
RaPiD - Recon�gurable Pipelined Datapath?y

Carl Ebeling, Darren C. Cronquist, and Paul Franklin

Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350

Abstract. Con�gurable computing has captured the imagination of many

architects who want the performance of application-speci�c hardware

combined with the reprogrammability of general-purpose computers. Un-

fortunately, con�gurable computing has had rather limited success largely

because the FPGAs on which they are built are more suited to imple-

menting random logic than computing tasks. This paper presents RaPiD,

a new coarse-grained FPGA architecture that is optimized for highly

repetitive, computation-intensive tasks. Very deep application-speci�c

computation pipelines can be con�gured in RaPiD. These pipelines make

much more e�cient use of silicon than traditional FPGAs and also yield

much higher performance for a wide range of applications.

1 Introduction

Con�gurable computing promises to deliver the high performance required by

computationally demanding applications while providing the
exibility and adapt-

ability of programmed processors. As such, con�gurable computing platforms lie

somewhere between ASIC solutions, which provide the highest performance/cost

at the expense of
exibility and adaptability, and programmable processors,

which provide the greatest
exibility at the expense of performance/cost. Un-

fortunately the promise of con�gurable computing has yet to be realized in spite

of some very successful examples[1, 5]. There are two main reasons for this.

First, con�gurable computing platforms are currently implemented using com-

mercial FPGAs which are very e�cient for implementing random logic functions,

but much less so for general arithmetic functions. Building a multiplier using an

FPGA incurs a performance/cost penalty of at least 100. Second, current con�g-

urable platforms are extremely hard to program[5, 6]. Taking an application from

concept to a high-performance implementation is a time-consuming, designer-

intensive task. The dream of automatic compilation from high-level speci�cation

to a fast and e�cient implementation is still unattainable.

? This paper appeared in FPL '96: The 6th International Workshop on Field-

Programmable Logic and Applications, pages 126-135. Springer-Verlag, 1996.
y This work was supported in part by the Defense Advanced Research Projects Agency

under Contract DAAH04-94-G0272. D. Cronquist was supported in part by an IBM

fellowship. P. Franklin was supported by an NSF fellowship.

The RaPiD architecture takes aim at these two problems in the context

of computationally demanding tasks such as those found in signal processing

applications. RaPiD is a coarse-grained FPGA architecture that allows deeply

pipelined computational datapaths to be constructed dynamically from a mix

of ALUs, multipliers, registers and local memories. The goal of RaPiD is to

compile regular computations like those found in DSP applications into both

an application-speci�c datapath and the program for controlling that datapath.

The datapath is controlled using a combination of static and dynamic control

signals. The static control determines the underlying structure of the datapath

that remains constant for a particular application. The dynamic control signals

can change from cycle to cycle and specify the variable operations performed

and the data to be used by those operations. The static control signals are

generated by static RAM cells that are changed only between applications while

the dynamic control is provided by a control program.

The structure of the datapaths constructed in RaPiD is biased strongly to-

wards linear arrays of functional units communicating in mostly a nearest neigh-

bor fashion. Systolic arrays[2], for example, map very well into RaPiD datapaths,

which allows the considerable amount of research on compiling to systolic ar-

rays to be applied to compiling computations to RaPiD[4, 3]. RaPiD is not

limited to implementing systolic arrays, however. For example, a pipeline can be

constructed which comprises di�erent computations at di�erent stages and at

di�erent times.

The computational bandwidth provided by a RaPiD array is extremely high

and scales with the size of the array. The input and output data bandwidth,

however, is limited to the data memory bandwidth which does not scale. Thus

the amount of computation performed per I/O operation bounds the amount of

parallelism and thus the speedup an application can exhibit when implemented

using RaPiD. The RaPiD architecture assumes that at most three memory ac-

cesses are made per cycle. Providing even this much bandwidth requires a very

high-performance memory architecture.

RaPiD is also not suited for tasks that are unstructured, not highly repetitive,

or whose control
ow depends strongly on the data. The assumption is that

RaPiD will be integrated closely with a RISC engine on the same chip. The

RISC would control the overall computational
ow, farming out the heavy-duty

computation to RaPiD that requires brute force computation.

