IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997 849

An Evaluation of Bipartitioning Techniques

Scott Hauck and Gaetano BorriellMember, IEEE

Abstract—Logic partitioning is an important issue in VLSI It focuses primarily on those approaches that build on the
CAD, and has been an area of active research for at least the Fiduccia—Mattheyses [8] variant of the Kernighan—Lin [16]
last 25 years. Numerous approaches have been developed an%llgorithm (hereafter referred to as KLFM).
many different techniques have been combined for a wide range . . .
of applications. In this paper, we examine many of the existing In _the rest of this paper, we d'SCl_JS_S the basic KLFM_
techniques for logic bipartitioning and present a methodology @lgorithm, and compare numerous optimizations to the basic
for determining the best mix of approaches. The result is a novel algorithm. This includes methods for clustering and uncluster-
bipartitioning algorithm that includes both new and preexisting  ing circuits, initial partition creation, extensions and alterations
techniques. Our algorithm produces results that are at least 16% to the standard KLFM inner loop, and the effects of increasing
better than the state of the art while also being efficient in run the maximum allowed IR d th b f
time. . . partition size an the number of runs

per trial. As we will demonstrate in the conclusions, this has
helped build a bipartitioning algorithm that is significantly
I. INTRODUCTION better than the current state of the art.

OGIC partitioning is one of the critical issues in CAD for
digital logic. Effective algorithms for partitioning circuits
enable one to apply divide-and-conquer techniques to simplify
most of the steps in the mapping process. For example, . METHODOLOGY

standard-cell designs can be broken up so that a placemer]t .
. . . n our work, we have integrated numerous concepts from
tool need only consider a portion of the overall design at an

one time, yieiding higher quality results in a shorter period (%%{e bipartitioning literature, along with some novel techniques,

. ; s . 9 determine what features make sense to include in an
time. Also, large designs must be broken up into pieces small L : . .
overall system. We are primarily interested in Kernighan-Lin,

enough to fit into multiple devices. Traditionally, this prObIenf:ilduccia—Mattheyses-based algorithms, although we do in-

was important for breaking up a complex system into sever. S
, ) . : clude some of the spectral partitioning approaches as well.
custom ASIC’s. Now, with the increasing use of FPGA-base : )
The best way to perform this comparison would be to try

emulators and prototyping systems, partitioning is becom'%%ery combination of techniques on a fixed set of circuits,

even more critical. : .
. L and determine the overall best algorithm. Unfortunately, we
For all of these tasks, the goal is to minimize the commu-_ " . . )
. - ) . ... consider such a large number of techniques that the possible
nication between partitions while ensuring that each partition . ~ . . . .
. . i ... combinations reach into the thousands, even ignoring the
is no larger than the capacity of the target device. While it S

. I . ranges of numerical parameter settings relevant to some of
possible to solve the case of unbounded partition sizes exaLQ g P eter seting N ° °

I, . ; gse algorithms. Instead, we use our experience with these
[5], the case of balanced partition sizes is NP complete [1 . . .
. ; [gorithms to try to choose the best possible set of techniques,
As a result, numerous heuristic algorithms have been propose ! - L )
and then try inserting into this mix each technique that was not

(41 chosen. In some cases, where it seemed likely that there would

In a 1988 survey of partitioning algorithms [7], Donatkbe some benefit of examining multiple techniques together

stated: “there is a disappointing lack of data comparing par- i, -
L . R ) . and exploiting synergistic effects, we also tested those sets of
titioning algorithms,” and “unfortunately, comparisons of th . )

echniques. In the comparisons that follow, we always use all

available algorithms have not kept pace with their deveIoB? the features of the best mix of techniques found except

ment, SO we cannot always judge the Cost-eﬁectlvenesswqu;ere stated otherwise. Specifically, the default algorithm

the different methods.” This statement still holds true, wit : L :

. : includes the following optimizations (each of these techniques
many approaches but few overall comparisons. This PARET 1 ascribed later in this pa en):
addresses the bipartitioning problem by comparing many of Paper)-

the existing techniques, along with some new optimizations.. recursive connectivity clustering;

e presweeping;
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TABLE |
Szes oF ExampLE CIRCUITS

Circuit Nodes (gates, latches, 10s) Nets Pins (node-net connections)
s38417 25589 23953 64299
s38584 22451 20999 61309
$35932 19880 18152 55420
industry3 15406 21923 65791
industry?2 12637 13419 48158
s15850 11071 10474 27209
513207 9445 8776 23442
biomed 6514 5742 21040

§9234 6098 5870 15026
55378 3225 3046 8241

Create initial partitioning;
While cutsize is reduced {
While valid moves exist {

Use bucket data structures to find unlocked node in each
partition that most improves/least degrades cutsize when
moved to other partition;

Move whichever of the two nodes most improves/least degrades
cutsize while not exceeding partition size bounds;

Lock moved node;

Update nets connected to moved nodes, and nodes connected to
these nets;

} endwhile;
Backtrack to the point with minimum cutsize in move series just
completed;
Unlock all nodes;
} endwhile;

Fig. 1. The Fiduccia—Mattheyses variant of the Kernighan-Lin algorithm.

