
High Level Compilation for Fine Grained FPGAs

Maya Goltl-iale
David Sarnoff Research Center

maya@sarnoff.com

Edson Gomersall
National Semiconductor
edsonQ berlioz .nsc. com

Keywords: FPGA, configiirable computing, silicon
compiler, FPGA design tools, high-level synthesis

1 INTRODUCTION

Over the past several years, Field Programmable
Gate Arrays (FPGAs) have functioned effectively as
specialized processors capable of an order of magni-
tude improved performance over workstations a t a
fraction of the cost. I t is widely recognized, how-
ever, that for FPGAs to gain acceptance in the soft-
ware community as algorithm accelerator$, tools to
create hardware realizations of those algorithms must
be greatly improved. In this paper, me present an
integrated tool set to generate highly optimized hard-
ware computation blocks from a C language subset.
By starting with a C language description of the al-
gorithm, we address the problem of making FPGA
processors accessible to programmers as opposed to
hardware designers.

Our work is specifically targeted to fine grained FP-
GAS such as the National Semiconductor CLAyT’”
FPGA family. Such FPGAs exhibit extremely high
performance on regular datapath circuits, which are
more prevalent in compiitationally oriented hardware
applications’ dense packing of datapath functional el-
ements makes it possible to fit the computation on
one or a small number of chips, and the use of lo-
cal routing resources makes it possible to clock the
chip a t a high rate. By developing a lower level tool
suite that exploits the regular, geometric nature of fine
grained FPGAs, and mapping the compiler output to

‘In contrast, random control logic is more common in glue
logic applications, for which coarse grained FPGAs are some-
times more versatile.

0-8186-8159-4197 $10.00 0 1997 IEEE
165

this tool suite, me greatly improve performance over
traditional high level synthesis to fine grained FPGAs.
Individual arbitrary bit-length functions in our library
show a factor of 2.6-7.9 improvement in area over com-
mercial synthesis. We have found 2-3X improvement
in area and routing resource in C language applica-
tions tested. In addition, since most of the elements
of the design are pre-placed and pre-routed, compila-
tion time (from C to bit stream) is on the order of
minutes rather than the hour(s) for traditional syn-
thesis followed by Auto Place and Route.

The organization of the remainder of the paper is as
follows. The next section reviews related work. Then
we discuss the CLAY architecture. Next we describe
the “module generator” Modgen tool, that enables
a hardware designer to build parameterized macros,
where the parameters can be bit length, pitch, and
shape. Elements of the module library available to the
compiler and other hardware designers are presented.
The next section describes the synthesis strategy of
the Malleable Architectlire Generator (MARGE) com-
piler. The compiler creates custom “instruction”’ and
maps those instructions to instantiations of macros in
the module generator library. The final section sum-
marizes our approach.

2 Related Work

Pre-placed, pre-routed macro libraries are common-
place tools provided by FPGA vendors. Our inno-
vation is in the iise of parameterized macro genera-
tors, and in the use of a macro definition language
t,hat allows parameterization of placement and rout-
ing choices. Related work in the latter area is the
Logic Description Generator (LDG) [3] , that was used
on Splash-1 to create pre-placed, pre-routed systolic

mailto:maya@sarnoff.com

structures on Xilinx 3090 FPGAs. LDG mas embed-
ded in Lisp and was purely textual. In contrast the
Modgen system has both a C-language-like input as
well as graphical input. Modgen also has an associated
simulation environment so that module generators can
be developed and tested very rapidly, a capability that
mas not available with LDG.

Other C-to-hardware synthesis environments in-
clude the Prism system [l] and its successor Prism-I1
[12]. Luk and Page [8] have also developed a system
to compile Occam into FPGAs. Our approach differs
from these efforts in that our programming model is a
data parallel one in which the programmer controls the
bit size of da ta and operations; that our synthesis is di-
rected towards hybrid conventional processor/FPGA
array environments; and that we specifically target
highly optimized bit-slice organized macros.

3 The CLAY Architecture

The CLAy technology [ll] employs a patented,
RAM-based, regular architecture. Timing is regular
and predictable due to the symmetrical architecture.
An external clock can be used to synchronize the en-
tire device or individual columns of cells, resulting in
minimal skew.

The CLAY logic cell (up to 3 inputs, 2 outputs) im-
plements a set of logic functions stemming from forty-
four cell states including simple functions like NOR,
AND, NAND, OR, XOR, INV, MUX, FlipFlop and
complex functions using combinations of the above
(e.g. Half-Adder, Registered Half-Adder, etc.).

