
44.3

Architectural Retiming:
Pipelining Latency-Constrained Circuits *

Soha Hassoun and Carl Ebeling
Department of Computer Science and Engineering
University of Washington, Seattle, WA 98195-2350

{soha, ebeling}@cs .washington. edu

http://ww.cs.washington,edu/research/projects/lis/w~/~chretiming

Abstract - This paper presents a new optimization
technique called architectural retiming which is able to im-
prove the performance of many latency-constrained circuits.
Architectural retiming achieves this by increasing the num-
ber of registers on the latency-constrained path while pre-
serving the functionality and latency of the circuit. This
is done using the concept of a negative register, which can
be implemented using precomputation and prediction. We
use the name architectural retiming since i t both resched-
ules operations in time and modifies the structure of the
circuit to preserve its functionality. We illustrate the use of
architectural retiming on two realistic examples and present
performance improvement results for a number of sample
circuits.

1 The Problem

The performance of synchronous digital systems is measured
using throughput, the rate at which computations complete,
and execution time, the total time between the start and
completion of one computation'. Running the system at the
smallest possible clock period increases throughput, which
is inversely proportional to the clock period, T,, and reduces
execution time, which is directly proportional to T,. For the
system to function correctly, however, T, must be greater
than or equal to the longest combinational delay between
each pair of registers. Retiming [8] can be used to spread
the registers optimally along all paths, finding the minimum
feasible T,. But for any path p with n pipeline stages, T, x n
must be greater than or equal to the delay of the longest path
through the n stages.

When a retimed circuit fails to run at the target T, be-
cause of a path whose delay exceeds T, x n, further pipelin-
ing must be used to increase the number of registers along
p. With more clock periods available to complete each com-
putation, the clock period can be shorter. Increased pipelin-

'This work was supported by the ARPA/CSTO Microsystems Pro-
gram under an ONR-monitored contract (DAAH04-94-G-0272)

'Execution time is commonly referred to as latency. For clarity,
however, the term latency will be strictly used to refer to the number
of clock cycles between the start and completion of one computation.

33rd Design Automation Conference@
Permission to make digitamard copy of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To
copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission andlor a fee.
DAC 96 - 06/96 Las Vegas, NV, USA
~ 1 9 9 6 ACM 0 - ~ ~ 9 i - 7 7 9 - 0 ~ 6 ~ ~ . . $ 3 . 5 0

ing, however, is often not an option because of latency con-
straints which fix the number of clock cycles allowed for a
computation and thus the number of registers on a path.

Some latency constraints ensure that the circuit meets
external performance requirements. If the execution time
and the clock period are specified, then only a fixed number
of clock periods is available to perform the computation.
Many systems have such performance restrictions. Exam-
ples include circuits in memory systems and real-time inter-
active graphics, where the clock period is set for the overall
system and the maximum execution time is specified for
each operation. Other latency constraints are caused by cy-
cles in the circuit. Changing the number of registers on a
cycle changes the functionality of the circuit; therefore, the
latency of each cycle is fixed. External constraints can also
be modeled as cyclic constraints by feeding the output of an
externally constrained pipeline back to the input through a
register external to the circuit.

Regardless of how the latency constraint is derived, the
computation along a latency-constrained path is required to
complete in a fixed number of clock cycles. Assuming that
all optimizations that decrease delay have been applied, the
only remaining option is to increase the number of registers
on the path without increasing the number of clock periods
to perform the computation, a seeming contradiction.

In this paper we present a technique we call architectural
retiming which attempts to do exactly this - increase the
number of registers on a latency-constrained path without
increasing the latency. We use the term architectural retim-
ing because operations in the circuit are moved in time, as
in retiming, but the structure of the circuit must be changed
to preserve its functionality. More formally, we can state the
task of architectural retiming as follows:

Architectural Retiming
Given a synchronous circuit whose clock period
is limited by a latency-constrained path, increase
the number of registers on that path, thereby
decreasing the clock period, while preserving the
circuit's functionality and latency.

We begin this paper by reviewing the notation that will
be needed to describe architectural retiming. We then de-
scribe the basic concepts. Next, we demonstrate the ap-
plication of architectural retiming to two real-world circuit
examples. Finally, we report the results of applying the
technique to a set of examples, and discuss previous related
work.

708

2 Preliminaries

All registers in a circuit are edge-triggered registers clocked
by the same clock. Time is measured in terms of clock cycles
and the notation xt denotes the value of a signal x during
clock cycle t , where t is an integer clock cycle. Values of
signals are referenced after all signals have stabilized and it
is assumed that the clock period is sufficiently long for this
to happen. A register delays its input signal y by one cycle.
Thus, zt+' = yt, where z is the register's output.