This algorithm is run ten times, and the best of these ten ruseme percentage decrease in each cut size, not a decrease of
is returned. The clustering is calculated once, and is shagme constant number of nets in all examples. That is, it is
among these different runs. likely that an improved algorithm would reduce cut sizes for

The seven largest circuits from the MCNC partitioningll circuits by 10%, and would not reduce cut sizes by ten
benchmark suite [18], as well as three commonly used pawets in both large and small examples. Thus, the geometric
titioning benchmarks (industry2, industry3, biomed) are usédean is more appropriate. Also, an arithmetic mean tends to
as test cases for this work (Table 1). While these circuits hagéive more weight to percentage increases and decreases of
the advantage of allowing us to compare with other existifgrger values. Thus, since our benchmark suite ranges from
algorithms, the examples are a bit small for today’s partitioning)46 to 23953 nets, and cut sizes should also vary over a
tasks (the largest is only about 25000 gates), and it is uncl&ifly large range, the arithmetic mean would be dominated
how representative they are for bipartitioning. We hope that, By an algorithm’s results on the larger circuits. Finally, we are
the future, a standard benchmark suite of real end-user circupgmarily concerned with comparing the results of different
with sizes ranging up to the hundreds of thousands of gataigorithms on the set of benchmarks, and will consider the
will be available to the community. ratio of their performances. Unfortunately, with an arithmetic