The CLAy31 provides 3136 logic cells with an av-
erage usable gate count of approximately 5 1 ~ gates a t
30% utilization (the CLAyl0 provides 1024 logic cells).
The actual gate count is typically higher for compute-
intensive designs. For example, a 12-bit, 26-tap lom-
pass filter constructed automatically using the module
generation system yields a 131~ gate design that utilizes
79% of the array.

A unique feature is its partial as well as full reconfig-
nrability by cell. The device can dynamically reconfig-
lire any given section mithont affecting the operation
of other sections. The CLAy31 can be fully reconfig-
ured in approximately 0.6 milliseconds, equivalent to
a reconfiguration rate of 8 million gates per second.

The CLAy technology is also packaged in a Field
Configurable Multi Chip hlodule (FChI). An FChI
contains four CLAY 31 “tiles” arranged in a 2 x 2 ar-
ray. The FCM features over 20,000 useable gates and
432 user I/O. It is packaged in a 625 pin Ball Grid

Array with 448 inter-module connections per device,
greatly reducing inter-tile routing delay. The Napa
array consists of one or more FCMs plus SRAM on a
PCI bus [5] .

4 Module Generator

At the heart of our synthesis capability is the mod-
ule generation system Modgen developed by Charle’
Rupp for National Semiconductor. The module gen-
eration system enables a designer to build a library of
parameterized generators that allow the creation of a
specific function with any number of bits (subject to
the size limitations of the chip) with tradeoffs between
speed and area.

The library of generators encapsulate construction
algorithms specific to the architecture which reflect de-
sign and layout complexity captured from an expert
designer for the technology, thereby maximizing func-
tional density and performance. The actual generators
exist in a C-like language called D4[9] and are easily
written and tested once a specific function has been
identified and prototyped. At the present time, the
library of generators contain most of the commonly
used compute functions used in datapath design.

4.1 Module Library

Figure 1 shows a partial list of generators available
in the library[lO].

Specifically, for the CLAy technology, Reed-Muller
logic[7] has been highly leveraged for most of the
compute-oriented functions as it offers an efficient al-
ternative given the structure of the core cells in the ar-
ray (XOR-based). Given the combination of this tech-
nique along with the expert place and route techniques
imparted upon the generators, the macro functions
result in extremely dense and performance-intensive
manifestations for the technology.

As an example of quantitative comparison between
functions generated using the module generators and
functions generated using a combination of synthesis
and automatic place and route tools, refer to Figure 2
The figure compares area and delay for several repre-
sentative functions. Area is expressed in cells. Delay
has been normalized, with the hlodgen delay for each
function as the unit delay. The figure shows that the
synthesis designs occupy between 2.6 - 7.9 times as
many cells as the equivalent Modgen designs. The
synthesis designs have 1.6 - 4.3 times the delay of the
XIodgen designs.

166

Arithmetic
ALUs
Absolute Value
Adders
Decrementers
Increment ers
Counters
Shift Operations
Boolean Funcs.
Multipliers
Rotators

Figure 1: Module Generator Library

Control Signal Processing
Coinparators FIR Filters
Encoders Lin. Seq. Gen.
Decoders CRC detect/gen
Hi/Lo/True/Comp blocks Gray Code converters
Mask generators
Mu1 t iplexors
Tristate Buses

14-bit ADD

Figure 2: Area/Delay Comparison

The parameterized generators not only eliminate
the need to maintain large predefined macro libraries,
but more significantly accommodate the generation of
functions with arbitrary bit length. Rather than using
functions divisible by 4-bits (as offered in most coarse-
grain architecture systems) and wasting the iinused bit
logic, functions of specific bit-lengths can be invoked.
This results from the bit slice techniques used in the
generators. Given a large number of functions using
non-standard bit sizes, significant area can be saved.

Additional flexibilities exist in the generators to al-
low the designer to make area and speed tradeoffs (al-
gorithm selection) as well as physical options to ease
integration with other functions. For example, differ-
ent multiplier algorithms allow speed area tradeoffs
(e.g. Ripple Carry V.S. Carry Save). Examples of
physical options are output spacing and control line
placement. Output spacing (referred to as the “pitch”
parameter) is important when abutting to other mod-
ules during final integration. If a module .is driving
another module with input pins residing on a pitch
of 2, selecting a pitch 2 output spacing allovvs perfect
abuttment with no routing overhead (thereby mini-
mizing area and delay). Strategic physical placement
of control lines also serves to minimize routing during
the integration stage.

