
768 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 7. JULY 1989

Algorithms for Hardware Allocation in Data Path
Synthesis

Abstract-The most creative step in synthesizing data paths execut-
ing software descriptions is the hardware allocation process. New al-
gorithms for the simultaneous costlresource constrained allocation of
registers, arithmetic units, and interconnect in a data path have been
developed. The entire allocation process can be formulated as a two-
dimensional placement problem of microinstructions in space and time.
This formulation readily lends itself to the use of a variety of heuristics
for solving the allocation problem. We present simulated-annealing-
based algorithms which provide excellent solutions to this formulation
of the allocation problem. These algorithms operate under a variety of
user-specifable constraints on hardware resources and costs. They also
incorporate conditional resource sharing and simultaneously address
all aspects of the allocation problem, namely register, arithmetic unit
and interconnect allocation, while effectively exploring the existing
tradeoffs in the design space.

I. INTRODUCTION
HE GOAL OF the data path synthesis step in a be- T havioral synthesis system is to produce register-trans-

fer (RT) level hardware designs from an architectural de-
scription of a computer or to produce an RT design which
implements a given program described in a high-level lan-
guage in hardware. Significant effort has gone into the
development of techniques for automated data path syn-
thesis (e.g. [l]-[S]) in recent years. However, even now,
effective and versatile procedures are not available.

Given a fixed amount of hardware resources, global op-
timizations of microcode can be performed using such
techniques as trace scheduling [6]. Microprograms can be
made more efficient and parallel. In hardware allocation,
both the schedule of operations and the numbers of com-
putationaUstorage units have to be decided.

Initial work to tackle this problem included the devel-
opment of a mathematical model for the data path [7] to
describe the conditions and relationships to be satisfied.
Mixed integer-linear programming techniques were used.
Unfortunately, even for very small specifications the cost
of generating a design exploded rapidly.

The expert system approach was taken in the DAA [4],

Manuscript received December I , 1987; revised April 29, 1988, Octo-
ber 5, 1988, and January 24, 1989. This work was supported in part by the
Semiconductor Research Corporation and in part by the Digital Equipment
Corporation. The review of this paper was arranged by Associate Editor
M . R. Lightner.

S . Devadas is with the Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, Cambridge, MA
02139.

A. R. Newton is with the Department of Electrical Engineering, Uni-
versity of California, Berkeley, CA 94720.

IEEE Log Number 8927532.

[8] system. Design rules were collected, and based on
these design rules, a rule-based data memory allocator was
developed. As is the case with most rule-based tech-
niques, only local optimization was possible and exten-
sive changes could not be made to the input description
to attain a globally optimal solution. Similar problems af-
flicted the allocators described and implemented in [9] and
[101. Global optimization steps have been introduced into
the expert system approach [SI, but DAA has been used
mainly to synthesize general-purpose computer data paths.

A more global algorithmic approach to the allocation
problem was first taken by Tseng and Siewiorek [l 11,
[121. FACET is an automatic data path synthesis program
which minimizes the number storage elements, data op-
erators, and interconnection units. However, FACET
performs these steps sequentially and independently of the
following task(s). The entire design space is thus not ex-
plored.

An approach to hardware allocation based on graph
grammars and scheduling was taken by Gircyzc [131. The
USC MAHA system [3] uses critical path determination
to perform hardware allocation. The heuristics used to
guide scheduling are based on the concept of the freedom
of an operation. A force-directed scheduling approach to
hardware allocation has been taken in [14]. The optimi-
zation step is global and uses heuristics based on prede-
cessor and successor forces on an operation. The different
heuristics used in both these scheduling algorithms [3],
[141 may result in locally minimum solutions.

Other efforts in this area include Trickey’s work [2],
[151 and the synthesis of digital signal processor data paths
in the CATHEDRAL [161 and SEHWA systems [3], [171.

Trickey [lS] addressed the problem of extracting par-
allelism from a program and maximally scheduling the
operations in the program while meeting a user-specified
bound on each kind of processing unit(s). This paper is
concerned with hardware allocation, where the decisions
on the number of processing units, storage elements, and
their interconnections are made. The scheduling problem
is only a small part of the allocation process.

Other high-level systems currently being developed are
the CMU System Architect’s Workbench [181, Stanford’s
HERCULES system [19], and the BECOME [20] and
BRIDGE [21] systems at AT&T Bell Laboratories.

A recent tutorial [22] classifies scheduling algorithms
on the basis of (1) the interaction between scheduling and

0278-0070/89/0700-0768$01 .OO O 1989 IEEE

DEVADAS A N D NEWTON. ALGORITHMS FOR HARDWARE ALLOCATION 169

data path allocation and (2) the type of scheduling algo-
rithm used. For example, in the early DAA system [8]
and FLAMEL [151, a limit (or no limit) on the number of
functional units available is placed during scheduling. The
MAHA system [3] and HAL [14] develop the schedule
and resource requirements simultaneously. Scheduling al-
gorithms used in these approaches are iterative/construc-
tive (e.g. [3], [14]) or transformational (e.g. [23]). Our
approach performs scheduling and resource allocation
simultaneously and uses the iterative optimization tech-
nique known as simulated annealing [24].

In this paper, we present new algorithms for the simul-
taneous costlresource constrained allocation of registers,
arithmetic units, and interconnect in a data path. These
algorithms operate under a variety of user-specifiable con-
straints on hardware resources and costs. There are three
main differences between this approach and others taken
in the past (e.g., 111-[3]). First, all the allocation sub-
problems, namely, arithmetic unit, register, and intercon-
nect allocation, are tackled simultaneously, rather than
sequentially or iteratively. Second, the optimization is
completely global in nature-the entire data path is opti-
mized. Third, we have used a probabilistic hill-climbing
algorithm [25], simulated annealing, which can avoid the
traps of locally minimum solutions.

As in previous approaches, the hardware allocation
problem in automatic data path synthesis has been for-
mulated as a two-dimensional placement problem of mi-
croinstructions in space and time. The two dimensions
correspond to the hardware (e.g. ALU’s) used by the mi-
croinstruction and the time of execution of the microin-
struction. The problem we solve is to synthesize a data
path corresponding to the input data flow specification
such that a given arbitrary function of execution time and
hardware cost,f(T, C) , is minimized. The hardware costs
are the sum total of the costs associated with registers,
arithmetic units, buses, and links in the data path based
on required layout areas for placement and wiring. A
given placement of microinstructions corresponds to a
unique data path with a certain hardware cost and execu-
tion speed. Optimal conditional resource sharing is
achieved by solving a constrained two-dimensional place-
ment problem where disjoint instructions are allowed to
occupy the same spatial and temporal location. Mutually
exclusive operations are scheduled so as to use the same
hardware at the same time. Given a data flow specifica-
tion, we present algorithms which find a near-optimal
placement of microinstructions, thus determining the spa-
tial and temporal delineation of resources and producing
a near-optimal data path configuration.

We present the formulation of the data path synthesis
problem as that of two-dimensional placement of microin-
structions in Section I1 and discuss modifications to in-
corporate conditional resource sharing. Given this for-
mulation, simulated-annealing-based algorithms to solve
the allocation problem are presented in Section 111. These
algorithms are generalized to handle looping constructs
present in general software programs in Section IV. Ke-

sults and illustrative examples including the synthesis of
a specialized processor data path for MOSFET model
evaluation are presented in Section V. Extensions to syn-
thesize pipelined data paths are discussed in Section VI.
Limitations and future work are discussed in Section VII.

11. THE HARDWARE ALLOCATION PROBLEM

A. Introduction
This section describes the algorithms used in the allo-

cation process, which take the architectural description of
the machine or a software program and automatically syn-
thesize the data path corresponding to that description un-
der specified hardware constraints and costs. The ap-
proach taken here is to produce a data path such that a
given arbitrary function of the execution speed of the data
path (T) and the total hardware cost of the data path (C) ,
namely f(T, C) , is minimized.