In the sections that follow, we consider each of the posdiean, the average of the ratios for each example is different
ble optimizations to the basic KLFM algorithm. The result§om the ratio of the averages. However, the geometric mean
presented are cut sizes and run times. The cut size is gfdhe ratios is identical to the ratio of the geometric means.
number of nets connected to nodes in both partitions, and
thus is the quantity we seek to minimize. Run times are CPU Ill. BASIC KERNIGHAN-LIN,
seconds on a SPARCstation 5 model 70, and include the time FIDUCCIA-MATTHEYSES BIPARTITIONING
to cluster the circuit as well as the total time to perform One of the best known, and most widely extended, bi-
all of the multiple runs of the partitioning algorithm. Notepartitioning algorithms is that of Kernighan and Lin [16],
that when we are making overall comparisons, we use thsgpecially the variant developed by Fiduccia and Mattheyses
geometric mean{II?* , A;)Y™ instead of the more common[8]. Pseudocode for the algorithm is given in Fig. 1. It is an
arithmetic mean(X?_, A;)/n. This is because we believeiterative-improvement algorithm in that it begins with an initial
that improvements to partitioning algorithms will result impartition, and iteratively modifies it to improve the cut size.
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The cut sizeis the number of nets connected to nodes in botiot only how the different approaches to each step compare
partitions, and is the value to be minimized. The algorithmwith one another, but also how they combine together to form
moves a node at a time, moving the node that causes theomplete partitioning solution.
greatest improvement, or the least degradation, in the cut size.
If we allowed the algorithm to move any arbitrary node, it
could decide to move the node just moved in the previous  |V. CLUSTERING AND TECHNOLOGY MAPPING
iteration, returning to the previous state. Thus, the algorithmoOne of the most common optimizations to the KLFM
would be caught in an infinite loop, making no progress. Tg@lgorithm is clustering, the grouping together of nodes in the
deal with this, we lock down a node after it is moved, angircuit being partitioned. Nodes grouped together are removed
never move a locked node. The algorithm continues movimgm the circuit, and the clusters take their place. Nets that
nodes until no unlocked node can be moved without violatingere connected to a grouped node are instead connected to
the size constraints. It is only after the algorithm has exhaustg@ cluster containing that node. Clustering algorithms are
all possible nodes that it checks whether it has improved thgplied to the partitioning problem both to boost performance,
cutset. It looks back across all the intermediate states sing®l also to improve quality. The performance gain is due
the last check, finding the minimum cut size. This allows tp the fact that, since many nodes are replaced by a single
to climb out of local minima since it is allowed to try outcluster, the circuit to be partitioned now has fewer nodes,
bad intermediate moves, hopefully finding a better later statghd thus the problem is simpler. Note that the clustering
After it moves back to the best intermediate state, it unlockgne can be significant, so we usually cluster the circuit
all nodes and continues. Once the algorithm fails to find gnly once, and if several independent runs of the KLFM
better intermediate state between checks, it finishes with thigorithm are performed, we use the same clustering for all
last chosen state. runs. The ways in which clustering improves quality are
One important feature of the algorithm is the bucket datwofold. First, the KLFM algorithm is a global algorithm,
structure used to find the best node to move. The data structgpgimizing for macroscopic properties of the circuit. It may
has an array of lists, where each list contains nodes in the sagerlook more local, microscopic concerns. An intelligent
partition that cause the same change to the cutset when movsigstering algorithm will often focus on local information,
Thus, all nodes in partition 1 that increase the cut size bygpouping together a few nodes based on local properties. Thus,
when moved would be in the same list. When a node is moveg,smart clustering algorithm can perform good local opti-
all nets connected to it are updated. There are four situatianfzation, complementing the global optimization properties
to look for: 1) a net that was not in the cutset that now isjf the KLFM algorithm. Second, it has been shown that the
2) a net that was in the cutset that now is not; 3) a net thaLFM algorithm performs much better when the nodes in
was firmly in the cutset that is now removable from the cutseatie circuit are connected to at least an average of six nets,
and 4) a net that was removable from the cutset that is navhile nodes in circuits are typically connected to between 2.8
firmly in the cutset. A net is “firmly in the cutset” when it isand 3.5 nets [12]. Clustering should, in general, increase the
connected to two nodes, or a locked node, in each partition. Alimber of nets connected to each node, and thus improve
other nets in the cutset are “removable from the cutset” sinttee KLFM algorithm. Note that most algorithms (including
they are connected to only one node in one of the partitionhe best KLFM version we found) will partition the clustered
and that node is unlocked. Thus, the net can be removed freircuit, and then use this as an initial split for another run
the cutset by moving that node. Each of these four situatioos partitioning, this time on the unclustered circuit. Several
means that moving a node connected to that net may haveasiations on this theme will be discussed in a later section.
different effect on the cut size now than it would have had if The simplest clustering method is to randomly combine
it was moved in the previous step. All nodes connected to ooennected nodes. The idea here is not to add any local
of these four types of nets are examined and moved to a neptimization to the KLFM algorithm, but instead to simply
list in the bucket data structure if necessary. exploit KLFM'’s better results when the nodes in the circuit
The basic KLFM algorithm can be extended in many waygave greater connectivity. A maximum random matching of
We can choose to partition before or after technology mappirtpe circuit graph can be formed by randomly picking pairs of
We can cluster circuit nodes together before partitioning, botlonnected nodes to cluster, and then reclustering as necessary
to speed up the algorithm’s run time, and to give somte form the maximum number of disjoint pairs. Unfortunately,
better local optimization properties to the KLFM’s primarilythis is complex and time consuming, possibly requirii@:?)
global viewpoint. We also have a choice of initial partitiortime [9]. We chose to test a simpler algorithm (referred to here
creation methods, from completely random to more intelligeat random clusteriny inspired by Buiet al. [4] that should
methods. The main search loop can be augmented with mgemerate similar results while being more efficient and easier
complex cost metrics, possibly adding more lookahead to implement. Each node is examined in random order and
the choice of nodes to move. We can uncluster the circaiustered with one of its neighbors (note that a node connected
and reapply partitioning, using the previous cut as the inititd a neighbor byN nets is/N times as likely to be clustered
partitioning of the subsequent runs. Finally, we can consideith that neighbor). A node that was previously the target
how these features are improved or degraded by larger afra clustering is not used as a source of another clustering,
smaller maximum partition sizes, and by multiple runs. In thisut an unclustered node can choose to join a grouping with
paper, we will consider each of these issues in turn, examiniag already clustered node. Note that with random clustering,
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a separate clustering is always generated for each run of thsted. It is based upon work done by Schuler and Ulrich [21],
KLFM algorithm. with several modifications. We will refer to it annectivity