Figure 3 shows an example fragment of D4 code for

Memory
Register Banks
ROM
EEROM
SRAM

an adder function. Although the code displayed here
is purposely incomplete (to simplify the example), it
illlistrates the use of parameters (width, pitch, speed,
options).

We have also gained efficiency by using generators
for multiplexing structures (for control). Multiplex-
ing three or less signals is generally achieved using
2: 1 multiplex combinations. Multiplexing more than
three signals becomes more efficient using a tristate
structure, which packs quite nicely in the CLAY array
compared to other technologies.

These functions are represented by very simple gen-
erators shown in Figure 4 (2:l mux bank and tris-
tate buffer bank). We have also employed mort?
complex tristate-multiplex structures, for example, 2-
dimensional (n x m) tristate banks.

These module generators can be used manually to
develop designs. In addition, the module library is
targeted by the MARGE synthesis tool.

4.2 Automatic Module Expansion

The library described above consists of module gen-
erators. To be used in a design, each generator must,
be expanded or instantiated to be incorporated into
a design just as a macro in a conventional high level,
language must be invoked in order for the macro body
to be instantiated into the program.

In order to make the module generator system work
automatically with the MARGE C language synthe-
sis system, we have developed a tool that invokes a.
generator whenever a generator call is detected in a,
behavioral or structural netlist. The tool scans the
design netlist to glean all module generator instances.
A “variants” f i l ~ is then constructed which contain:,
the list of all macros to be generated along with p a
rameter values extracted from the instantiation. The

167

// ADD2 generator
processor
co,sum.width=,gen-add2(.width,.pitch,.speed,.options,A.width,B.width)
/ / pitch = 1
/ / speed 10 => ripple, 30 => AP
/ / options & 1 => A in on NORTH bus
/ / options & 2 => A in on SOUTH bus
// options k 4 => B in on NORTH bus, Pitch 2 only
/ / options & 8 => 3 in on SOUTH bus, Pitch 2 only
c
int i,yloc,xloc = 0,w = width;
wire c[w+ll;

(speed io) or 2 (speed 10 or 30)

// pitch 1, speed 10 case for width less than 8 bits
if ((pitch == 1) && ((speed == 10) 1 I (W < 7)))

{ yloc = w - 1; CO = cCwl;
AT xloc,yloc; c[l] ,bs[O] = -add-HAl-l(A.O,B.O);
if (w > 1) ROUTE c[l] ,"AEB",xloc+3,yloc;
for (i = I; i < w; i i + 1)
{ yloc = yloc - 1;
AT xloc,yloc; c[i+l] ,bs[i] = -add-FAl-i(iside,A.i,B.i,c[il);
if (i < w - I) ROUTE c[i+l],"AB~',xloc+4,yloc;
ROUTE c [i] , "BAEB" , xloc+4, yloc ;

1
3

Figure 3: Example Add Module Generator

! 2 -1 mux bank
processor q.width = -gen-MUXBNK(.width, .pitch,DO- .width,Di-.width,S)
C int i;
for (i = 0; i < width; i=i+l)
{ AT O,(width-i-l)*pitch; Q.i = PMUX.l(DO-.i,DI-.i,S);
1

1
3
! Tristate buffer bank
! -gen-TRIB
processor bus Q = -gen-TRIBBK(.width,.pitch,A width,OE)
C int i;
for (i = 0; i < width; i=i+l)
{ AT O,(width-i-l)*pitch; a,q = PBUFZ.l(A.i,OE);
1

1

Figure 4: h4ultiplexor and Ti-istate Generators

168

variants file is then passed to the module generation
engine to automatically generate all necessary macros
along with any design representations required. The
generated macros are essentially treated as a design li-
brary used in snbseqnent integration, verification and
bitstreaming steps.

An example of a generator instantiation using Ver-
ilog syntax appears below:

wire [7 : 0] sum,wl,wZ;

// add two
add2-9 i15 (sum,cr,wl,w2);

8-bit words, put result in sum

The part i15 is an add2-9 component. By conven-
tion, this reference consists of two parts, first the name
of the generator, in this case add2, followed by the
bit length of the operands, in this case 9. The other
parameters to the add2 macro generator include the
name of the result, sum, the name of the carry, cr, and
the names of the two inputs, wl and w2.