Each function f in the circuit is a single-output function
of N input variables (or signals) 20, X I ? . . . , Z N - ~ computing
a variable y. In a specific cycle t, the variable y is assigned
the value computed by the function f using specific values
for zO,xlr. . . ,ZN- I , that is, yt = f(x& xi,. . .

The set of f a n - i n signals of a function f is the set of f ' s
input variables. The set of combinational transitive f a n - i n
signals of a function f , denoted by GTj, is defined recur-
sively as follows. For each fan-in variable xi of f, if z; is a
primary input, then z; E CTf. If z; is an output of a regis-
ter, then xi E CTf. Otherwise, g; computes xi, i.e. x; = g ; ()
and CT,, is in GTf. The set of sequential transitive fan- in
signals across one register boundary, STf, is defined the
same as GTf except that the input path is allowed to cross
one register. Unfolding [lo) is used to refer correctly to STf
for a single-register cycle.

3 Overview of Architectural Retiming

Architectural retiming comprises two steps. First, a register
is added to the latency-constrained path. Second, the circuit
is changed to absorb the increased latency caused by the
additional register.

The challenge of architectural retiming then is to pre-
serve the latency of the path and the functionality of the
circuit while increasing the number of registers. This is
accomplished using the concept of a negative register. A
normal register performs a shift forward in time, while a
negative register performs a shift backward in time. That
is, the output of a negative register is defined by zt = yt+'.
A negative register/normal register pair reduces to a simple
wire, which is our objective. The question then is how to
implement a negative register.

Let us assume the input to the negative register is the
variable y computed by the function f (20, XI,. . . , Z N - I) .
From the definition of the negative re ister, zt = yt+l =

are, of course, not available at time t. There are two possible
ways to compute each zf+': precomputation or prediction.
The choice is made after examining GT,, , the combinational
transitive fan-in set for z;, for each xi in the fan-in o f f .

f(xk+I, zi+l,. . . , Z t + l N - l) . The values zi B for 0 5 i 5 N - 1

3.1 Precomputation
I f t h e v a l u e o f z ; , O < i < N - - l , a t t i m e t + l canbecom-
puted directly from values available at time t , then we can
recompute the function f as a function f ' of values at time
t . That is, f(..., z;+', ...) = f'(. . . , g ;(..., y!j ,...) ,...),
where xf" = Si (. . . , Y : ~ , . . .) for 0 5 i 5 N - 1 and 0 2
j 5 M - 1, where M is the cardinality of ST;,. The func-
tion f' which implements the negative register can then be
derived from the definition of the original circuit by the re-
cursive collapsing (or flattening) of each zi into the variables
in ST,'; or the primary inputs in CT,, for which f is a don't

care value. The recursive collapsing across a register bound-
ary consists of substituting the input variable to the register
for its output variable.

Precomputation can be done only if there is sufficient
information in the circuit to allow precomputing the value
one cycle ahead of time. Precomputation is possible under
the following condition:

VppEPr, ((P E GTz,) =+- (f(. . . ,gi(. . . ,p,. . ,>, . . .) = x))
where PI is the set of primary inputs, and X is a don't care
value for the function f .

The function f ' , which is synthesized by the precomputa-
tion, includes two clock cycles' worth of computation along
the latency-constrained path, which is precisely where opti-
mizations and transformations are most needed. The imple-
mentation of ,f' and its impact on reducing the clock period
will vary depending on the specific circuit under considera-
tion. The example presented in Section 4.1 illustrates how
precomputation generates a bypass, an architectural trans-
formation that can significantly improve performance.

3.2 Prediction
When the condition for performing precomputation is not
met, then we must resort to an alternative solution to eval-
uate the output of the negative register, z t . We can rely on
an oracle to predict the value produced by the negative reg-
ister (i.e. one cycle before the value is actually computed).
If we can preldict perfectly, as in precomputation, then no
other change needs to be made to the circuit. If we cannot,
then the prediction will at times be incorrect and, unless the
circuit can adjust to this error, it will produce the wrong
result. Dealing with incorrect predictions requires first veri-
fying whether they are correct and then nullifying the effect
of incorrect predictions.

