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1 INTRODUCTION 

Over the past several years, Field Programmable 
Gate Arrays (FPGAs) have functioned effectively as 
specialized processors capable of an order of magni- 
tude improved performance over workstations a t  a 
fraction of the cost. I t  is widely recognized, how- 
ever, that  for FPGAs to gain acceptance in the soft- 
ware community as algorithm accelerator$, tools to 
create hardware realizations of those algorithms must 
be greatly improved. In this paper, me present an 
integrated tool set to generate highly optimized hard- 
ware computation blocks from a C language subset. 
By starting with a C language description of the al- 
gorithm, we address the problem of making FPGA 
processors accessible to programmers as opposed to 
hardware designers. 

Our work is specifically targeted to fine grained FP- 
GAS such as the National Semiconductor CLAyT’” 
FPGA family. Such FPGAs exhibit extremely high 
performance on regular datapath circuits, which are 
more prevalent in compiitationally oriented hardware 
applications’ dense packing of datapath functional el- 
ements makes it possible to fit the computation on 
one or a small number of chips, and the use of lo- 
cal routing resources makes it possible to clock the 
chip a t  a high rate. By developing a lower level tool 
suite that  exploits the regular, geometric nature of fine 
grained FPGAs, and mapping the compiler output to 

‘In contrast, random control logic is more common in glue 
logic applications, for which coarse grained FPGAs are some- 
times more versatile. 
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this tool suite, me greatly improve performance over 
traditional high level synthesis to  fine grained FPGAs. 
Individual arbitrary bit-length functions in our library 
show a factor of 2.6-7.9 improvement in area over com- 
mercial synthesis. We have found 2-3X improvement 
in area and routing resource in C language applica- 
tions tested. In addition, since most of the elements 
of the design are pre-placed and pre-routed, compila- 
tion time (from C to bit stream) is on the order of 
minutes rather than the hour(s) for traditional syn- 
thesis followed by Auto Place and Route. 

The organization of the remainder of the paper is as 
follows. The next section reviews related work. Then 
we discuss the CLAY architecture. Next we describe 
the “module generator” Modgen tool, that enables 
a hardware designer to build parameterized macros, 
where the parameters can be bit length, pitch, and 
shape. Elements of the module library available to  the 
compiler and other hardware designers are presented. 
The next section describes the synthesis strategy of 
the Malleable Architectlire Generator (MARGE) com- 
piler. The compiler creates custom “instruction”’ and 
maps those instructions to instantiations of macros in 
the module generator library. The final section sum- 
marizes our approach. 

2 Related Work 

Pre-placed, pre-routed macro libraries are common- 
place tools provided by FPGA vendors. Our inno- 
vation is in the iise of parameterized macro genera- 
tors, and in the use of a macro definition language 
t,hat allows parameterization of placement and rout- 
ing choices. Related work in the latter area is the 
Logic Description Generator (LDG) [3 ] ,  that  was used 
on Splash-1 to create pre-placed, pre-routed systolic 
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structures on Xilinx 3090 FPGAs. LDG mas embed- 
ded in Lisp and was purely textual. In contrast the 
Modgen system has both a C-language-like input as 
well as graphical input. Modgen also has an associated 
simulation environment so that  module generators can 
be developed and tested very rapidly, a capability that  
mas not available with LDG. 

Other C-to-hardware synthesis environments in- 
clude the Prism system [l] and its successor Prism-I1 
[12]. Luk and Page [8] have also developed a system 
to compile Occam into FPGAs. Our approach differs 
from these efforts in that our programming model is a 
data  parallel one in which the programmer controls the 
bit size of da ta  and operations; that  our synthesis is di- 
rected towards hybrid conventional processor/FPGA 
array environments; and that we specifically target 
highly optimized bit-slice organized macros. 

3 The CLAY Architecture 

The CLAy technology [ll] employs a patented, 
RAM-based, regular architecture. Timing is regular 
and predictable due to the symmetrical architecture. 
An external clock can be used to synchronize the en- 
tire device or individual columns of cells, resulting in 
minimal skew. 