The concept of RaPiD can in theory be extended to 2-D arrays of functional

units. However, dynamically con�guring 2-D arrays is much more di�cult, and

the underlying communication structure is much more costly. Since most 2-D

computations can be computed e�ciently using a linear array, RaPiD is currently

restricted to linear arrays.

The paper begins with a description of the datapath architecture and how

computations are con�gured. This is followed by a description of the way dy-

namic control signals are generated. Next, a FIR �lter example is used to illus-

trate how computations are mapped to the RaPiD architecture. The paper ends

with a discussion of the performance of RaPiD-I and future work.

2 RaPiD Architecture

This section describes the version of the RaPiD architecture, called RaPiD-I,

which is currently being implemented at the University of Washington. Variants

of this architecture with a di�erent data width and data format, di�erent func-

tional units, di�erent number and con�guration of busses and so on, could be

de�ned for di�erent application domains. The RaPiD-I architecture contains all

the salient features of RaPiD and will allow us to describe RaPiD computations

for a variety of applications.

bus connector

R
A
M

U
L
A

U
L
A

R
A
M

H

L

R
A
M

Fig. 1. The basic cell of RaPiD-I. This cell is replicated left to right to form a

complete RaPiD array.

RaPiD-I is a linear array of functional units which can be con�gured to form

a (mostly) linear computational pipeline. This array of functional units is divided

into identical cells which are replicated to form a complete array. One cell for

RaPiD-I is shown in Figure 1. This cell comprises an integer multiplier, two

integer ALUs, six general-purpose registers and three small local memories. The

complete RaPiD-I array contains 16 of these cells. Although the array is divided

into cells, this division is invisible when it comes to mapping an application to

the functional units and busses.

The functional units are interconnected using a set of ten segmented busses

that run the length of the datapath. Each input of the functional units is at-

tached to a multiplexer which is con�gured to select one of eight busses. Each

output of the functional units is attached to a demultiplexer comprised of tristate

drivers, each driving one of eight busses. Each output driver can be con�gured

independently, which allows an output to fan out to several busses, or none at

all if the functional unit is not being used. The assignment of operations to func-

tional units must be done so there is a bus segment available to connect units

that communicate.

The busses in di�erent tracks are segmented into di�erent lengths so that

bus tracks are used e�ciently. In several tracks, adjacent bus segments can be

connected together using either a bu�er or a register. This bus connector is

shown in Figure 2 and is represented in Figure 1 as a pair of lines between bus

segments. The connection is active and can drive in either direction but not both

at once. Many of the registers in a pipelined computation can be implemented

using these bus pipeline registers. In theory, all the bus segments in one track

could be connected together by bus connectors con�gured as bypass bu�ers to

provide a broadcast signal the length of the array. In practice, the delay is much

too long and all signals are pipelined to some degree.

bypass-left
bypass-right

right-to-left
left-to-right

busbus
left right

Fig. 2. Bus connectors can be used to connect adjacent bus segments via a bu�er

or a register.

Functional unit outputs are registered, although this output register can

be bypassed via con�guration control. Functional units may additionally be

pipelined internally depending on their complexity. These pipeline registers can

also be bypassed if appropriate.

RaPiD-I operates on 16-bit signed or unsigned �xed-point data which is

maintained via shifters in the multipliers. Di�erent �xed point representation

can be used in the same application by appropriately con�guring the di�erent

shifters in the datapath. An extra tag bit is associated with each data value

to indicate whether an over
ow has occurred. Once set, the over
ow value is

propagated to all results. The datapath thus generates no exceptions during

operation, but incorporates them into the data produced.

The ALUs perform the usual logical and arithmetic operations on 16-bit

data. The two ALUs in a cell can be combined to perform a pipelined 32-bit

operation, most typically as a 32-bit add for multiply-accumulate computations.

The ALU output register can be used as the accumulator for multiply-accumulate

operations.