The compiler computes bit lengths of operands and
result, and constructs the instantiation name based
on the combination of operation to be performed and
desired bit length.

5 Malleable Architecture Generator
(MARGE)

The C compiler framework and Malleable Archi-
tectnre Generator (MARGE) have been described in
detail elsewhere.[4] [5] [li] In this section we briefly
summarize the compilation framework. Our synthe-
sis tool, MARGE, translates high-level parallel C to
configuration bit streams for field-programmable logic
based computing systems. Examples of such ciistom
computing platforms include the Splash and Napa par-
allel arrays. Our programming model is data parallel,
and the C variant we use is the data-parallel bit C
(dbC) language. dbC constructs allow the program-
mer to choose what operations are to occur on the
reconfigurable array and to specify the bit accuracy
of operations. MARGE creates an applicatioIi-specific
instruction set that encompasses the parallel opera-
tions of the dbC program, and generates the ciistom
hardware components required to perform those par-
allel operations. Sequence control and non-parallel op-
erations occur on the host processor that controls the
array.

Following the dbC programming model, our syn-
thesis system divides the code generation problem intd
two parts, control flow and datapath. A host program

is generated that performs sequential operations and
sends custom hardware instructions to the reconfig-
urable array or Execution Unit (EU), which is con-
figured as a linear array of virtual processors, one or
more to an FPGA.

bIARGE processes intermediate code in which each
operation is annotated by the bit lengths of the
operands. Each basic block (sequence of straight
line code) is mapped into a single custom instruction
which contains all the operations and logic inherent
in the block. The synthesis phase maps the opera-
tions comprising the instructions into register trans-
fer level structural components and associated con-
trol logic. The register transfer level components are
mapped to module generator instantiations. The gen-
erated netlist is then processed as described in Section
4 to yield a final configuration bit stream.

5.1 Intermediate Code to RTL

To create an EU consisting of structural compo-
nents, MARGE first establishes an instruction set
from the datapath (non-sequence-control) operations.
Each basic block (straight line code) is the basis for
a single EU instruction. The basic block, represented
by a directed acyclic graph (DAG), is separated into
levels, with independent operations a t each level ex-
ecuted in the same clock cycle. Thus each EU in-
striiction consists of a sequence of cycles. At each
cycle, one or more operation is performed. During
synthesis, individual operations are mapped to Regis-
ter Transfer Language (RTL) structural components
and are scheduled: each operation becomes associated
with a moclnle generator instance and, in addition, is
assigned an instruction number and a “tick” or cycle
number. The basic elements of the RTL model used by
MARGE are registers, functional units, routers, and
control logic.

Registers: Registers serve as the basic data stor-
age element. Each variable in a program is as-
signed a register, and additional registers may be
allocated for intermediate storage of information
wherever needed. The Register Bank Generators
are invoked for register elements.

Functional Units (operators): Functional units
are blocks that perform basic operations on data.
Some examples of arithmetic and logical opera-
tors are adders, subtractors, comparators, bitwise
ANDs and bitwise ORs. The Arithmetic Genera-
tors are used for functional unit elements.

169

0 Routing Control: Data must be routed from
registers to functional units to undergo some op-
eration. In most cases these operations will result
in some output valne that must be routed back
to a register for storage. In some simple cases
the source of data may simply be hard-wired to
the destination. The basic components nsed for
more complicated routing are multiplexors and
tri-state busses. Multiplexors are nsed when a
destination has different data sources on differ-
ent instructions: it will select between the pos-
sible sources dnring the appropriate instructions.
"hen the number of input sources becomes suffi-
ciently large it may be more efficient to replace
the multiplexors with banks of tri-state gates.
R i t h the CLAY technology, tri-states become the
more efficient option for three or more inpiit alter-
natives. Control Generators are used for routing
control.

0 Control Logic: Basic logic gates (ANDs, ORs
and NOTs) must be iised to generate control sig-
nals to enable registers to latch data only on cer-
tain cycles of instructions. Similar control signals
are needed to control routing circuitry to switch
between different miiltiplexor inpiits a t different
times.

The above components are controlled by an instriic-
tion decoder and a multitick decoder. These decoders
respond to control signals from the host and direct the
processing circuitry performing computations on the
Execution Unit to perform the indicated set of opera-
tions a t the indicated t,ime.

