terms of critical
resources such as area and power. This normalization tasks is eased by the fact that most of today’s computing
components are built in CMOS VLSI. Thus, we can use the area in the underlying silicon implementations as a
normalizer to measure the area cost of an implementation. This metric is particularly relevant to silicon designers,
but also provides a useful basis for general comparisons. Throughout this paper we have detailed issues in this
cross-architectural comparison and illustrated the comparison using several common applications from the literature.
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