B. Input Description
The behavioral description to be synthesized from can

be a description of the instruction set of a computer or the
description of an algorithm in C . In either case, the de-
scription is converted into a code sequence where paral-
lelism, sequentiality , and disjointness (mutually exclu-
sive operations) are explicitly stated. During this
transformation, various compilerlike optimization tech-
niques (e.g., dead code elimination, constant folding) are
used. This step is performed as in the CMU-DA system
111, DAA 141, and FLAMEL [15]. The code sequence
produced has information only about the data transfers re-
quired between program values. The control signals which
initiate these data transfers are not explicitly stated. This
control signal information is used only when the specifi-
cation of the state machine controller for the data path has
to be derived.

The serial blocks are due to the dependences associated
with any description. Disjointness is a result of the con-
ditional clauses in the input description. An example of
an input sequence is shown in Fig. 1, with serial, paral-
lel, and disjoint blocks, which are the means of repre-
senting sequentiality , parallelism, and mutual exclusion,
respectively. Each operation is represented in a Lisp-based
syntax given by (o p operl o p e d

C. Basic Allocation Problems
The hardware allocation process consists of a variety of

subproblems. Register allocation deals with allocating
variables in the given description to a minimum number
of registers. Arithmetic unit allocation entails scheduling
operations on a minimum number of ALU’s meeting a
cost or an execution time constraint. During the alloca-
tion, an optimal grouping of arithmetic operators within
each ALU is also found. For instance, we might have two
ALU’s, one performing arithmetic operations and the
other performing Boolean operations. Typically, we
would like each of the ALU’s to perform disjoint sets of
operations, but this is not always possible. Lastly, we

. operN result).

770 IEEE 1 rRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 7. JULY 1989

(serial
(parallel

(add x l yl z l)
(add x2 y2 22)

1
(parallel

(mult zl y3 23)
(minus 22 y4 A)

1
(disjoint

(divide 23 x3 25)
(divide A x4 25)

)
)

Fig. I . Input description

have interconnect allocation, which, given the sets of data
transfers required in each time frame, allocates buses and
links or multiplexer and demultiplexer connections in the
data path.

The basic trade-off in hardware allocation is between
serial and parallel implementations of data flow descrip-
tions. Given an input code sequence, one can synthesize
a maximally parallel data path which is expensive in terms
of hardware resource and cost and uses a large number of
registers and arithmetic units. On the other hand, one can
synthesize a cheap, serial data path with a single ALU.
Hardware resource cost, used in this context, generally
represents the layout area required to implement the dif-
ferent modules in the data path after placement and wiring
issues have been taken into account. Depending on the
user’s objective function, the optimal data path configu-
ration will lie somewhere between these two extremes.
Thus the allocation process has to tradeoff hardware re-
source cost against the execution time of the code se-
quence in an effort to find an optimal solution.

D. A Subproblem
We first define and solve a subproblem in the allocation

process which is as follows:
Given a code sequence with singly assigned variables

and precedence constraints between operations, assign the
code operations to M ALU’s so that a given arbitrary
function of the number of registers required, N, , and the
execution time, T, f(N , T) , is minimized.

Assuming that the synthesized data path is a clocked
sequential circuit, a maximally parallel description would
use a large number of registers but would execute the fast-
est. A completely serial description would require a min-
imal number of registers (if the description had no looping
constructs) but would be slow. The algorithm based on
clique partitioning which was presented in [111 optimizes
the number of registers with a j x e d code sequence. Our
goal is to find the optimal sequence under the given con-
ditions, and this entails an extra degree of freedom.

Given a code sequence, the lifetimes of all the variables
can be calculated. The lifetime of a singly assigned vari-
able is the duration between its assignment and last use.
The number of registers required would be proportional

v l v2 v3 v4 v5 v6

I (add v l v2 v3)
(mult v3 v l v4)
(minus v2 v5 v6) ,

(dec v6 v2)
(divide vl v2 v5) ‘ I ‘ (inc v4 vl)

Fig. 2. Densities of variable lifetimes

v l = v2 + v3
v4 = v2 - v3
v5 = vl * v2
v6 = v4 and v3
v7 = v5 or v6

(a)
R1 = R 2 + R 3
R4 = R2 - R3
R1 = R1 * R2
R4 = R4 and R3
R4 = R1 or R4

(b)
R l = R 2 + R 3
R1 = R1 * R2

R2 = R2 and R3
R3 = R1 or R2

(C)

Fig. 3 . (a) Code sequence. (b) Register allocation without reordering. (c)
Register allocation with reordering.

R2 = R2 - R3

to the overlap of the live periods of the singly assigned
variables, or to put it differently, the number of registers
required is the maximal density of variable lifetimes across
the entire sequence. This is illustrated in Fig. 2.

Disjoint variables are those whose lifetimes do not
overlap. The allocation of registers to singly assigned
variables entails finding the best possible grouping of dis-
joint variables in sets so as to minimize the number of
sets.

However, there is freedom in the ordering of the code
operations as long the precedence constraints are not vi-
olated and the constraint on the number of processing units
is satisfied. A code sequence exploiting this freedom can
result in a smaller set of registers being required. This is
illustrated in Fig. 3. In Fig. 3(a), an example code se-
quence being executed on a single ALU is shown. With-
out changing the order of the operations in the code se-
quence, the minimum number of registers required is 4,
as shown in Fig. 3(b). Allowing reordering of operations
within the sequence produces a three-register solution in
Fig. 3(c).

Finding the optimal ordering of operations within a se-
quence so as to allocate a minimum set of registers re-
duces to the PLA multiple folding problem. The goal is
to try to find an ordering of the rows (which correspond
to the code operations) under certain ordering constraints
(constraints due to dependences and processors) such that
the maximum number of disjoint columns (each column

DEVADAS A N D NEWTON: ALGORITHMS FOR HARDWARE ALLOCATION

SPACEtTlME
TIME1
TIME2
TIME3

17 1

ALUl ALu2 ALu3
(mult x2 y2 22)

(divide 22 xl k2)
(add xl yl zl)

(minus z l x2 kl)
(or kl 22 11)

(equal x3 23)

(inc k2 12)

corresponds to the lifetime of a variable) can be coalesced
(the maximal number of variables can be merged). In the
case of minimizing a function of execution time, T, and
the number of registers, N,, i.e., f(T, N r) , what we are
trying to find is an optimal aspect ratio of the PLA.

The PLA folding problem has been effectively solved
using graph heuristics [26], simulated annealing [27], and
exact branch-and-bound techniques [28]. These tech-
niques can be used to solve the problem of register allo-
cation as well. However, this formulation is merely rep-
resentative of one part of the entire data path synthesis
process, which will now be discussed.

E. Formulation of the Entire Data Path Synthesis
Problem

Our approach to synthesizing a data path is to give a
general procedure which minimizes a given arbitrary
function of execution time and hardware cost. The entire
cost of a data path can be represented as

C = p l * (# a h) + p2 * (exec-time) + p3 * (#register)

+ p4 * (#bus) .

The costs of the ALU’s, registers, and interconnect should
be estimated taking into account layout area, placement,
and wiring issues. If C reflects the exact area of a data
path, then a procedure which minimizes C under con-
straints would optimally synthesize a data path. The spec-
ification of the parameters, p l through p4 , is discussed in
Section 11-F and Section VII.

This can be formulated as a placement problem of code
operations in two dimensions, those of space and time. A
given spatial and temporal placement of code operations
represents a data path, and has a unique cost C. We con-
struct a two-dimensional grid where each vertical slice
corresponds to a processing unit/ALU and each horizontal
slice corresponds to a time slot, as shown in Fig. 4 . Code
operations are placed in grid locations corresponding to
an ALU and a time slot under precedence constraints due
to the dependences associated between them. Nets con-
nect the occurrences of variables in the code operation
and also connect variables to arithmetic units in corre-
sponding slots. The internal position of the variable in the
code operation is also specified; for example, in a binary
ADD a variable can be in the first or the second position
for a given configuration.