The multiplier multiplies two 16-bit numbers and produces a 32-bit result,

shifted by a statically programmed amount to maintain the appropriate �xed-

point representation. Both 16-bit halves of the result are available as output via

separate bus drivers. Either driver can be turned o� to drop the corresponding

output if it is not needed. The multiplier uses a modi�ed Booth's algorithm and

includes one con�gurable pipeline register.

load
clr

to bus

bypass

from bus

0

Fig. 3. Datapath register.

The registers in the datapath are used to store constants and temporary val-

ues as well as create pipelines of di�erent lengths. These registers are completely

general unlike the registers found in the bus connectors and functional units,

which are used only for pipelining. Figure 3 shows the design of the datapath

registers. The datapath register inputs and outputs are connected to the busses

just like other functional units. One con�guration signal controls whether the

output is driven by the register or the bypass path. This bypass is used to con-

nect a bus segment on one track to a bus segment in a di�erent track. The load

and clear signals control the operation of the register. As discussed in Section 3,

these control signals must be set dynamically. While datapath registers are very

general, they are expensive in terms of both area and bus utilization. While

the datapath registers themselves are relatively small, their input multiplexer

and output drivers are quite large. Wiring the input and output of a datapath

register usually requires bus segments in two di�erent tracks which consumes

extra routing resources. Thus the bus pipeline registers and the functional unit

registers are used whenever possible.

A limited amount of local memory is provided in the datapath for saving

and reusing data over many cycles. In many applications, the input or output

data is segmented into blocks that are accessed once, saved locally and reused as

needed, and then discarded. Local memory can also be used for constant arrays.

RaPiD-I includes three local memories per cell. The input and output data lines

are connected to busses as in other functional units. Because of the time needed

to read and write memory, con�gurable registers are included on both the input

and output data ports. The memory address is supplied either by a data bus or

by a local address generator, shown in Figure 4, that supports simple sequential

memory access. If values are read and written to consecutive addresses, which

is the most common case, then the memory address generator can supply the

addresses without using datapath resources.

address

R/W

Memory+1

AddressIn

inc/hold

load/clear/count

0

R/W

DataoutDatain

Fig. 4. Local memory.

Input and output data enter and exit the datapath via I/O streams at each

end of the datapath. These streams act as the interface to external memory. Each

stream contains a FIFO which is �lled with data required by the computation or

with results produced by the computation. The data for each stream is associated

with a predetermined block of memory from which it is read or to which it is

written. The datapath reads from an input stream to obtain the next input data

value and writes to an output stream to store a result. Address generation and

memory reads and writes are handled entirely by the I/O streams themselves.

The I/O stream FIFOs operate asynchronously: if the datapath reads a value

from an empty FIFO or writes a value to a full FIFO, the datapath is stalled

until the FIFO is ready.

3 Datapath Control

For the most part, the signals that control the operation of the functional units

and their interconnection can be static over an entire application. However,

there are almost always some control signals that must be dynamic. For ex-

ample, constants are loaded into datapath registers during initialization but

then remain unchanged. The load signals of the datapath registers thus take

on di�erent values during initialization and computation. More complex exam-

ples include double-bu�ering the local memories and performing data-dependent

calculations.

The control signals are thus divided into static control signals provided by

con�guration memory as in ordinary FPGAs, and dynamic control which must

be provided on every cycle. RaPiD is programmed for a particular application

by �rst mapping the computation onto a datapath pipeline. The static program-

ming bits are used to construct this pipeline and the dynamic programming bits

are used to schedule the operations of the computation onto the datapath over

time. A controller is programmed to generate the dynamic information needed

to produce the dynamic programming bits.

Of the 230 control signals in a RaPiD-I cell, 80 are dynamic. Thus there is a

total of over 1200 dynamic control signals for the entire datapath. While con�g-

uration memory is relatively cheap, producing and communicating the dynamic

control signals on every cycle, using a standard microprogram for example, would

be very expensive.

The problem of generating static control signals is solved using a control path

which parallels the data path. RaPiD applications map into pipelines of similar,

if not identical, repeating pipeline stages. The control signals of these stages are

thus similar as well, except that their values are skewed in time in the same way

the data passing through the pipeline is skewed in time.