A prediction is verified one cycle after it is calculated
once the actual value is computed. If the prediction was
correct, the next prediction is allowed to proceed. If the
prediction was incorrect, some measure must be taken to
nullify the effects of the incorrect value and to restore the
circuit to its previous state. Once restored to its previous
state, the circuit continues operation using the delayed cor-
rect value. Thus, a one cycle penalty is associated with a
misprediction The actual process of nullifying the effect cf
an incorrect prediction can be quite complex as we illustrate
in the example in Section 4.2.

Architectural retiming sometimes requires changing the
interface of the circuit with its environment. Because an
incorrect prediction might occur during some cycle, the cir-
cuit's primary outputs must be paired with validation sig-
nals to inform the interface when a primary output is incor-
rect. The primary inputs to the circuit must be provided
again by the interface during the cycle when the circuit is
executing the substitute (correct) computation. Therefore,
a data-not-taken signal is required to notify the interface
when primary inputs must be repeated. The effect of apply-
ing architectural retiming is to create an elastic interface,
which provides (consumes) input (output) data at varying
rates. Elastic interfaces are implemented by adding hand-
shaking mechanisms to the circuit. A change in the circuit's
interface may be undesirable or difficult to implement but is
inevitable if performa,nce is to be improved. Moreover, many
circuits already have interface protocols which architectural
retiming can take advantage of.

The probalbility of a correct guess can be increased by uti-
lizing partial information that can be precomputed. Each

709

I
I

M-data I
I

I

t o be stretched b y 4ns in order to function correctly.

I
I

l d a u * FI 7 0
I

input xi, for 0 5 i 5 N - 1, of the function f that com-
putes the output of a negative register can be precomputed
if CT,, nPT = 0; otherwise, x:+' or the signal(s) in the com-
binational transitive fan-in set for z, that are also primary
inputs must be predicted. When choosing a guess value for
a signal, the frequency of mispredictions and the penalties
associated with correcting the results of mispredictions must
be evaluated to determine its impact on the overall perfor-
mance of the cycle.

4 Examples

We present two examples of applying architectural retiming
to circuits taken from real systems to improve throughput
while preserving the system's latency requirements. In the
first example, the system cannot be pipelined because of
constraints on the latency from input to output. In the sec-
ond example, the circuit is constrained by a cycle. The first
example is solved using precomputation-based architectural
retiming and the second example is solved using prediction.

4.1 Example 1: Memory Interface Module
The first example is the memory system2 shown in Figure 1.
The cache provides a read request C-mem-r-req and an ad-
dress (not shown) in cycle 1, and expects a number of packets
of valid data in return during the following cycles. When the
memory receives a read request from the cache, it attempts
to send the requested data. If the memory has the valid
data, it asserts the M d v signal and sends a packet of data.
The cache can take a data packet if the signal C h o l d is de-
asserted. If Chold is asserted, then the Interface Module
(IM) is responsible for buffering the data coming from mem-
ory and passing them to the cache once it deasserts Chold.
The IM consists of a FIFO memory and logic to condition-
ally advance the head and tail of the FIFO and to set the
data valid signal, I d v .

The original behavior of the IM is specified as f01lows:~

FIFOt+'[tailpt] = M d a t a t (1)

'This example was suggested by Ed Frank of NetPower.
3The add operations are implicitly modulo the FIFO size.

I d a t a t = FIFOt[head-pt] (2)

tail..pt+' = new-tad (5)

head-pt+' = newheadt (7)
emptyt = (head-pt == tai1-p') (8)

I d v t = (Choldt V emptyt)? 0 : 1 (3)
new-tailt = M d v t ? tail-pt + 1 : tai lpt (4)

n e w h e a d = (I d v t) ? head$ -t 1 : head-pt (6)

The system is required to run at a clock period of 16ns.
The data from memory to the cache is specified to have a
one cycle latency when Chold is deasserted. The FIFO
read operation has a delay of 8ns after the triggering edge
of the clock. The I d a t a signal is required to arrive at the
IM boundary 4ns after the clock edge.

The critical path in the circuit is from the FIFO to the
primary output, I d a t a . Signal I d v arrives 4ns later than
its timing specification and the clock cycle is forced to be 4ns
longer, or 20ns. Pipelining the I d a t a signal by inserting
a register between the FIFO output and the cache solves
this problem, but violates the latency constraint. Retiming
which only relocates registers in the circuit cannot reduce
the clock period.

4.1.1 Applying Architectural Retiming
Since the clock period is constrained by the delay from the
FIFO read to the cache, architectural retiming inserts a neg-
ative register/normal register pair between the FIFO out-
put and the cache, effectively pipelining this path without
increasing the latency (Figure 2). The negative register is

Normal Register -rr-rn

Negative Register

Figure 2: A negative register/normal register pair added be-
tween the FIFO output and the cache.