The execution time is directly related to the number of
occupied horizontal time slots. The horizontal time slots
may be of different widths, the widths being proportional
to the delays corresponding to the code operations occu-
pying that slot. The issue of operations having different
associated delays is discussed in Section IV.

The number of processing units is directly related to the
number of occupied vertical space slices. The operations
that a given processing unit has to perform depend on the
operators occupying the grid locations in its correspond-
ing vertical space slice. A processing unit may be simply
an incrementer/counter or may be a complex floating point

unit capable of multiply, add, and divide operations. Thus
the formulation takes into account the grouping of arith-
metic operators into processing units.

The number of registers required to realize the variables
is related to the maximum density of nets across the entire
grid. This is because the extent of the nets connecting oc-
currences of a variable is a representation of the lifetime
of the variable, Given a maximum density of lifetimes M ,
using the Left Edge Algorithm (widely used in channel
routing [29]), the variables can be coalesced into M reg-
isters.

The interconnect relationship to the physical entities of
nets and code operations is more difficult to formulate.
Obviously the number of registers and ALU’s is weakly
related to the number of interconnections required. Other
measures of interconnect complexity can be obtained-the
number of links required can be related to the stagger of
nets in this formulation.

The stagger of the nets implies the connection of reg-
isters to more than one ALU. The more staggered a net,
the greater the number of ALU’s the variable (and even-
tually the register) feeds into. The stagger of nets treated
as separate entities does not, however, take into account
the fact that groups of variables which feed into different
ALU’s may be coalesced into the same register. This reg-
ister will then need to feed into many ALU’s. Only vari-
ables which are disjoint can be coalesced into the same
register. However, the stagger of nets between disjoint
variables is a good indicator of interconnect complexity
(number of links) at any stage. The net stagger is further
refined by the position information of the variables within
the code operation. The position information takes into
account the fact that variables may be feeding into one or
both ports of the ALU.

Other good measures of the number of buses required
with a given schedule are the maximum number of dis-
tinct sources and the number of sinks in all the time slots
(which is an indicator of the number of parallel data trans-
fers required). So, even if all the registers have been pre-
viously allocated, the tradeoffs between execution time
and interconnections can be made. In the general case,
execution time can be traded off against the number of
registers, processing units, and interconnections.

The cost function has been defined in terms of the
above-mentioned quantities. The problem is, therefore, to
find a global placement of code operations in the grid lo-
cations under the dependence constraints, and a place-
ment of variables within the code operations which min-
imizes the cost. Then the variables can be coalesced into
registers and the interconnections into buses.

Some variables, for example, arrays, may need to be in
memory. If they are, accessing them potentially takes

772 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 7. JlJLY 19XY

more cycles. There is a tradeoff between reducing the
number of registers by allocating variables to memory lo-
cations and increasing the execution time. This tradeoff
can be explored if necessary.

To solve the problem, we can use various techniques
for solving the placement problem. Our goal is to find a
placement which produces a global minimum for the
function f(T, C) . The use of simulated annealing, a
global optimization technique, has produced excellent re-
sults for integrated circuit cell placement problems [30].
Hence, we have used simulated annealing to solve our
particular placement problem. This simulated-annealing-
based algorithm is described in Section 111.

F. The Cost Table
The specification of costs is vitally important. Given a

cost function, the simulated-annealing-based algorithm
can find near-optimal solutions for that cost function
within reasonable amounts of CPU time. Ideally, the
hardware costs should reflect the exact layout area of the
data path. While the areas of individual modules (e.g.
registers, ALU’s) can be estimated exactly or nearly ex-
actly, estimating routing area is much more difficult. In
[3 11, the effects of incorrect estimation were discussed
and shown to be significant.

A cost table (Fig. 5) specifies the cost of hardware re-
sources and operators. It also implicitly specifies the pa-
rameters p l through p4 in the cost function C (Section
11-E). The parameters p l , p3 , and p4 are urea parume-
ters, while p 2 is an execution time parameter. The area
parameters reflect the layout area of the individual mod-
ules. The execution time parameter, p2, is a way of spec-
ifying whether a fast data path or a relatively slow one is
desired. A higher p2 implies a greater cost for execution
time and will result in a faster data path. These parameters
are not necessarily constants; in general, they are func-
tions of the number of ALU’s and/or registers and/or
buses in the data path.

I) Register Costs: The parameter p3 is equal to the
area of the library register to be used. It is a multiplying
factor for the number of registers in the data path. In the
cost table of Fig. 5, p3 is a function of the number of
registers, in an effort to estimate routing area (Section II-
F-1). The first five registers cost ten units each; the next
five cost 15 units.

2) Costs of ALU Operations: The cost of each arith-
metic or Boolean operator should reflect the layout area
to implement that operator. A complication arises when
attempting to optimally group operators within ALU’s.
Given that the ALU is to be implemented using combi-
national logic, the area required by a set of operators is,
generally, not equal to the sum of the areas required to
implement each operator separately. A case in point is an
ALU implementing addition and subtraction. This ALU
would be only slightly larger than an ALU implementing
only addition or only subtraction, not twice the size. Thus,
ALU costs cannot be calculated using simple additive re-
lationships.

cost of different operations in a ALU
ALU
add 50
sub 50
fadd 100
mult 250
add minus 60

register costs
REGISTER
starting from Egister 1, each register has cost 10 units
1 10
starting from register 5, each register has cost 15 units
5 15

execution time
EXECUTION
1 50
50 50

interconnect, buses and links
BUS
1100
3 150

LINK
1 5
100 10

Fig. 5 . Example cost table

This problem is alleviated by defining costs not only
for each operator but also for small sets of operators. A
multiply operator may have a cost of 100 units, a divide
a cost of 200 units, and an ALU performing multiply and
divide may be deemed to have a cost of 2 I O units depend-
ing on library-specific information. Given an arbitrary set
of operators, the program checks to see if costs have been
specified for any subset of operators before adding costs
up for the single operators.

3) Estimating Interconnect Area: The areas of the in-
dividual modules can be estimated accurately and in-
cluded in the cost table. The number of links and buses
can be estimated closely, as described in the previous sec-
tion. The area for a link/bus is to be used as parameter
p4. This area is typically a complex function of the num-
ber of registers and ALU’s in the data path. Assuming
thatp4 is a constant, i.e., that interconnect area is a linear
function of the number of linkdbuses, can be quite inac-
curate [3 I].

Our approach relies on empirical estimations of routing
area. For example, given a layout style, we evaluate the
increase in routing area (not total area) due to incremental
additions of registers and associated links and add this
cost to the link and register costs. The link and register
costs then become piecewise-linear functions. Data points
over a range of numbers of ALU’s and registers in a data
path are obtained. The number of data points required to
obtain exact accuracy is, unfortunately, infinite. How-
ever, with a reasonably small number of data points, one
can do better than a linear approximation on the number
of links. In the cost table of Fig. 5, register and intercon-
nect costs are modeled as piecewise-linear functions, and
ALU costs are modeled as linear functions.

DEVADAS AND NEWTON: ALGORITHMS FOR HARDWARE ALLOCATION I73

Accurate routing area estimation remains largely an un-
solved problem (Section VII). It is clear that the total area
of a data path is a nonlinear function of the number of
ALU's, links, and registers, even in data paths con-
structed largely by abutment. Given this complex func-
tion, or a good approximation of this function via piece-
wise-linear functions, the simulated-annealing-based
algorithm, described in the next section, obtains high-
quality solutions.