The control path is thus a set of segmented busses containing con�gurable

pipeline registers through which control signal values are sent from one end of the

datapath to the other. Control values are inserted at one end of the control path

and are passed from stage to stage where they are applied to the appropriate

control signals. The con�gurable pipeline registers allow di�erent control signals

to travel at di�erent rates through the control path.

Generating the dynamic control signals is then accomplished by connecting

each dynamic control signal to a bus in the control path that carries the ap-

propriate value each cycle. The number of busses required in the control path

varies by application, but it is kept manageable because many control signals

have identical values. The values inserted into the control path are generated by

a simple microprogrammed controller whose microinstructions contain the dat-

apath control information in addition to looping constructs that allow datapath

instructions or instruction sequences to be repeated many times.

4 Example Application: FIR Filter

The simple FIR �lter provides a good illustration of how RaPiD executes algo-

rithms. Figure 5a gives a speci�cation for a NumTaps �lter with NumX inputs.

The �lter weights are stored in the W array, the input in the X array, and the

output in the Y array (starting at array locationNumTaps�1). Figure 5b shows

the entire computation required for a single output of a 4-tap FIR �lter.

for i = NumTaps-1 to NumX-1

Y[i] = 0

for j = 0 to NumTaps-1

Y[i] = Y[i] + X[i-j]*W[j]

end

end

W3W2W0 W1

Y6 =

.....X9......X8......X7......X6......X5......X4......X3......X2......X1......X0

(a) (b)

Fig. 5. (a) Algorithm for FIR �lter. (b) Computation for NumTaps=4 and i=6.

As with most applications, there are a variety of ways to map FIR �lter to

RaPiD. The choice of mapping is driven by the parameters of both the RaPiD

array and the application. For example, if the number of taps is less than the

number of RaPiD multipliers, then each multiplier is assigned to multiply a

speci�c weight. The weights are �rst preloaded into datapath registers whose

outputs drive the input of a speci�c multiplier. Pipeline registers are used to

stream the X inputs and Y outputs. Since each Y output must see NumTaps

inputs, the X and Y busses are pipelined at di�erent rates. Figure 6a shows a

schematic diagram for this implementation on a four-tap FIR �lter. The X input

bus was chosen to be doubly pipelined and the Y input bus singly pipelined.

Wires are annotated with the weight, input, and output values from a single

point in time during the computation phase.

Y8 Y7 Y6 Y5

W3W2W1W0

X9 X8 X7 X6 X5 X4 X3 X2

ALU

* *

ALU

*

ALU

*

ALU

IN

OUT

0

(a)

OUT
IN

Y

X

W

Y

X

U
L
A

H

L

U
L
A

W

H

L

(b)

Fig. 6. (a) Schematic diagram for four-tap FIR �lter, labeled at a point in time

(computing four parallel computations for y5, y6, y7, and y8). (b) Two taps of

the FIR �lter mapped to the RaPiD array (this is replicated to form more taps).

This implementation maps easily to the RaPiD array, as shown for two taps in

Figure 6b. For clarity, all unused functional units are removed, and used busses

are highlighted. The bus connectors from Figure 1 are left open to represent

no connection and boxed to represent a register. The control for this mapping

consists of two phases of execution: loading the weights and computing the out-

put results. In the �rst phase, the weights are sent down the IN double pipeline

along with a singly pipelined control bit (not shown) which sets the state of each

datapath register to \LOAD". When the �nal weight is inserted, the control bit

is switched to \HOLD". Since the control bit travels twice as fast as the weights,

each datapath register will hold a unique weight. No special signals are required

to begin the computation; hence, the second phase is started the moment the

control bit is set to \HOLD".

5 Performance

This section evaluates the sustained (ignoring initialization and �nalization)

computation rate of mapping FIR �lter and matrix multiply to the RaPiD array.