710

Figure 3: Architecturally-retimed memory interface module. The implementaiion of the negative register results in generating a
bypass path. None of the new synthesized paths violate the specified clock perioid (16ns). The latency and timing requirements
for I d a t a are met.

then implemented by synthesizing the logic necessary to pre-
compute the output of the FIFO.

The logic needed to implement the negative register can
be deduced from the original specification of the FIFO. By
definition, the output of the negative register, F , at time t is
F I F O a u t at time t + 1, but must be computed using only
values available in time t .

From specifications (2), (3), (6), and (7) ,

FIFO_outt+' = FIFOt+'[head-pt+']
= (Choldt V emptyt)?

FIFOt+'[headpt] :
FTFOtfl[head-pt + 11

We must refer to the state of the FIFO in cycle t . The
FIFO is an axray of elements indexed by head-p and tail-p.
According to specification (l), the FIFO state in cycle t + 1
can differ from that in cycle t only in the location pointed
to by the tail pointer tail-pt. Thus,

FIFOt+'[headpt] = (head-pt == tai lpt)?
Mdata' : FIFOt[head-pt]

and similarly,

FIFOt+'[headpt + 11 = ((head-pt + 1) == tai lpt)?
M d a t a t : FIFOt[head-pt + 11

Thus, using the three previous equations, we can compute
the output of the negative register, F t , as:

F t = FIFOautt+'
= emptyt? M d a t a t :

(C'holdt? FIFOt[head-pt] :
(((headp t + 1) == tail-pt)?
M d a t a t : FIFOt[head-pt + 11))

The synthesis of the logic required to implement the neg-
ative register is possible since the value can be precomputed

using values available at time t . The result is shown in Fig-
ure 3. The signal I-data is now available at the IM bound-
ary Ins after the clock (the delay in the register from the
clock to the data is Ins) , and it satisfies the timing require-
ment. None of the synthesized paths violate the specified
clock period. and the architecturally-retimed circuit meets
the latency specification. Note that architectural retiming
has changed the architecture of the circuit. An extra regis-
ter has been added along the critical path and a bypass path
allows the data from the memory to the cache to maintain
a one-cycle 1,atency.

4.2
The second example is taken from the chaos router, a two-
dimensional, random, non-minimal adaptive packet router
for implementing multicomputer interconnection networks [2].
Multi-flit packets from the network enter the router through
input Games (buffers) and are routed to neighboring routers
or the processor connected to the router through output
Games. Incoming packets that cannot be routed immedi-
ately due tal the unavailability of their requested output
frames are temporarily buffered in the multiqueue, a mod-
ified FIFO buffer. When the multiqueue is full the chaos
router routes only messages residing in the multiqueue.

One of the cycles in the chaos router's control logic is il-
lustrated in Figure 4. The routing box attempts to make one
new routing (decision each clock cycle. A routing decision de-
termines the next packet in an input frame or the multiqueue
to be routed to an output frame. Packets in the multiqueue
are given priority over packets in input frames. The multi-
queue scoreboard manages the information for packets in the
multiqueue, producing the signal &-wants, which indicates
those output frames requested by multiqueue packets. The
signal Route-fromiMQ, which indicates which packet was
chosen for routing, is used by the scoreboard to eliminate
requests by multiqueue packets that have been routed. The
chaos router is forced to run at a slower clock period than
desired because of the long delay through the multiqueue
scoreboard and the routing box.

Example 2: The Chaos Router

711

Figure 4: The cycle in the chaos router that limits perfor-
mance is through the routing box and the scoreboard.

4.2.1 Applying Architectural Retiming
Architectural retiming adds a negative register/normal reg-
ister pair on the cycle, effectively pipelining the logic without
adding latency. There are two possible locations where this
register pair can be inserted: the Route-fromJMQ signal or
the Q-wants signal. Since the information required to pre-
compute either signal is not available, architectural retiming
must use prediction. Choosing which signal to predict re-
quires an analysis of the results of choosing each.

Predicting the signal Route-f romJMQ, which is the iden-
tity of the packet chosen for routing, is difficult. It is not
clear that we can do better than picking a value at random
from those we know were going to be chosen, in which case
we are seldom going to be able to predict correctly.