The CLAY logic cell (up to  3 inputs, 2 outputs) im- 
plements a set of logic functions stemming from forty- 
four cell states including simple functions like NOR, 
AND, NAND, OR, XOR, INV, MUX, FlipFlop and 
complex functions using combinations of the above 
(e.g. Half-Adder, Registered Half-Adder, etc.). 

The CLAy31 provides 3136 logic cells with an av- 
erage usable gate count of approximately 5 1 ~  gates a t  
30% utilization (the CLAyl0 provides 1024 logic cells). 
The actual gate count is typically higher for compute- 
intensive designs. For example, a 12-bit, 26-tap lom- 
pass filter constructed automatically using the module 
generation system yields a 131~ gate design that utilizes 
79% of the array. 

A unique feature is its partial as well as full reconfig- 
nrability by cell. The device can dynamically reconfig- 
lire any given section mithont affecting the operation 
of other sections. The CLAy31 can be fully reconfig- 
ured in approximately 0.6 milliseconds, equivalent to 
a reconfiguration rate of 8 million gates per second. 

The CLAy technology is also packaged in a Field 
Configurable Multi Chip hlodule (FChI). An FChI 
contains four CLAY 31 “tiles” arranged in a 2 x 2 ar- 
ray. The FCM features over 20,000 useable gates and 
432 user I/O. It  is packaged in a 625 pin Ball Grid 

Array with 448 inter-module connections per device, 
greatly reducing inter-tile routing delay. The Napa 
array consists of one or more FCMs plus SRAM on a 
PCI bus [ 5 ] .  

4 Module Generator 

At the heart of our synthesis capability is the mod- 
ule generation system Modgen developed by Charle’ 
Rupp for National Semiconductor. The module gen- 
eration system enables a designer to build a library of 
parameterized generators that  allow the creation of a 
specific function with any number of bits (subject to  
the size limitations of the chip) with tradeoffs between 
speed and area. 

The library of generators encapsulate construction 
algorithms specific to the architecture which reflect de- 
sign and layout complexity captured from an expert 
designer for the technology, thereby maximizing func- 
tional density and performance. The actual generators 
exist in a C-like language called D4[9] and are easily 
written and tested once a specific function has been 
identified and prototyped. At the present time, the 
library of generators contain most of the commonly 
used compute functions used in datapath design. 

4.1 Module Library 

Figure 1 shows a partial list of generators available 
in the library[lO]. 

Specifically, for the CLAy technology, Reed-Muller 
logic[7] has been highly leveraged for most of the 
compute-oriented functions as it offers an  efficient al- 
ternative given the structure of the core cells in the ar- 
ray (XOR-based). Given the combination of this tech- 
nique along with the expert place and route techniques 
imparted upon the generators, the macro functions 
result in extremely dense and performance-intensive 
manifestations for the technology. 

As an example of quantitative comparison between 
functions generated using the module generators and 
functions generated using a combination of synthesis 
and automatic place and route tools, refer to  Figure 2 
The figure compares area and delay for several repre- 
sentative functions. Area is expressed in cells. Delay 
has been normalized, with the hlodgen delay for each 
function as the unit delay. The figure shows that  the 
synthesis designs occupy between 2.6 - 7.9 times as 
many cells as the equivalent Modgen designs. The 
synthesis designs have 1.6 - 4.3 times the delay of the 
XIodgen designs. 
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Arithmetic 
ALUs 
Absolute Value 
Adders 
Decrementers 
Increment ers 
Counters 
Shift Operations 
Boolean Funcs. 
Multipliers 
Rotators 

Figure 1: Module Generator Library 

Control Signal Processing 
Coinparators FIR Filters 
Encoders Lin. Seq. Gen. 
Decoders CRC detect/gen 
Hi/Lo/True/Comp blocks Gray Code converters 
Mask generators 
Mu1 t iplexors 
Tristate Buses 

14-bit ADD 

Figure 2: Area/Delay Comparison 

The parameterized generators not only eliminate 
the need to maintain large predefined macro libraries, 
but more significantly accommodate the generation of 
functions with arbitrary bit length. Rather than using 
functions divisible by 4-bits (as offered in most coarse- 
grain architecture systems) and wasting the iinused bit 
logic, functions of specific bit-lengths can be invoked. 
This results from the bit slice techniques used in the 
generators. Given a large number of functions using 
non-standard bit sizes, significant area can be saved. 