Numerous more intelligent clustering algorithms existlustering Like random clustering, each node is examined in
K-L clustering [10] (not to be confused with KL, the a random order and clustered with one of its neighbors. If a
Kernighan—Lin algorithm) is a method that looks for multiplexode has already been clustered, it will not be the source of
independent short paths between nodes, expecting that thesew clustering attempt, although more than two nodes can
nodes should be placed into the same partition. Otherwisdoose to cluster with the same node. Nodes are combined with
each of these paths will have a net in the cutset, degraditng neighbor with which they have the greatest connectivity.
the partition quality. In its most general form, the algorithn€onnectivityis defined in

requires that two nodes be connectediindependent paths o bandwidth;

(i.e., paths cannot share any nets), of lengths at most Iz, connectivity; = Size * Siz6  (fan-ouf — bandwidth; )
respectively, to be clustered together. Checking for K-L *(faljﬁ-oug—bandwidthx) j
connectedness can be very time consuming, especially for ! (1)

longer paths. The biggest problem is high fan-out nets, whigandwidth; is the total bandwidth between the nodes (as
are quite common in digital circuits. Specifically, if we argjefined in bandwidth clustering), where each net contributes
looking for potential nodes to cluster, and the source nodé(|¢| — 1) bandwidth between each pair of nodes to which
of the search is connected to a clock or reset line, most iofis connected. In this method, nodes are more likely to be
the nodes in the system are potential candidates, and a hg@etered if they are connected by many nets tthedwidth;
number of paths need to be checked. However, since hugehe numerator), if the nodes are small (8ieg andsize in
fan-out nets are the most likely to be cut in any partitioninghe denominator), and if most of the nodes’ bandwidth is only
we can accelerate the algorithm by ignoring all nets withbetween those two nodes (tfan-out — bandwidth, andfan-
fan-out greater than some constant. Alsol,if= 1, then the out; — bandwidth; terms in the denominator). While most of
potential cluster mates are limited to the direct neighbors tifese goals seem intuitively correct for clustering, the reason
a node (although transitive clustering is possible, wittand  for the size limits is to avoid large nodes (or subsequent large
C clustered together witl? because botd andC' are K-L  clusters in recursive clustering, defined below) attracting all
connected with nodé?, while A andC' are not directly K-L neighbors into a single huge cluster. Allowing larger nodes to
connected). In our study of K-L clustering, we ignored aform huge clusters early in the clustering will adversely affect
nets with fan-out greater than 10, and uded= 2, I; = 1, the circuit partitioning.
I = 3. The values of maximum considered fan-out dpd  While all of the clustering techniques described so far have
were chosen to give reasonable computation times. Whieen bottom up, using local characteristics to determine which
[10] recommends: = 3, [; = 1, I» = 3, I3 = 3, we have nodes should be clustered together, it is possible to perform
found that this yielded few clustering opportunities (this wiltop-down clustering as well. A method proposed by é:fal.
be discussed later), and the parameters we chose gave[#7§ (referred to here ashortest path clusterirgiteratively
greatest clustering opportunities with reasonable run timapplies a partitioning method to the circuit until all pieces
Using l; = 4 would increase the clustering opportunities, budre small enough to be considered clusters. At each step, it
would also greatly increase run times. considers an individual group at a time, where a group contains
A much more efficient clustering algorithm, related tall nodes that have always been on the same side of the cuts in
K-L clustering, has been proposed [20] (referred to heedl prior partitionings. The algorithm then iteratively chooses a
as bandwidth clustering In this method, each net in the random source and sink node, finds the shortest path between
circuit provides a bandwidth af/(|e| — 1) between all nodes those nodes, and increases the flow on these edges by 0.1. The
connected to it, wheré:| is the number of nodes or clusterslow is a number used in computing net lengths, where the
connected to that net. All pairs of nodes that have a totalirrent net length iexp(10 * flow). Before each partitioning,
bandwidth between them of more than 1.0 are clustered. Thal flows are set to zero. When the flow on a net reaches 1.0, the
nodes must be directly connected by at least two two-terminadt is part of the cutset. Once there is no uncut path between
nets to be clustered, or a larger number of higher fan-otie random pairs of nodes chosen in the current iteration, the
nets. This clustering is similar to K-L clustering with= 2, algorithm is finished with the current partitioning. Note that
l; =1, I, = 1, although it requires greater connectivity ifthe original algorithm limits the number of subpartitions of
the connecting nets have more than two terminals. Transitigay one group. Since this is not an important issue for our
clustering is allowed, so if the bandwidth betwedrandC is purposes, it was not included in our implementation. Once
zero, they may still be clustered togetherdiind B andB and the algorithm splits up a group into subpartitions, the sizes of
C each have a bandwidth of greater than 1.0 between theite new groups are checked to determine if they should be
There is an additional phase (carried out after all passesfofther subdivided. For our purposes, the maximum allowable
recursive clustering, discussed below) that attempts to balambester size is equal to 1% of the total circuit size. There are
cluster sizes. several alterations that can be made to this algorithm to boost
A clustering algorithm similar to bandwidth clustering, buperformance, details of which can be found in [15].
which does not put an absolute lower bound on the necessarefore describing the last clustering method, it is necessary
amount of bandwidth between the nodes, and which algp discuss how to calculate the size of a logic node in the
considers the fan-out of the nodes involved, has also begrcuit being clustered. One possibility is to simply assume
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that all logic functions are the same size, and assign an area P
of 1 to all nodes. However, in many cases, the input circuit inputs{
can have simple and complex functions mixed together. Since