G. Conditional Resource Sharing
Conditionals can be introduced into the algorithm. This

is done by defining disjointness (mutual exclusion) be-
tween statements. For example, the THEN and ELSE clauses
in an IF statement are disjoint. Disjoint statements can
exist on top of each other on the same time-space slot.
The algorithm takes into account this disjointness and
finds an optimal schedule for the code sequence with an
arbitrary number of conditional clauses.

Placing operations on the same time-space slot amounts
to conditional resource sharing. Many forms of condi-
tional resource sharing are possible. The coexistence of
two ADD operations on the same grid location implies that
the two operations are sharing an adder since they are mu-
tually exclusive. If two operations sharing a common vari-
able exist on the same location, a register will be shared
by the two disjoint operations, and it will store informa-
tion dependent on conditional clauses.

We initially had a two-dimensional placement problem,
where the two dimensions corresponded to the time of ex-
ecution and the hardware space (e.g., ALU's) used by an
operation. Mutually exclusive operations can be sched-
uled to occur at the same time on the same ALU. We have
now a set of constraints that limit the freedom in sched-
uling operations on the same time and space coordinates.

Disjoint blocks may be arbitrarily nested in the code
sequence. Initially, before the optimization, disjointness
relationships between each pair of operations in the given
code sequence is found, and this information is exploited.
For example, given

(disjoint
s- 1
(disjoint

s-2
s-3

)
)

s-1 is deemed to be disjoint from both s-2 and s-3 and
s-2 is disjoint from s-3.

111. A SIMULATED-ANNEALING-BASED SOLUTION

A . Introduction
Simulated annealing, proposed by Kirkpatrick et al.

[24], has proved to be an effective solution to the cell
placement problem in LSI layouts [30]. Its basic feature
is that it allows hill climbing moves [25] in exploring the

configuration space of the optimization problem. The
probability of accepting these moves is controlled by a
parameter analogous to temperature in the physical an-
nealing process and this parameter decreases gradually as
the annealing process proceeds. The simulated annealing
algorithm can be used for combinatorial optimization
problems specified by a finite set of states and a cost func-
tion defined on all the states. The algorithm randomly
generates a new state or configuration, and the new state
is accepted or rejected according to a random acceptance
rule governed by the parameter analogous to temperature
in the physical annealing process. The basic algorithm
proceeds as follows:

T = To
X = Starting-Configuration;
while("cost is changing"){

for("a certain number of times"){
Generate-New-State(j)
if(accept (c (j), c (X), TI) {

I
X = j ;

I
T = update(T);

I
Whether or not a new state is accepted is determined by
the function accept ():

accept(c(j) ,c(i) ,T){
change-in-cost = c (j) - c (i);
if (change-in-cost < 0) return (1);
else {

Y = exp (-change-in-cost/T);
R = random(0,I);
if (R < Y) return(1);
else return (0);

I
I

This basic algorithm forms the core of our approach. The
parameter T i s analogous to temperature in a physical an-
nealing process. At every temperature point, a number of
random moves are generated. The number of moves gen-
erated is a parameter that can be controlled by the user; it
affects the quality of the solution profoundly. According
to existing theoretical results, simulated annealing
asymptotically approaches the global optimum of the con-
figuration space [25].

The two most important things in any simulated-based
algorithm are the generation of new states (Gener-
ate-New-State ()) during the annealing process and the
cost function (c()) to be optimized for. The generation
of states and the cost function together determine the
quality of solutions which can be obtained.

These two aspects of the simulated-annealing-based al-
gorithm for the allocation problem are described in detail
below. In Section 111-G we discuss the advantages of using
annealing rather than fast heuristics to solve the place-
ment problem.

114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 7. JULY 1989

B. Generating New States

in three different ways:
New states are generated during the annealing process

1) interchanging two code operations;
2) displacing a code operation from one location to an-

3) interchanging the variables in a symmetric operation

Moves 1 and 2 have to satisfy certain constraints,
namely, the precedence constraints between operations
cannot be violated by such a move, and operations on the
same time-space slot have to be disjoint. Examples of
interchanges and displacement of operations are illus-
trated in Fig. 6.

other;

(e.g., ADD).

The generation of states proceeds as follows:

Two numbers are randomly generated, the first be-
tween one and the number of operations, the second
between one and the number of operations times a
certain quantity (typically 5) .
If the second number is less than the number of op-
erations, an interchange of the two operations is
tried. If the interchange violates any constraint, and
either one of the operations happens to have a sym-
metric operator, the variables in that operation are
interchanged.
If the second number is greater than the number of
operations, a new location for the first operation is
randomly generated, and the operation is displaced
to the new location if the displacement does not vi-
olate the aforementioned constraints.

During the end of the annealing process (at low tem-
peratures), the generation of states takes a different form
so as to generate states which are more likely to be ac-
cepted:

1) This step is identical to the first step in the previous
sequence.

2) If the second number is less than the number of op-
erations, an interchange between the first operation
and the operation immediately to the left or right is
tried. If one direction fails, the other is tried. If both
fail, a variable interchange is tried.

3) If the second number is more than the number of
operations, a displacement of the first operation im-
mediately to the left or right in the same time slot
and immediately ahead or behind in the same space
slot is tried in randomly generated order.

C. The Cost Function
The cost function should be representative of the hard-

ware and execution time cost function C (Section 11) to be
optimized.

The total execution time required for the entire se-
quence is one part of the cost function. In the general case,
the execution time may be weighted by the frequency of
code kernels. Given a large code sequence, parts of the

1
~ = \.2 + \ 3 v 4 >= v 2 ' v 3

v j = vl + v 4 ,
&!\.2 = v 4 * v 5

I v6 = v 4 /

Fig. 6 . Interchanges and displacements during annealing

sequence may have higher execution time weights asso-
ciated with them because they are more frequently used.
The weighted spread (the time of execution of the last
operation in the kernel - the time of execution of the first
operation) of kernels can be calculated.

The number of registers required in hardware is given
by the maximum density of nets (which connect occur-
rences of variables) across all the time slots. The number
of registers required is part of the cost function.

For each space slot, the sum of the costs of all the dis-
tinct operators (or operator sets) required is found. The
sum of all these costs is the processor cost constituent of
the cost function.

Interconnect cost is estimated by estimating the number
of links and buses required in hardware. The stagger of
nets between disjoint variables is a good indicator of link
costs. The number of buses required is estimated by cal-
culating the maximum number of distinct sources and the
number of sinks in all the time slots, since this is a good
indication of the number of parallel data transfers re-
quired.

D. Hardware Resource Constraints
Hardware resource constraints (e.g., limits on the num-

ber of ALU's or registers) can easily be incorporated into
the simulated-annealing-based algorithm by penalizing
configurations which violate any of these constraints. A
penalty is added to the cost of such an intermediate con-
figuration and is sufficiently high so as to ensure that the
final solution satisfies all the constraints.

E. Execution Time Constraints
A bound on the time required by the data path to exe-

cute the code sequence, or parts of the code sequence,
may be given. This constraint is incorporated using a pen-
alty function approach as in the case of constraints on
hardware resources. A discussion of more complex con-
straints is included in Section VJI.

F. Stopping and Inner Loop Criteria
The number of states generated per temperature point

is a certain integral multiple of the number of code oper-
ations (typically 1-10). The temperature is lowered to a
fraction (typically 0.90) of its original value after each
temperature point. The annealing process terminates when
the cost function has not changed in value for three tem-
perature points.

IV. FURTHER EXTENSIONS
For the sake of clarity in presentation it has been as-

sumed thus far that the operations in the input description

DEVADAS A N D NEWTON: ALGORITHMS FOR HARDWARE ALLOCATION

\

v l = v2 + v 3

v6 = v2 /

v9 = v 4 + v5

775

v5 = v2 v3 v5 = v2 * v3
vl' '

+-V4 r v 1 - 1

v8 = v5 + v6

have equal delays. However, in general, operations in a
software program may have drastically different delays.
For example, a 32-bit multiply may take more than ten
times the time required by an integer increment.