By way of example consider the following four op-
eration sequence2:

1) A=B+C; (opera t ion 6 , t i c k 2)
2) A=B+D; (opera t ion 4 , t i c k 0)
3) A=D-C; (opera t ion 7 , t i c k 3)
4) A=A+B; (opera t ion 3 , t i c k 1)

Since there are four variables in the program, foiir
registers are needed (see Figure 5 .) There are two op-
erators nsed in t,he program: a subtractor is needed for
instruction 3, and an adder is needed for instructions
11,2 and 4. The adder inpiit is taken from four differ-
ent sources on different instriictions. The operand B
is used in all addition operations, so the first inpiit of
the adder may be hardwired to the oiitpiit of register

ZNote tha t this is iiot a seinaiitically ineaiiiiigful sequence
of operations. A more realistic scenario is that t he four in-
structions are separated by other instructions, possibly'includ-
ing control flow. T h e example is simplified for clarity.

B. However, the second input to the adder requires
different sources on different instructions. The second
inpiit to the adder must be fed from the output of a
tri-state router whose inpiits are hardwired to be the
outputs of registers A,C and D. The subtractor in-
puts are hard wired to be talcen from the outputs of
registers D and C. Since the source of the da ta being
written to register A varies, a two input multiplexor
is needed to route either the output of the adder or
subtractor to its input.

The combination of signals from the instruction de-
coder and the milltitick decoder creates a unique con-
trol signal that can uniquely identify every clock cycle
of every instruction. These signals can be used to con-
trol multiplexor input selectors and to assert register
enable inpiits. Figure 6 illiistrates the use of these
signals in the context of the above example.

Since Register A is the destination of da ta on all
four instructions, an enable signal must be generated
to allow it to latch new data on all four instructions
on the appropriate multitick cycles. The appropriate
signals must also be generated to select the proper in-
puts of the multiplexor feeding register A. Likewise,
the tristate enable signal must be created so that reg-
ister Cis routed to the adder on the first instruction,
register D is routed to the adder on the second in-
struction, and register A is routed to the adder on the
fourth instruction, all on the appropriate multitick cy-
cles.

The example above maps to a relatively simple
hardware description composed of basic functional
bnilding blocks. These biiilding blocks are obtained
from the Modgen module library, so that the Execu-
tion Unit operations are expressed in terms of opti-
mized macro blocks.

The example above illustrates the basic methodol-
ogy. MARGE also performs various optimizations:

0 Function unit reuse: Function units are reused
between operations whenever possible. It is pos-
bible to reuse a fimction nnit if it is of the ap-
propriate size and functionality and is not being
iised in a different operation on the clock cycle
ciirrently being schediiled.

0 Commutativity optimization: Operands to
a binary fimction may be swapped to reduce
mux/tristate control logic. In the fourth instruc-
tion of the above example, MARGE swaps the
operands of the commutative add operation so
that the left input to the adder can be hardwired
to B. TYithout the transformation, a mux would
have been generated for the left input.

170

Tristate Control

Reg A
Mux Control

Tick O P 3 1 ---l

L--+lq-i Enable Control

Figure 5: Striictiiral Hardware Description from RTL methodology

A

Tick 2

Tick 0

M u x Control

op7 -D
Tick .3

Register Enable Control

Tick OP3 1 *--l

O P ~ I
Tick 3

Fignre 6: Data routing and control structures

171

2703 cells 1800 cells
108 nets

403 nets 294 nets

Figure 7: Synthesis vs. Modgen on Two Applications

The MARGE synthesis modnle can also handle bit
insertion and extraction operations, in which a portion
of a register is stored or a range of bits from a register
is extracted. These operations can be expressed a t the
high-level in dbC and map directly into wires (plus
mux and tristate control if required) in the hardware.

Figure 7 shows comparative results from two pro-
grams XCorr, a bit stream cross correlation program,
and DNA, a DNA sequence m a k h program. Both
programs use systolic algorithms. XCorr performs bit-
oriented operations and sums into a 16-bit coiinter.
DNA uses operands of 2- and 4- bits, where the 2-bit
operands are used in compares, and the 4-bit operands
are used in adds. The gate-level structural code emit-
ted by the compiler was processed by two different sets
of tools. The column labelled Synthesis/APR shows
the result of processing the structural code with the
Synopsys Design Compiler and then using CLAY tech-
nology specific tools to generate the bit, streams. THe
column labelled hlodgen show the resiilt of mapping
MARGE’s structural outpnt to pre-placed, pre-roiited
macros from the CLAY Module Library. As the table
shows, there is a dramatic reduction in the number of
core cells used by the Modgen versions over the syn-
thesis versions, with the synthesis versions taking up
to 2.5 times as many cells. In addition, the number of
nets, an indication of routing resources consumed, are
also reduced in the Modgen versions.