Additional flexibilities exist in the generators to al- 
low the designer to make area and speed tradeoffs (al- 
gorithm selection) as well as physical options to ease 
integration with other functions. For example, differ- 
ent multiplier algorithms allow speed area tradeoffs 
(e.g. Ripple Carry V.S. Carry Save). Examples of 
physical options are output spacing and control line 
placement. Output spacing (referred to as the “pitch” 
parameter) is important when abutting to other mod- 
ules during final integration. If a module .is driving 
another module with input pins residing on a pitch 
of 2, selecting a pitch 2 output spacing allovvs perfect 
abuttment with no routing overhead (thereby mini- 
mizing area and delay). Strategic physical placement 
of control lines also serves to minimize routing during 
the integration stage. 

Figure 3 shows an example fragment of D4 code for 

Memory 
Register Banks 
ROM 
EEROM 
SRAM 

an adder function. Although the code displayed here 
is purposely incomplete (to simplify the example), it 
illlistrates the use of parameters (width, pitch, speed, 
options). 

We have also gained efficiency by using generators 
for multiplexing structures (for control). Multiplex- 
ing three or less signals is generally achieved using 
2: 1 multiplex combinations. Multiplexing more than 
three signals becomes more efficient using a tristate 
structure, which packs quite nicely in the CLAY array 
compared to other technologies. 

These functions are represented by very simple gen- 
erators shown in Figure 4 (2:l mux bank and tris- 
tate buffer bank). We have also employed mort? 
complex tristate-multiplex structures, for example, 2- 
dimensional (n x m) tristate banks. 

These module generators can be used manually to 
develop designs. In addition, the module library is 
targeted by the MARGE synthesis tool. 

4.2 Automatic Module Expansion 

The library described above consists of module gen- 
erators. To be used in a design, each generator must, 
be expanded or instantiated to be incorporated into 
a design just as a macro in a conventional high level, 
language must be invoked in order for the macro body 
to be instantiated into the program. 

In order to make the module generator system work 
automatically with the MARGE C language synthe- 
sis system, we have developed a tool that  invokes a. 
generator whenever a generator call is detected in a, 
behavioral or structural netlist. The tool scans the 
design netlist to glean all module generator instances. 
A “variants” f i l ~  is then constructed which contain:, 
the list of all macros to be generated along with p a  
rameter values extracted from the instantiation. The 
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// ADD2 generator 
processor 
co,sum.width=,gen-add2(.width,.pitch,.speed,.options,A.width,B.width) 
/ /  pitch = 1 
/ /  speed 10 => ripple, 30 => AP 
/ /  options & 1 => A in on NORTH bus 
/ /  options & 2 => A in on SOUTH bus 
// options k 4 => B in on NORTH bus, Pitch 2 only 
/ /  options & 8 => 3 in on SOUTH bus, Pitch 2 only 
c 
int i,yloc,xloc = 0,w = width; 
wire c[w+ll; 

(speed io) or 2 (speed 10 or 30) 

// pitch 1, speed 10 case for width less than 8 bits 
if ((pitch == 1) && ((speed == 10) 1 I (W < 7 ) )  ) 

{ yloc = w - 1; CO = cCwl; 
AT xloc,yloc; c[l] ,bs[O] = -add-HAl-l(A.O,B.O); 
if (w > 1) ROUTE c[l] ,"AEB",xloc+3,yloc; 
for (i = I; i < w; i i + 1) 
{ yloc = yloc - 1; 
AT xloc,yloc; c[i+l] ,bs[i] = -add-FAl-i(iside,A.i,B.i,c[il); 
if (i < w - I) ROUTE c[i+l],"AB~',xloc+4,yloc; 
ROUTE c [i] , "BAEB" , xloc+4, yloc ; 