It is not difficult to generalize the formulation of the
data path synthesis problem to handle operations with dif-
ferent delays. A generalized two-dimensional placement
of operations is shown in Fig. 7. The height of each op-
eration is proportional to its delay. For example, the MUL-
TIPLY has a delay which is three times the ADD. The place-
ment now resembles a set of linked lists of operations (one
for each ALU), rather than the matrix of operations of
Fig. 4.

The simulated-annealing-based algorithm for hardware
allocation as described in Section I11 made no assump-
tions about the relative delays of operations. If operations
have different delays, the highest common factor of all the
different operation delays in the data flow descriptions is
calculated. This becomes the size of one time frame. Op-
erations can occupy more than one time frame. During
interchanges and displacements of operations in time or
space, the time positions of the successors of the inter-
changed and displaced operands may also change. This is
illustrated in Fig. 8.

Loops are a succinct way of representing iteration in
programming languages. It is important that an allocation
algorithm be able to provide for loops in the input descrip-
tion.

One method of dealing with loops is to treat each loop
as a single operation with delay equal to the number of
iterations times the delay of each iteration. This single
operation is scheduled just like other basic operations.
However, the problem with this approach is that all the
iterations of a loop are always scheduled serially on a sin-
gle ALU. It may be beneficial to schedule iterations in
parallel on different ALU's.

Another method of dealing with loops in the input de-
scription is f i l l unwinding [l]. In this method, all the it-
erations in a loop are expanded into a number of opera-
tions. The number of operations after unwinding will be
proportional to the number of iterations in the loop. These
operations can be scheduled independently and may be
executed in parallel if the precedence constraints between
them are not violated. This method exploits all the de-
grees of freedom present in scheduling iterations of loops
separately. However, given a loop with a large number of
iterations, full unwinding is not always feasible.

Our solution to this problem is dynamic partial un-
winding of loops during the optimization process. Ini-
tially, all loops are represented as basic operations and
their delays computed. However, they are tagged. During
the annealing, a possible move (other than displacing
tagged or untagged operations) is to split a tagged oper-
ation into two or more components. For example, a ten-
iteration loop may be split (unwound) into two five-iter-
ation components. These components are also tagged. The
components are scheduled separately and may be exe-
cuted in parallel if no precedence constraints exist be-

v l = v 2 + v 3
for(i=l;i<=3;i++)

x[i] = x[i] + I

Fig. 7 . Generalized two-dimensional placement

v 4 = v2 - v 3
for(i=3;1<=6;i++) for(i=6;i<=9;i++)

x[i] = x[1] + 1 x[i] = x[i] + 1 ,

v l = v 2 + v 3 v 4 = v 2 - v 3 \ I for(i=l;i<=g;i++)
x[i] = x[i] + 1

vl = v 2 + v 3 v 4 = v 2 - v 3
for(i=l;i<=3;i++)

x[i] = x[i] + 1

(b)

tween them. However, this splitting does not preclude the
possibility of all the iterations of the loop being executed
on the same ALU if that happens to be the best configu-
ration. A possible scenario of loop splitting during the
annealing is shown in Fig. 9.

The components after splitting are tagged and may be
further split up into subcomponents. The number of com-
ponents a loop is split into (the degree of unwinding) a n d
the level of splitting is specified initially by the user. If
the number of components equals the number of loop it-
erations, then we are effectively performing full unwind-
ing. If splitting is not allowed, then the loop is being
treated as a basic operation. Other allocation algorithms
(e.g., 111, [4], 1141) also provide for loop unwinding and
scheduling in different ways. Data-dependent loop exits

116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL 8. NO. 7. JULY 1989

are a major problem with all loop unwinding approaches
(including ours). The number of iterations in the loop has
to be known in advance.

Another extension is trading off delay and cost for sin-
gle operations. For example, different adders may exist in
the library with varying area costs and delays. A fast ad-
der performing 32-bit addition in 25 ns may cost ten units;
a slower 40-ns adder may cost only five units. The choice
of the adder which minimizes the objective function, f ,
can be made during the annealing. A move during the
anneaIing would be to change a fast adder into a slow one
or vice versa. In general, more than two implementations
with different cost-delay tradeoffs can exist for an oper-
ator.

V. EXAMPLES A N D RESULTS

We use the code sequence in [l 11 as our first example.
The input file is shown in Fig. 10. The entire sequence
consists of an implic block, which implies that data de-
pendences are derived by the program and have not been
explicitly stated. Each operation is written in a Lisp-based
syntax with the operator as the first argument and the re-
sult the last, as described in Section 11. The INITIAL and
FINAL declarations imply that the following variables are
live in the beginning and the end of the sequence, respec-
tively. The SYMMETRIC declaration enumerates all the op-
erations whose operands are interchangeable.

In the first run (using the simulated-annealing-based al-
gorithm) the costs of arithmetic operations were 250
units, each register cost was ten units, each link ten units,
and execution cost per time slot was fixed at five units.
Execution speed was thus given a low priority in this run.
The optimization produced a serial sequence, shown in
Fig. 1 l(a), which needs eight cycles to execute. The CPU
time required for the simulated annealing run was 30 s on
a VAX 11/8650. The data path synthesized after bus al-
location is shown in Fig. l l(b). The minimal numbers of
registers and interconnections have been used.

Bus allocation is done after the code operation place-
ment using algorithms similar to [32]. However, during
the placement the amount of interconnect required is cal-
culated at every stage and minimized as described earlier.
We have assumed, while performing bus allocation, that
the data transfers for every microinstruction (opV,V,V,)
look as follows:

V, -+ link -+ bus -+ 1inkALUin 1

ALUout --t link + bus + link + V,
Vb + link + bus --t linkALUin2

The two input transfers to the ALU are required to occur
in parallel. If in fact we are allowed to make the two input
transfers to an ALU in sequence, one can synthesize a
data path for this example with only one bus.

The freedom in being able to arrange symmetric oper-
ands in order to minimize interconnect has been exploited
by the program. If that had not been done, more links
would have been required.

(implic
(add v l v2 v3)
(minus v3 v4 v5)
(mult v3 v6 v7)
(add v3 v.5 v8)
(add v l v7 v9)
(divide v10 v5 v l l)
(equal v3 v13)

(and v l l v8 v14)
(or v12 v9 v15)
(equal v14 v l)
(equal v15 v2)

(equal v l v12) .

1
INITIAL v l v2 v4 v6 v10
FINAL v l v2 v4 v6 v10
SYMMETRIC add mult or and

Fig. I O . Input file for example from [I I] .

(add v l v2 v3) I (equal v l v12)
(minus v3 v4 vl1) I

(mult v3 v6 v2)

1 (andv3 v l l v l) 1 I

\ W Y

(b)
Fig. 1 1 . (a) Code sequence after two-dimensional placement. (b) Synthe-

sized bus-style data path.

The placement of code operations produced by the pro-
gram given a higher execution time cost than in the pre-
vious case, that of 50 units, is shown in Fig. 12(a). The
register/ALU/interconnect cost was unaltered from the
previous run. Note that the placement is such that opera-
tions in the two ALU's have no operators in common-
an optimal grouping. The data path corresponding to the
code sequence in Fig. 12(a) is shown in Fig. 12(b), again
with a bus-style design. The CPU time required for syn-
thesis was 40 s on a VAX 11/8650. For two microinstruc-
tions in the same time slot, all the ALUin transfers are
assumed to occur simultaneously, and all the ALUout
transfers together. In the data path shown, four buses are
required. If the constraint of simultaneous input/output
transfers to all ALU's is relaxed, fewer buses will suffice.
The finite state machine controller specification for the
data path is shown in Fig. 12(c). A single input is required
to start computations. The outputs are the load signals to
the different links in the data path. Some links are con-
trolled by the same output.