6 CONCLUSIONS AND FUTURE
WORK

W e have described an automatic synthesis system
that maps high level da ta parallel C to a library of
hardware rnodule generators. In order to make con-
figurable computing systems accessible to the pro-
grammer, we have started with a high level proce-
dural langnage rather than a hardware description
language. We have obtained efficiency over tradi-
tional synthesis by targeting a library of pre-placed,
pre-routed macro generators for a fine grained FPGA

architecture. The macro generators have been de-
signed by expert engineers to be arbitrarily expand-
able in bit width and to fit well with each other. Our
techniques show significant area and delay iniprove-
ments for Modgen elements over equivalent functions
compiled through traditional synthesis and APR. In
addition, a dbC application also demonstrates sub-
stantial improvement through MARGE/Modgen over
traditional synthesis of the same application through
MARGE/VHDL-synthesis.

We are currently developing an efficient datapath
generator to be used on a new FPGA array (RSP
Adaptive Logic Processor[2]) enhanced specifically for
compute-intensive pipeline segments. The datapath
generator will leverage rule-based techniques to phys-
ically integrate datapath macros tha t have been auto
generated from set of generators enhanced for the new
array. We expect to see significant improvement in
density and performance due to the enhanced array
and the new integration techniques. MARGE is being
enhanced to support this new effort.

7 ACKNOWLEDGEMENTS

This work was supported by National Semiconduc-
tor Corp., DARPA through Contract DAB63-94-C-
0085 to NSC and the David Sarnoff Research Center.

References

[l] P. M. Athanas and H. F. Silverman. Processor
reconfiguration through instruction-set metamor-
phosis. Com,pirter, 26(3):11-18, March 1993.

[a] National Semiconductor Corporation. Reconfig-
urable signal processor.
h t tp :/ /splis h . ee . 1) yu, . edu,/arpa/a,rpa,. ht ml, 199 6.

[3] M. Gokhale, A. Kopser, S. Lucas, and R. Min-
nich. The logic description generator. Conter-
m c e on, Appl icat ion Specific A r r a y Processors,
September 1990.

[4] h’l. B. Golthale, J. Kaba, and J. A. Marks. Mal-
leable architecture generator for fpga computing.
SPIE Contermce on, High Speed Computin,g, Dig-
ital Signml Processin,g, a,nd Filterinq Using Recon,-
J i g u r d e LogSc, November 1996.

[5] h4. B. Gokhale and A. Marks. Automatic syn-
thesis ol parallel programs targeted to dynami-
cally reconfigurable logic arrays. In Proceedings

172

of the 1995 Intern,atLon,d Worksh,op on, Field-
Programm,able Loyic and Applications, Oxford,
England, pages 399-408, September 1995.

[6] Ad. B. Gokhale and B. Schott. A data-parallel
programming model. In Splash,-2: FPGAs an a
Custom, Com,pirt.in,g Mi~hin,e, pages 76-78. IEEE
Press, 1996.

[7] D. Green. Modem, Logic Design,. Addison-Wesley,
1986.

[8] I. Page and W. Luk. Compiling Occam into
FPGAs. In FPGAs. In,ternation,al Workshop
on, Field Program,~n,able Logic 1md Apptication,s,
pages 271-283, Oxford, UI<, September 1991.

[9] Charle’ R. Rnpp. D4 language reference guide
and specification.

[lo] Charle’ R. Rupp. D4 mer’s giiide.

[ll] National Semiconductor. Configiirable logic array
data sheet. 1093.

[12] M. Wazlowski, L. Agarwal, T. Lee, A.. Smith,
E. Lam, P. Athanas, H. Silverman, and S. Ghosh.
PRISM-I1 compiler and architecture. :In D. A.
Buell and I<. L. Pocek, editors, Proceed.in,gs of
IEEE Worksh,op on, FPGAs for Custom, Com,put-
ing Mmh,in,es, pages 9-16, Napa, California, April
1993.

173