1 
3 

Figure 3: Example Add Module Generator 

! 2 -1  mux bank 
processor q.width = -gen-MUXBNK( .width, .pitch,DO- .width,Di-.width,S) 
C int i; 
for (i = 0; i < width; i=i+l) 
{ AT O,(width-i-l)*pitch; Q.i = PMUX.l(DO-.i,DI-.i,S); 
1 

1 
3 
! Tristate buffer bank 
! -gen-TRIB 
processor bus Q = -gen-TRIBBK(.width,.pitch,A width,OE) 
C int i; 
for (i = 0; i < width; i=i+l) 
{ AT O,(width-i-l)*pitch; a,q = PBUFZ.l(A.i,OE); 
1 

1 

Figure 4: h4ultiplexor and Ti-istate Generators 
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variants file is then passed to the module generation 
engine to automatically generate all necessary macros 
along with any design representations required. The 
generated macros are essentially treated as a design li- 
brary used in snbseqnent integration, verification and 
bitstreaming steps. 

An example of a generator instantiation using Ver- 
ilog syntax appears below: 

wire [ 7 : 0 ]  sum,wl,wZ; 

// add two 
add2-9 i15 (sum,cr,wl,w2); 

8-bit words, put result in sum 

The part i15 is an add2-9 component. By conven- 
tion, this reference consists of two parts, first the name 
of the generator, in this case add2, followed by the 
bit length of the operands, in this case 9. The other 
parameters to  the add2 macro generator include the 
name of the result, sum, the name of the carry, cr, and 
the names of the two inputs, wl and w2. 

The compiler computes bit lengths of operands and 
result, and constructs the instantiation name based 
on the combination of operation to be performed and 
desired bit length. 

5 Malleable Architecture Generator 
(MARGE) 

The C compiler framework and Malleable Archi- 
tectnre Generator (MARGE) have been described in 
detail elsewhere.[4] [5] [li] In this section we briefly 
summarize the compilation framework. Our synthe- 
sis tool, MARGE, translates high-level parallel C to 
configuration bit streams for field-programmable logic 
based computing systems. Examples of such ciistom 
computing platforms include the Splash and Napa par- 
allel arrays. Our programming model is data  parallel, 
and the C variant we use is the data-parallel bit C 
(dbC) language. dbC constructs allow the program- 
mer to choose what operations are to occur on the 
reconfigurable array and to specify the bit accuracy 
of operations. MARGE creates an applicatioIi-specific 
instruction set that  encompasses the parallel opera- 
tions of the dbC program, and generates the ciistom 
hardware components required to perform those par- 
allel operations. Sequence control and non-parallel op- 
erations occur on the host processor that  controls the 
array. 

Following the dbC programming model, our syn- 
thesis system divides the code generation problem intd 
two parts, control flow and datapath. A host program 

is generated that performs sequential operations and 
sends custom hardware instructions to  the reconfig- 
urable array or Execution Unit (EU), which is con- 
figured as a linear array of virtual processors, one or 
more to an FPGA. 

bIARGE processes intermediate code in which each 
operation is annotated by the bit lengths of the 
operands. Each basic block (sequence of straight 
line code) is mapped into a single custom instruction 
which contains all the operations and logic inherent 
in the block. The synthesis phase maps the opera- 
tions comprising the instructions into register trans- 
fer level structural components and associated con- 
trol logic. The register transfer level components are 
mapped to module generator instantiations. The gen- 
erated netlist is then processed as described in Section 
4 to yield a final configuration bit stream. 

5.1 Intermediate Code to RTL 

To create an EU consisting of structural compo- 
nents, MARGE first establishes an instruction set 
from the datapath (non-sequence-control) operations. 
Each basic block (straight line code) is the basis for 
a single EU instruction. The basic block, represented 
by a directed acyclic graph (DAG), is separated into 
levels, with independent operations a t  each level ex- 
ecuted in the same clock cycle. Thus each EU in- 
striiction consists of a sequence of cycles. At each 
cycle, one or more operation is performed. During 
synthesis, individual operations are mapped to Regis- 
ter Transfer Language (RTL) structural components 
and are scheduled: each operation becomes associated 
with a moclnle generator instance and, in addition, is 
assigned an instruction number and a “tick” or cycle 
number. The basic elements of the RTL model used by 
MARGE are registers, functional units, routers, and 
control logic. 