Another small example, this time with conditional
clauses in the input description, is shown in Fig. 13. The

DEVADAS AND NEWTON: ALGORITHMS FOR H A R D W A R E ALLOCATION

0 SO
1 SO
- sl
- s%

- s3

- s4
- ~5

(a)

SO NOP N O P 00000000000000000000
s l N O P N O P 00000000000000000000
SZ A N D NOP 01000000100110000010
s3 SUI1 M U L 00101100000001100111
s4 A D D D I V 0000l0ll0000l001101l
~5 A N D OR 11010100000100001011
~6 A D D NOI' 00010000010100000010

input description is shown in Fig. 13(a); the two-dimen-
sional placement is shown in Fig. 13(b), and a multi-
plexer-style data path, which takes five or six cycles to
execute the description depending on what conditions are
asserted, is shown in Fig. 13(c).

A larger example is a MOSFET model evaluation rou-
tine implementing the Schichman-Hodges [33] level- 1
MOSFET model. Our goal, as before, was to synthesize
the data path of a specialized processor executing the soft-
ware description optimally under different cost con-
straints. The inputs to the processor are the MOSFET
voltages and device parameters, and the outputs are the
currents, conductances, and their derivatives. The data
paths can be used as coprocessors for model evaluation in
a hardware simulation engine.

The software description initially consisted of about 150
lines of C code. This was converted into about 300 lines
of input to the synthesis program. A total of 228 possible
operations existed in the input description (some of them
mutually exclusive). The operators used were all floating
point-add, minus, divide, multiply, minimum, maxi-
mum, etc. Using different hardware and execution time
costs, three different data paths were synthesized.

The first was a serial data path with a single ALU; the
second and third have two ALU's. The execution speeds
of the data paths (normalized to the serial data path), the
number of registers, buses, and links in the data path, the
estimated areas of the data paths (normalized to the serial
data path), and the CPU times, in minutes, for synthesis
on a VAX 11/8650 are summarized in Table I. The ALU's
in data paths 2 and 3 execute different sets of operations.

(serial
(parallel

1
(disjoint

)
(disjoint

(add v2 v3 VI) (divide v2 v3 v4)

(add V I v4 v6) (minus VI v4 v6)

(mult v6 v3 v7)
(serial (divide v6 v3 v8) (mult v8 v2 v7))

)
(parallel

))
(and v7 v4 v9) (or v7 V I v10)

(a)

(add v2 v3 v l) I (divide v2 v3 v4)

[(add v l v4 v6) 1

I (mult v2 v3 v6)
(andv6 v4v2) 1 (or v6 V I v3)

I

(c)
Fig. 13. (a) Input description. (b) Two-dimensional placement. (c) Mul-

tiplexer-style data path.

TABLE 1
MOSFET MODEL DATA PATH STATISTICS

0.54 4 + I* 11.2m

* memory bus
** signifies throughput rather than execution time

In data path 3, both ALU's perform multiplication/divi-
sion in addition to addition and subtraction. In data path
2, only ALUl performs multiplication/division. The data
paths are shown in Fig. 14. This large example illustrates
how the algorithms described in this paper can be used to
effectively explore trade-offs in the design space.

MOSFET evaluation entails filling in a matrix of cur-
rents and conductances-the matrix is assumed to be
stored in memory. This would be the case if the data paths
were to be used as coprocessors for a hardware simulation
engine.

778 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 7. JULY 19x9

ADDER ADDER MULTIPLIER ADDER
i = In

a = i + t2
b = a + t13
e = e ’ + b

g = t33 + t39
e’ = g + t26

d’ = m21 * e

Fig. 14. (a) Data path 1 . (b) Data path 2. (c) Data path 3

MULTIPLIER

f ’ = m24 * e

Our final example is the well-known elliptic filter ex-
ample, originally used in [14]. In Fig. 15(a), the input
description is shown, taken from [34]. The fastest real-
ization obtained by HAL [14] took 17 cycles to execute
the description and required three multipliers and three
adders (an adder is assumed to execute in one cycle and
the multiplier in two cycles). The fastest possible real-
ization using the simulated-annealing-based algorithms
also takes 17 cycles but requires one less multiplier. The
schedule obtained is shown in Fig. 15(b). The CPU time
required was 4 min on a VAX 11/8650. Tradeoffs can be
made for this example as well. Slower realization requir-
ing less hardware can easily be derived from the schedule
shown. These realizations are identical to those produced
by HAL in terms of processor utilization. Our algorithms
thus compare favorably with those proposed in the past
on this benchmark example.

The time required by the annealing algorithm grows ap-
proximately quadratically with the size of the data path
being optimized. In our implementation, the calculation
of the cost function is incremental and the complexity of
cost evaluation per move grows linearly with problem
size. Empirical evidence has demonstrated that the total
number of moves required to obtain high-quality solu-

c = c ’ + a
k = k ‘ + h

t39 = o + h

h = h ’ + t 3 9
j = j ’ + c t 2 ” = a + c

t38’ = m36 * k t18’ = m16 * j

I 4 I I

t18 = t18’ + t18
t13 = t18 + j

Out = 0

t38 = t38’ + t38
t33 = t38 + k

c = i + t2’

t2’ = m6 * t2”

t2 = i + t2’ I

tions, minimal with respect to the evaluation function,
grows approximately linearly with problem size. This re-
sults in an overall approximate quadratic complexity. This
behavior is quite reasonable-large examples like the
MOSFET model evaluator terminate expending accept-
able run times.

Heuristic algorithms work as well as, if not better than,
simulated annealing for problems that have relatively sim-
ple analytical formulations (e.g., graph partitioning). Our
placement problem has a large number of variables (mi-
croinstructions which have to be placed), an associated
set of constraints (hardware, execution speed, and dis-
jointness constraints), and, most importantly, a complex
(possibly nonanalytical) cost function. Simulated anneal-
ing works best for these kinds of problems relative to heu-
ristic algorithms. Also, incorporating additional con-
straints and complications in the cost function is easier in
a simulated-annealing-based algorithm than in a heuristic
algorithm.

The run time of our algorithm relies on quick evaluation
of cost functions. A good cost function is required to pro-
duce near-optimal data paths. However, a good cost func-
tion may not be amenable to a quick evaluation. Run time
can be kept down to a manageable level by using a quickly

DEVADAS AND NEWTON: ALGORITHMS FOR HARDWARE ALLOCATION 779

evaluated cost function at high temperatures, and the op-
timality of the solution can be maintained by using the
good cost function at low temperatures.

Our placement problem is conceptually similar to the
problem of floorplanning in VLSI layout. It is interesting
to note that simulated annealing is extensively used in in-
dustry to solve the floor-planning problem.

VI. SYNTHESIZING PIPELINED DATA PATHS

A . Introduction
Pipelining is an essential feature of the computers being

designed today [35]. Pipelining implies overlapping of
multiple tasks-each computation task is partitioned into
subtasks and each subtask is executed in a clock cycle.
Consecutive tasks are initiated at certain intervals, called
the latency of the pipeline, which are integral multiples
of a clock cycle.

Given an input data flow specification, pipeline synthe-
sis involves splitting the data flow graph into stages
(phases or partitions), with constraints on the number of
stages and stage delays, so as to optimize for execution
time and/or hardware cost. The number of stages, the
schedule of operations, and the hardware resources re-
quired in each stage are determined in pipeline synthesis.
Engineering solutions to pipeline scheduling given fixed
hardware resources have been published 1351-1371. A
pipeline synthesis procedure based on scheduling algo-
rithms was first published in [171.

SEHWA 1171 generates data paths from data flow
graphs along with a clocking scheme which overlaps ex-
ecution of tasks. SEHWA estimates the cost of a pipeline
based on the number of processing units of each type and
the number of latches required in the hardware implemen-
tation. It has been used to synthesize clocking schemes
for general-purpose computers with fetch-decode-exe-
cute pipelines 1381 and pipelined digital signal proces-
sors.