Predicting the value of Qwants , which is the set of pack-
ets in the multiqueue requesting routing, is easier. The dif-
ference in this value from one cycle to the next comprises
the addition of new requests, which are relatively infrequent,
and the removal of the request just satisfied. Thus, simply
using the previous value of Q-wants for the prediction will
be fairly accurate and the hardware cost associated with this
prediction is minimal. Analyzing the effect of mispredicting
this signal is somewhat complicated. The prediction could
be incorrect in two cases.

The first case occurs when a packet requesting a spe-
cific output frame is chosen to be routed based on the old
Q-wants and there are no other packets in the multiqueue
that request the same output frame. This scenario can only
occur immediately following a cycle in which a multiqueue-
route operation had started. Since routing from the multi-
queue is a multi-cycle operation, a new routing decision is
not allowed until the multiqueue route is completed. There-
fore, no actions are needed to nullify the effects of a mispre-
diction.

The second case occurs when a new packet is routed into
the multiqueue and the old Q-wants will not include the
new packet’s request for an output frame. The new packet
will then miss the opportunity of being immediately routed
from the multiqueue. If the prediction is incorrect, then the
routing decision must be canceled and the routing box must
make a new decision based on correct information. Alter-
natively, the result of the misprediction can be allowed to
proceed while the new packet resides in the multiqueue for
a number of additional cycles until the packet gets the op-
portunity to be routed again. Although the latter solution
is marginally unfair to the new packet, the router still func-
tions correctly.

I 1 ” l

I correct?

r
Figure 5: Architecturally-retimed circuit: The prediction
value for Qwants* is the old value of &-wants. The verifi-
a t ion occurs in the cycle after the prediction by comparing
the delayed Qwants” with the pipelined Q-wants.

In Figure 5 , we show how the cycle can be architecturally
retimed when predicting Q-wants. The delay around the
cycle is increased slightly by the propagation delay of the
added register and the delay of the 2:l multiplexer that se-
lects between the predicted Q-wants’ and the delayed true
Q-wants, but the cycle has been effectively pipelined, al-
lowing a reduced clock period. Retiming caa relocate the
registers in the cycle to achieve the minimum clock pe-
riod. Architectural retiming allows the router chip to run
at a smaller clock period at the expense of a one-clock-cycle
penalty when Q w a n t s is predicted incorrectly. Since the
architecture of the router has been changed, the overall per-
formance improvement of reducing the clock period at the
expense of an occasional cycle penalty must be determined
by simulating the entire system.

5 Experiments

Architectural retiming was applied to a number of circuits
and the results are shown in Figure 6. The examples cho-
sen are real circuits (with the exception of 3N+1) that have
a latency-constrained path. Examples MIM and MDV are
based on the interface module presented in Section 4.1. Ex-
ample QC is a queue controller circuit. Example SE& is a
small two-stage sequential circuit that cannot be further op-
timized by current sequential optimization techniques [9,4,3].

The original cycle in examples FA2 and FA3 is a single-
cycle circuit that performs a fetch from a RAM and add
operation each cycle. FA2 and FA3 refer to a different im-
plementation of the architectural retiming solution. Circuit
3N+l is a single-register cycle that architectural retiming
unfolds. The circuit calcula.tes the function: if N t is even,
Nt+’ = Nt /2 , else Nt+’ = N t x 2 + 1.

The numbers reported are based on applying architec-
tural retiming and performing behavioral optimizations by
hand. SIS [ll] was then used to optimize the resulting cir-
cuits. Two optimizing scripts were applied to each circuit:
script.delay and the sequence of the command fu l l s impl i fy fol-
lowed by the two scripts script.rugged and script.delay. We
chose the optimized circuit that had the smallest delay even
at the expense of added area.

712

Figure 6: Applying architectural retiming: Clock Period re-
duction vs. urea increase.

The average clock period reduction obta.ined using ar-
chitectural retiming is 31%. The average area increase is
14% not including the unfolded circuits (FAZ, FA3, 3N+1),
and 99% for the unfolded circuits. At first glance the area
penalty might seem excessive; however, this area increase is
calculated with respect to the area of the latency-constrained
path or cycle being architecturally retimed, which is typi-
cally only a small fraction of the entire circuit.

6 Related Work

Architectural retiming is an optimization technique tha.t en-
compasses and overlaps other techniques and concepts. The
term negative register was used in peripheral retiming [9],
an optimization technique for sequential circuits. Unlike
architectural retiming, which actually implements negative
registers, peripheral retiming uses negative registers as a
bookkeeping technique to keep track of the number of reg-
isters borrowed from the environment. Negative registers
were also used in Ruby [6] to skew data while composing a
circuit design.