These results are a function of both the RaPiD array parameters and the algo-

rithmic parameters. The parameters associated with the RaPiD array are the

clock rate in MHz (�), the number of cells (S), and the number of addressable

memory locations per cell (M). Because RaPiD by its very nature is heavily

pipelined, a conservative estimate on the RaPiD-I clock rate of a mapped appli-

cation is 100MHz. In addition, conservative estimates of the number of RaPiD-I

cells and memory locations per cell are 16 and 96, respectively. Results will be

measured in MOPS or GOPS, where an operation is a single multiply-accumulate

combination. The maximum rate on RaPiD-I is 1.6 GOPS.

5.1 FIR Filter

The only algorithmic parameter a�ecting the sustained computation rate of the

FIR �lter is the number of taps, T . The mapping described in Section 4 produced

one output per cycle and thus �T MOPS with the constraint that T � S. For a

more general mapping restricting the taps to T � 1

3
MS, the RaPiD array can

produce min(1; S
T
) outputs per cycle and � min(T; S) MOPS.5 For example, with

� = 100, S = 16, M = 96, and T � 16, RaPiD can perform a sustained rate of

1:6 GOPS on a FIR �lter with up to 512 taps (and an unbounded number of

input values).

5.2 Matrix Multiply

Matrix multiply takes an X �Y matrix A and a Y �Z matrix B and computes

the X � Z matrix C = A � B as cij =
PY�1

k=0 aikbkj . Many di�erent RaPiD

mappings exist, each producing slightly di�erent performance results. In one

implementation, the RaPiD array can produce min(1; S
Y
;

1

3
M

Y
) operations per

cycle and � min(Y; 1
3
M;S) MOPS. With � = 100, S = 16, M = 96, and Y � 16,

RaPiD can perform a sustained rate of 1:6 GOPS (X and Z are unbounded).

5 This is a simpli�ed version of a more complex formulation which is beyond the scope

of this paper.

6 Conclusions and Future Work

The RaPiD architecture potentially provides a very e�cient recon�gurable plat-

form for implementing computationally intensive applications. Many applica-

tions have been mapped successfully by hand to RaPiD and simulated with very

promising results. However, there are several open problems which need to be

solved to make RaPiD truly successful.

{ The domain of applicability must be explored by mapping more problems

from di�erent domains to RaPiD.

{ Thus far all RaPiD applications have been designed by hand. The next

step will be to apply compiler technology, particularly loop-transformation

theory[7] and systolic array compiling methods[4] to build a compiler for

RaPiD.

{ A memory architecture must be designed which can support the I/O band-

width required by RaPiD over a wide range of applications.

{ Although it is clear that RaPiD should be closely coupled to a generic RISC

processor, it is not clear exactly how this should be done. This is a problem

being faced by other recon�gurable computers.

Acknowledgments

We would like to thank the rest of the RaPiD team, Chris Fisher, Larry Mc-

Murchie and Je�rey Weener, for their contributions to the project.

References

1. J. M. Arnold, D. A. Buell, D. T. Hoang, D. V. Pryor, N. Shirazi, and M. R. This-

tle. The Splash 2 processor and applications. In Proceedings IEEE International

Conference on Computer Design: VLSI in Computers and Processors, pages 482{5.

IEEE Comput. Soc. Press, 1993.

2. H.T. Kung. Let's design algorithms for VLSI systems. Technical Report CMU-CS-

79-151, Carnegie-Mellon University, January 1979.

3. P. Lee and Z. M. Kedem. Synthesizing linear array algorithms from nested FOR

loop algorithms. IEEE Transactions on Computers, 37(12):1578{98, 1988.

4. D. I. Moldovan and J. A. B. Fortes. Partitioning and mapping algorithms into �xed

size systolic arrays. IEEE Transactions on Computers, C-35(1):1{12, 1986.

5. J. E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. H. Touati, and P. Boucard.

Programmable active memories: recon�gurable systems come of age. IEEE Trans-

actions on Very Large Scale Integration (VLSI) Systems, 4(1):56{69, 1996.

6. M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silverman,

and S. Ghosh. PRISM-II compiler and architecture. In Proceedings IEEE Workshop

on FPGAs for Custom Computing Machines, pages 9{16. IEEE Comput. Soc. Press,

1993.

7. M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to maxi-

mize parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452{

471, 1991.

This article was processed using the LATEX macro package with LLNCS style