B. The Pipeline Synthesis Problem
Hardware resources cannot be shared across pipeline

stages. For example, given a two-stage pipeline, after
pipeline setup, the micro-operations in both stages will
have to be simultaneously performed on each clock cycle
(albeit on different input streams) and will, therefore, need
distinct computational units.

Our goal is to solve a more general pipeline synthesis
problem than that in [171, where registerllatch, arithmetic
operator, and interconnect costs are taken into account
during the pipelining. To this end, we have extended the
hardware allocation algorithms presented in Sections II-
IV to be able to synthesize pipelines.

Pipeline synthesis involves parritioning the input data
flow description into a number of pipeline stages and$nd-
ing a placement of micro-operations within each stage so
as to meet a cost or an execution time constraint. The
problem we solve is to synthesize a pipelined data path,
given a constraint on the maximum delay for each stage,

while minimizing a user-specified function of hardware
resource cost, C, and throughput of the pipeline, E ,
namely, f (C , E). C is the total hardware cost summed
over all the partitions (stages). E depends on the number
of stages in the pipeline and the maximum delay of any
stage.

C. Extensions for Pipeline Synthesis
The following modifications were made to the simu-

lated-annealing-based hardware allocation algorithm to
synthesize pipelined data paths.

1) The algorithm begins with a serial pipeline schedule
which does not violate the maximum stage delay
constraint. This serial schedule is constructed by
scheduling operations serially in a given stage and
beginning another stage when the stage delay ex-
ceeds the maximum allowed value. Given a parti-
tion, hardware costs are calculated as before, treat-
ing every partition as a separate two-dimensional
placement, and adding up all the costs of each par-
tition. This is done because hardware resources can-
not be shared across the phases.

2) Moves are generated during the annealing as before,
interchanging and displacing operations both within
a stage as well as across adjacent stages. The moves
are such that the precedence constraints between op-
erations are not violated. However, the maximum
stage delay limit may be violated by a move. These
violations are allowed in intermediate solutions but
are penalized so they do not appear in the final re-
sult. Operations in the last phase may be displaced
to a previously empty following phase, increasing
the number of phases. The number of phases may
also decrease during the annealing.

3) The throughput, E , of the pipeline is measured using
the number of stages, k , the delay of the stages, d,,
and the expected resynchronization rate, p , using the
equation shown below, which is similar to those de-
rived in [17]:

E a 1 / (1 + (MAX I (d ,) . k - 1) p) .

The tradeoff between delay and cost for single opera-
tions (Section IV) can also be made while synthesizing
pipelined data paths.

D. Examples
An example of pipelining a data flow specification is

illustrated in Fig. 16. Fig. 16(a) gives the unpipelined
data flow specification, with the tradeoffs for the adders
and multipliers specified as (cost, delay) number sets.
Given these tradeoffs, a maximum stage limit of 100 ns,
20-ns latch delay, and a latency of 2, the program was
asked to find the cheapest possible schedule with a max-
imum of six stages. The schedule synthesized is shown in
Fig. 16(b). The symbol +fdenotes a fast adder and + s a
slow adder (similarly for multiply). Both kinds of adders

7 80

3
y3 = w3 +, "1 y l = w l ., v3 y2 = w2 *, v4
y4 = w4 +, v2

4 ::

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8. NO. 7. JULY 1989

*S ~ *s I

S '5 1

vl = X I +x2 v 2 = x 3 + x 4 v 3 = x 5 * ~ 6 v 4 = ~ 7 * ~ 8
w l = v l + x 3 w 2 = v 2 + x 2 w 3 = ~ 3 + ~ 7 w 4 : : ~ 4 + ~ 6

zl = yl + y3 7.2 = yl * y3 23 = y2 + y4 24 = y2 * y4
yl = wl + v3 y2 = w2 + v4 y3 = w3 + v l y4 = w4 + v2

a l = z l + x 5 a 2 = d + x 6 a 3 = 2 3 + x 7 a 4 = 2 4 + x 8

1
2
3

+, (1.0,40) +, (1.5,25) /* cost delay tradeoff for + */
*, (2.0.80) *, (3.0.50) /* cost delay tradeoff for * */

(a)

time area time
1.0 21 2 + 1' 54 1.0 10.lm
0.65 21 4 + 1* 66 1.7 9.2m
0.54 21 4 + 1 * 77 2.5 11.2m

v l = x l +, x2 v3 = x5 *, x6
vl = x3 +. x4

w l = v l +, x3 v4 = x7 *, x8
w2 = v2 +, x2

w3 = v3 *, x7 w4 = v4 8, x6

2 u

I

ri

TABLE I1
SERIAL, PARALLEL, A N D PIPELINED DATA P A T H STATISTICS

1 DP 1 execution 1 #reg I #bus 1 #link I estimated I CPU I

* memory bus

and multipliers have been used to maximum advantage.
Since the latency is 2, resources can be shared across
stages 1 and 2, 3 and 4, 5 and 6; so two +s, one +,-, three
*$, and one *,- unit(s) are required, adding up to a total
cost of 12.5 units. The multiplier in stages 5-6 has to be
a *f unit, since a4 has to be computed after computing 24
in stage 6. The CPU time required to synthesize this pipe-
line schedule was 2 min on a VAX 11/8650.

Our second example is the MOSFET model evaluator
of Section V. The data path synthesized for a two-stage
pipeline with latency 1 is shown in Fig. 17. The statistics
of this data path are compared wtih those of data paths 1

and 3 (Fig. 14) in Table 11. Data path 3 is a parallel im-
plementation of the MOSFET model routine with two
ALU's, whereas data path 4 is a pipelined implementation
with two stages (each with a single ALU). Data path 4
has higher throughput (assuming no resynchronization)
but is slightly larger in area. The links shown in dotted
lines in Fig. 17 correspond to data transfers occurring
from the registers in the first pipeline stage to registers in
the second pipeline stage.

VII. LIMITATIONS A N D FUTURE WORK

In our approach, the quality of the synthesized data path
depends on how accurately the evaluation (or cost) func-
tion of the placement problem predicts the resulting data
path configuration. Given sufficient time, the minimality
of the cost function is guaranteed, via the use of simulated
annealing [25].

There are two problems with the evaluation function
that we use. One problem, as mentioned in Section 11-F,
has to do with interconnect area estimation [31]. More
accurate estimations of routing area, given the ALU's,
registers, and their connectivity, can improve the quality
of results. Better estimations will typically take longer to
evaluate. As mentioned in Section 111-G, the run time of
the annealing algorithm can be reduced, while maintain-
ing solution quality, by using a quick, relatively less ac-
curate evaluation function at high temperatures and the
more accurate evaluation function at lower temperatures.

The algorithm can incorporate constraints on the total
execution time of the code sequence and optimize exe-
cution time for specific code kernels. More complex con-
straints between the time of execution of different sets of
operations can be incorporated but would require a com-
plicated analysis during each move of the annealing,
thereby decreasing efficiency. Future work will address
these limitations.

VII. CONCLUSIONS

In this paper, we have described a novel method for
synthesizing data paths from behavioral descriptions. The
entire allocation process in data path synthesis can be for-
mulated as a two-dimensional placement problem of mi-
croinstructions in space and time. This formulation allows
simultaneous cost-constrained allocation of registers,
arithmetic units, and interconnect (buses and links) while
trading off hardware cost against execution speed. We
have presented a new, simulated-annealing-based solu-
tion to the data path synthesis problem which has achieved
excellent results. Finally, this simulated-annealing-based
approach has been extended to synthesize pipelined data
paths.

ACKNOWLEDGMENT

The authors would like to thank T . Ma for several in-
teresting discussions on data path synthesis.