Registers: Registers serve as the basic data  stor- 
age element. Each variable in a program is as- 
signed a register, and additional registers may be 
allocated for intermediate storage of information 
wherever needed. The Register Bank Generators 
are invoked for register elements. 

Functional Units (operators): Functional units 
are blocks that perform basic operations on data. 
Some examples of arithmetic and logical opera- 
tors are adders, subtractors, comparators, bitwise 
ANDs and bitwise ORs. The Arithmetic Genera- 
tors are used for functional unit elements. 
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0 Routing Control: Data must be routed from 
registers to  functional units to undergo some op- 
eration. In most cases these operations will result 
in some output valne that must be routed back 
to a register for storage. In some simple cases 
the source of data  may simply be hard-wired to 
the destination. The basic components nsed for 
more complicated routing are multiplexors and 
tri-state busses. Multiplexors are nsed when a 
destination has different data  sources on differ- 
ent instructions: it will select between the pos- 
sible sources dnring the appropriate instructions. 
"hen the number of input sources becomes suffi- 
ciently large it may be more efficient to  replace 
the multiplexors with banks of tri-state gates. 
R i t h  the CLAY technology, tri-states become the 
more efficient option for three or more inpiit alter- 
natives. Control Generators are used for routing 
control. 

0 Control Logic: Basic logic gates (ANDs, ORs 
and NOTs) must be iised to generate control sig- 
nals to enable registers to latch data only on cer- 
tain cycles of instructions. Similar control signals 
are needed to  control routing circuitry to switch 
between different miiltiplexor inpiits a t  different 
times. 

The above components are controlled by an instriic- 
tion decoder and a multitick decoder. These decoders 
respond to control signals from the host and direct the 
processing circuitry performing computations on the 
Execution Unit to perform the indicated set of opera- 
tions a t  the indicated t,ime. 

By way of example consider the following four op- 
eration sequence2: 

1) A=B+C; (opera t ion  6 ,  t i c k  2 )  
2)  A=B+D;  (opera t ion  4 ,  t i c k  0) 
3) A=D-C; (opera t ion  7 ,  t i c k  3) 
4 )  A=A+B;  (opera t ion  3 ,  t i c k  1) 

Since there are four variables in the program, foiir 
registers are needed (see Figure 5 . )  There are two op- 
erators nsed in t,he program: a subtractor is needed for 
instruction 3, and an adder is needed for instructions 
11,2 and 4. The adder inpiit is taken from four differ- 
ent sources on different instriictions. The operand B 
is used in all addition operations, so the first inpiit of 
the adder may be hardwired to the oiitpiit of register 

ZNote tha t  this is iiot a seinaiitically ineaiiiiigful sequence 
of operations. A more realistic scenario is that  t he  four in- 
structions are  separated by other instructions, possibly'includ- 
ing control flow. T h e  example is simplified for clarity. 

B. However, the second input to the adder requires 
different sources on different instructions. The second 
inpiit to the adder must be fed from the output of a 
tri-state router whose inpiits are hardwired to  be the 
outputs of registers A,C and D. The subtractor in- 
puts are hard wired to be talcen from the outputs of 
registers D and C. Since the source of the da ta  being 
written to register A varies, a two input multiplexor 
is needed to route either the output of the adder or 
subtractor to its input. 

The combination of signals from the instruction de- 
coder and the milltitick decoder creates a unique con- 
trol signal that  can uniquely identify every clock cycle 
of every instruction. These signals can be used to con- 
trol multiplexor input selectors and to assert register 
enable inpiits. Figure 6 illiistrates the use of these 
signals in the context of the above example. 

Since Register A is the destination of da ta  on all 
four instructions, an enable signal must be generated 
to allow it to latch new data  on all four instructions 
on the appropriate multitick cycles. The appropriate 
signals must also be generated to select the proper in- 
puts of the multiplexor feeding register A. Likewise, 
the tristate enable signal must be created so that reg- 
ister Cis routed to the adder on the first instruction, 
register D is routed to the adder on the second in- 
struction, and register A is routed to the adder on the 
fourth instruction, all on the appropriate multitick cy- 
cles. 