Precomputation-based architectural retiming performs se-
quential logic optimization of latency-constrained paths by
exposing adjacent pipeline stages for combinationd opti-
mization, which is not performed by current sequential op-
timization techniques. De Micheli applies local algebraic
transformations across latch boundaries [4]. Peripheral re-
timing [9] moved registers from the interior of a circuit to its
environment to allow the whole circuit to be optimized using
combinational optimization. Chakardhar et al. took a more
timing-driven approach to sequential optimization that re-
sults in applying combinational optimization techniques to
each stage in the circuit [3]. This technique identifies the
least stringent set of arrival and required timing constraints
which are passed to a combinational delay optimizer along
with the circuit.

Kogge discusses the problem of pipelining circuits with
feedback [7]. He solves the problem of transforming a re-
currence equation z(n) that originally depends on the pre-
vious sequence, z(n - 1) to a recurrence equation that de-
pends on an earlier recurrence. Kogge’s technique conceptu-
ally unfolds the recurrence to allow the corresponding cyclic
pipeline to complete one operation each cycle. Unfolding of
iterative DSP data-flow graphs is also used in multiproces-
sor scheduling to expose the graph’s hidden concurrency to
allow the scheduler to achieve the smallest possible iteration
bound [lo].

Holtmann and Ernst present a scheduling algorithm that
applies a speculative technique that is modeled after mul-
tiple branch :prediction in a processor [5]. Precomputation
has been used by Alidina et al. to restructure circuits to
consume less power [I].

7 Concliision and Future Work

We have found architectural retiming to be an elegant and
powerful formulation that promises to generalize and auto-
matically generate a number of ad hoc sequential optimiza-
tion techniques that address the problem of improving the
performance of latency-constrained circuits. In this paper
we have presented the basic ideas of architectural retiming
and shown how it can be used to speed up two realistic cir-
cuits. Our initial results for a set of example circuits show
that architectural retiming can significantly improve perfor-
mance. We are currently developing an interactive architec-
tural retiming tool, ART, which will provide a framework
for developing and refining the algorithms required to apply
architectural retiming.

REFERENCES
M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Pa-
paefthymiou. “Precomputation-Based Sequential Logic Op-
timization for Low Power”. In P m . of the 1994 IEEE In-
ternational Conf on CAD, pages 74 -81, 1994.
K. Bolding, S.-C. Cheung, S.-E. Choi, C. Ebeling, S. Has-
soun, T. A. Ngo, and R. Wille. “The Chaos Router Chip:
Design and ImpIementation of an Adaptive Router’’. In Pro-
ceedings of VLSI ’93, Sept. 1993.

S. T. Chakradhar, S. Dey, M. Potkonjak, and S. Roth-
weiler. “Sequential Circuit Delay Optimization Using Global
Path Delays”. In Proc. 30th AGM-IEEE Design Automation
Conf., pages 483 -489, 1993.

G. De Micheli. “Synchronous Logic Synthesis: Algorithms
for Cycle-Time Minimization”. IEEE Transactions on
Computer-Aided Design, 10(1):63-73, Jan. 1991.
U. Holtniann and R. Ernst. “Combining MBP-Speculative
Computation and Loop Pipelining in High-Level Synthesis”.
In Proc. European Design Automation Conf., pages 550-6,
1995.
G. Jones and M. Sheeran. “Circuit Design in Ruby”. In IFIP
WG 10.5 Lectnre Notes, pages 13 -70, 1990.

P. Kogge. ‘The Architecture of Pipelined Computers”.
McGraw-Hill, 1981.
C. E. Leiserson, F. Rose, and J. B. Saxe. “Optimizing Syn-
chronous Circuitry by Retiming”. In Proc. of the 3rd Caltech
Conference on VLSI, Mar. 1983.

S. Malik, E. M. Sentovich, R. K. Brayton, and
A. Sangiovanni-Vincentelli. “Retiming and Resynthesis:
Optimizing Sequential Networks with Combinational Tech-
niques”. IEEE Tmnsactions on Computer-Aided Design,
10(1):74--84, Jan. 1991.

K. Parhi and D. Messerschmitt. “Static Rate-Optimal
Scheduling Of Iterative Data-Flow Programs Via Optimum
Unfolding.”. IEEE Tmnsactions on Computers, 40(2):178-
95, February 1991.

E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli. “SIS: A System for Sequential
Circuit Synthesis”. Technical Report UCB/ERL M92/41,
University of California, Dept. of Electrical Engineering and
Computer Science, May 1992.

713