DEVADAS AND NEWTON: ALGORITHMS FOR HARDWARE ALLOCATION 781

REFERENCES
[I] D. E. Thomas, C . Y. Hitchcock, T . J . Kowalski, J . V. Rajan, and

R. A. Walker, “Automated data path synthesis,” IEEE Computer,
vol. 21, pp. 59-70, Dec. 1983.

[2] H. Trickey, “Compiling Pascal programs into silicon,” Stanford
Computer Science Rep. STAN-CS-85-1059, Stanford Univ., Stan-
ford, CA, July 1985.

[3] A. C. Parker, M. Mlinar and J . Pizarro, “MAHA: A program for
data path synthesis,” in Proc. 23rd Design Automat. Conf. (Las Ve-
gas), June 1986, pp. 461-466.

[4] T . J. Kowalski and D. E. Thomas, “The VLSI design automation
assistant: What’s in a knowledge base,” in Proc. 22nd Design Au-
tomat. Conf. (Las Vegas), June 1985, pp. 252-258.

[SI M. C. McFarland and T. J . Kowalski, ‘‘Assisting DAA: The use of
global analysis in an expert system,” in Proc. Int. Conf. Comput.
Design (New York), Oct. 1986, pp. 482-485.

161 J . A. Fisher, “Trace scheduling: A technique for global microcode
compaction,” IEEE Trans. Comput., vol. C-30, pp. 478-490, July
1981.

[7] L. J . Hafer, “Automated data memory synthesis: A formal method
for the specification, analysis and design of register transfer level de-
sign logic,” Ph.D. dissertatioti.Carnegie Mellon Univ., Pittsburgh,
PA, June 1981.

[8] T. J . Kowalski and D. E. Thomas, “The VLSI design automation
assistant: Prototype System,” in Proc. 20th Design Auromar. Conf.
(Miami Beach), June 1983, pp. 479-483.

[9] 1. V. Rajan and D. E. Thomas, “Synthesis by delayed binding of
decisions,” in Proc. 22nd Design Auromar. Con$ (Las Vegas), June

[IO] C. Y. Hitchcock and D. E. Thomas, “A method for automatic data
path synthesis,” in Proc. 20th Design Automat. Con5 (Miami Beach),
June 1983, pp. 484-489.

[I I] C. Tseng and D. P. Siewiorek, “Facet: A procedure for the auto-
mated synthesis of digital systems,” in Proc. 20th Design Automat.
Conf. (Miami Beach), June 1983, pp. 490-496.

[121 -, “Emerald: A bus style designer,” in Proc. 21st Design Aufo-
mat. Con$ Las Vegas, June 1984, pp. 315-321.

[I31 E. F. Girczyc, “Automatic generation of microsequenced datapaths
to realize ADA circuit descriptions,” Ph.D. dissertation Carleton
Univ., July 1984.

[14] P. G. Paulin anad J . P. Knight, “Force-directed scheduling in auto-
matic datapath synthesis,’’ in Proc. 24th Design Auromar. Con$
(Miami Beach), July 1987, pp. 195-202.

[IS] H. Trickey, “Flamel: A high-level hardware compiler,” IEEE Trans.
Computer-Aided Design, vol. CAD-6, pp. 259-269, Mar. 1987.

[I61 H. D. Man, “CATHEDRAL-11: A silicon compiler for digital signal
processing,” IEEE Design and Test, pp. 13-25, Dec. 1986.

[171 N. Park and A. C . Parker, “SEHWA: A program for the synthesis of
pipelines,” in Proc. 23rd Design Auromar. Con$ (Las Vegas), July
1986, pp. 454-460.

1181 D. E. Thomas et a l . , “The system architect’s workbench,” in Proc.

1985, pp. 367-373.

[22] M. C . McFarland, A. C. Parker, and R. Campasano. “Tutorial on
high-level synthesis,” in Proc. 25th Design Automat. Conf. (Ana-
heim), June 1988, pp. 330-336.

[23] R. K. Brayton et a l . , “The Yorktown Silicon Compiler,” in Silicon
Compilation. Reading, MA: Addison Wesley, 1988, pp. 204-31 1 .

[24] S . Kirkpatrick, C . D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671-680, May
1983.

[25] F. Romeo and A. Sangiovanni-Vincentelli, “Probabilistic hill climb-
ing algorithms: Properties and applications,” in Proc. 1985 Chapel
Hill Con$ VLSI (Chapel Hill), Dec. 1985, pp. 393-417.

[26] G. D. Micheli and A. Sangiovanni-Vincentelli, “Multiple con-
strained folding of programmable logic arrays: Theory and applica-
tions,” IEEE Trans. Compurer-Aided Design, vol. CAD-2, pp. 151-
167, July 1983.

[27] S . Devadas and A. R. Newton, “GENIE: A generalized array opti-
mizer for VLSI synthesis,” in Proc. 23rd Design Automat. Con$ (Las
Vegas), July 1986, pp. 631-637.

[28] P. Egan and C. L. Liu, “Bipartite folding and partitioning of a PLA.”
IEEE Trans. Computer-Aided Design, vol. CAD-3, pp. 191-198, July
1984.

[29] A. Hashimoto and J. Stevens, “Wire routing by optimizing channel
assignment within large apertures,” in Proc. 8th D. A. Workshop (Las
Vegas), 1971, pp. 155-169.

[30] C. Sechen and A. Sangiovanni-Vincentelli, “The Timberwolf place-
ment and routing package,” IEEE J . Solid-State Circuits, vol. SC-
20, pp. 510-522, Apr. 1985.

[3 I] M. C. McFarland, “Reevaluating the design space for register-trans-
fer hardware synthesis,” in Proc. ICCAD-87 (Santa Clara), Nov.

[32] C. Tseng and D. P. Siewiorek, “The modeling and synthesis of bus
systems,” in Proc. 18th Design Automat. Conf. (Nashville), June
1981, pp. 471-478.

[33] D. A. Hodges and H. G. Jackson, Analysis and Design of Digiral
Inregrated Circuits.

[34] B. M. Pangrle, “Splicer: A heuristic approach to connectivity bind-
ing,” in Proc. 25rh Design Automat. Con& (Anaheim), June 1988,
pp. 536-541.

[35] P. M. Kogge, The Architecture of Pipelined Compurers. New York:
McGraw-Hill, 1981.

[36] E. Davidson, “Effective control for pipelined computers,” in COMP-
CONDig. (San Francisco), 1975, pp. 181-184.

(371 J. H. Patel and F. S . Davidson, “Improving the throughput of a pipe-
line by, the insertion of delays,” in Proc. IEEEIACM 3rd Annual
Symp. Comput. Architecture (Rochester), 1976, pp. 159-163.

[38] N. Park and A. C. Parker, “Synthesis of optimal clocking schemes,”
in Proc. 22nd Design Automat. Conf. (Las Vegas), June 1985, pp.

1987, pp. 262-265.

New York: McGraw-Hill, 1983.

489-495.

*
. .

25th Design Automat. Conf. (Anaheim), June 1988, pp. 337-343.
[I91 G. DeMicheli and D. Ku, “HERCULES: A system for high-level

synthesis,” in Proc. 25th Design Automat. Conf (Anaheim), June
SriniVaS Devadas (S’87-M’88), for a photograph and biography, please
see page 188 of the February 1989 issue of this TRANSACTIONS.

(988, pp. 483-488.
[20] R. Wei, S. Rothweiler, and J . Jou, “BECOME: Behavior level circuit

synthesis based on structure mapping,” in Proc. 25th Design Auro-
mat. Conf. (Anaheim), June 1988, pp. 409-414.

[21] C . Tseng er a l . , “BRIDGE: A versatile behavioral synthesis SYS-

tern,” in Proc. 25th Design Automat. Con$ (Anaheim), June 1988,

*

A. Richard Newton (S’73-M’78-SM’86-F’88), for a photograph and bi-
ography, please see page 22 of the January 1989 issue of this TRANSAC-

pp. 415-420. TIONS.