The example above maps to a relatively simple 
hardware description composed of basic functional 
bnilding blocks. These biiilding blocks are obtained 
from the Modgen module library, so that  the Execu- 
tion Unit operations are expressed in terms of opti- 
mized macro blocks. 

The example above illustrates the basic methodol- 
ogy. MARGE also performs various optimizations: 

0 Function unit reuse: Function units are reused 
between operations whenever possible. It is pos- 
bible to reuse a fimction nnit if it  is of the ap- 
propriate size and functionality and is not being 
iised in a different operation on the clock cycle 
ciirrently being schediiled. 

0 Commutativity optimization: Operands to 
a binary fimction may be swapped to  reduce 
mux/tristate control logic. In the fourth instruc- 
tion of the above example, MARGE swaps the 
operands of the commutative add operation so 
that the left input to the adder can be hardwired 
to B. TYithout the transformation, a mux would 
have been generated for the left input. 
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Tristate Control 
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Mux Control 

Tick O P 3  1 ---l 
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Figure 5: Striictiiral Hardware Description from RTL methodology 
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Fignre 6: Data routing and control structures 
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2703 cells 1800 cells 
108 nets 

403 nets 294 nets 

Figure 7: Synthesis vs. Modgen on Two Applications 

The MARGE synthesis modnle can also handle bit 
insertion and extraction operations, in which a portion 
of a register is stored or a range of bits from a register 
is extracted. These operations can be expressed a t  the 
high-level in dbC and map directly into wires (plus 
mux and tristate control if required) in the hardware. 

Figure 7 shows comparative results from two pro- 
grams XCorr, a bit stream cross correlation program, 
and DNA, a DNA sequence m a k h  program. Both 
programs use systolic algorithms. XCorr performs bit- 
oriented operations and sums into a 16-bit coiinter. 
DNA uses operands of 2- and 4- bits, where the 2-bit 
operands are used in compares, and the 4-bit operands 
are used in adds. The gate-level structural code emit- 
ted by the compiler was processed by two different sets 
of tools. The column labelled Synthesis/APR shows 
the result of processing the structural code with the 
Synopsys Design Compiler and then using CLAY tech- 
nology specific tools to generate the bit, streams. THe 
column labelled hlodgen show the resiilt of mapping 
MARGE’s structural outpnt to pre-placed, pre-roiited 
macros from the CLAY Module Library. As the table 
shows, there is a dramatic reduction in the number of 
core cells used by the Modgen versions over the syn- 
thesis versions, with the synthesis versions taking up 
to  2.5 times as many cells. In addition, the number of 
nets, an indication of routing resources consumed, are 
also reduced in the Modgen versions. 

6 CONCLUSIONS AND FUTURE 
WORK 

W e  have described an automatic synthesis system 
that maps high level da ta  parallel C to a library of 
hardware rnodule generators. In order to make con- 
figurable computing systems accessible to the pro- 
grammer, we have started with a high level proce- 
dural langnage rather than a hardware description 
language. We have obtained efficiency over tradi- 
tional synthesis by targeting a library of pre-placed, 
pre-routed macro generators for a fine grained FPGA 

architecture. The macro generators have been de- 
signed by expert engineers to  be arbitrarily expand- 
able in bit width and to fit well with each other. Our 
techniques show significant area and delay iniprove- 
ments for Modgen elements over equivalent functions 
compiled through traditional synthesis and APR. In 
addition, a dbC application also demonstrates sub- 
stantial improvement through MARGE/Modgen over 
traditional synthesis of the same application through 
MARGE/VHDL-synthesis. 

We are currently developing an efficient datapath 
generator to  be used on a new FPGA array (RSP 
Adaptive Logic Processor[2]) enhanced specifically for 
compute-intensive pipeline segments. The datapath 
generator will leverage rule-based techniques to phys- 
ically integrate datapath macros tha t  have been auto 
generated from set of generators enhanced for the new 
array. We expect to see significant improvement in 
density and performance due to the enhanced array 
and the new integration techniques. MARGE is being 
enhanced to support this new effort. 
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