the goal of bipartitioning is to equalize the logic in the two

partitions, thus allowing the two partitions to each fit into

the same chip area, this model can be quite inaccurate. For

example, this would assume that a five-input AND gate and an =

inverter would occupy the same space. In most circumstances, %*Et‘sl) ]

the AND gate would be much larger than the inverter, and P — -~
in fact, in many technologies, this inverter would consume

no area at all since it could be combined with the previous (b)

gate. For example, in a CMOS circuit, a five-input ANDrig. 2. Example for the discussion of the size of logic functions. Ffieput
gate followed by an inverter would take up less space thamdM-inputfunctions cascaded together (a) are combined irftb/a- > —1)

the AND gate alone since the gates in a CMOS technolotﬂ?Ut LUT (b)-
automatically invert their output signals. If the circuit being
partitioned has already been technology mapped (restructugedeloped for other target technologies. For example, a rea-
into physically realizable gates in a given technology), thasbnable estimate for the size of a CMOS gate is its number
direct measurements of the gate areas could be obtainedinputs. Even in this technology, inverters are often free,
Unfortunately, as we will show later in this section, it isand 1/O pads should not be counted as part of the logic size
better to partition before technology mapping, and thus sorge a partition. Thus, to retarget this partitioner to a CMOS
estimations of the final area of the logic must be made.  technology simply requires increasing the size of all non-0
In this work, we have chosen to target FPGA’s such asze nodes by one (& size metric with 0 sized inverters and
the Xilinx 3000 series [24], where all logic is implemented/O pads).
by lookup tables (LUT’s). A LUT is a logic block that can The last clustering technique we explored is not a com-
implement any function ofV variables, wheréV is typically plete clustering solution, but is instead a preprocessor (called
4 or 5. Since we will be partitioning circuits before technologpresweepiny that can be used before any other clustering
mapping (the reasons for this will be discussed later), wgpproach. The idea is that there are some nodes that should
cannot simply count the number of LUT’s used since severalways be in the same partition. Specifically, one of these
of the gates in the circuit may be combined into a single LUhodes has a size of 0, and that node can always be moved
An important aspect of a LUT-based implementation is th& the other node’s partition without increasing the cut size.
we can combine aii/-input function with aP-input function The most obvious case is an I/O node from the original circuit
that generates one of tiig inputs into an(A/ + P — 1)-input  which is connected to some other nodg This I/O node
function (see Fig. 2). The reason that it is@¥ + P — 1)- will have a size of 0, will be connected to one net, and
input function, and not arfAf + P)-input function, is that moving the 1/O node to nodd”’s partition can only decrease
the output of theP-input function no longer needs to be arthe cut size (the cut size may not actually decrease since
input of the function since it is computed inside the LUT. Aanother node connected to the net betwéérand the 1/0
1-input function (inverter or buffer) requires no extra inputaode may still be in that other partition). Another situation
on a LUT. We can therefore say a logic node Bfinputs is a nodeR, which is connected to exactly two nets, and
uses upP — 1 inputs of a LUT, and thus the size off&input one of these two nets is a two-terminal net going to n§de
function is (P — 1), with a minimum size of 0. Although it may Again, nodeR will have a size of 0, and can be moved to
seem strange to have nodes with a 0 logic size, as we ha¥s partition without increasing the cut size. The presweeping
shown, 1-input functions (inverters or buffers) are often freslgorithm goes through the circuit looking for such situations,
in a given technology, or in fact may yield even smaller logiand clusters together the involved nod&swith S, or N with
area than if the function were not on that chip. Any I/O nodage I/O node). Note that presweeping can be very beneficial to
(i.e., external inputs and outputs) have a cost of 0 as wedbme clustering algorithms, such as K—-L and bandwidth, since
This is because if size keeps an 1/0 node out of a partition $ach algorithms may be unable to cluster together the pairs
which it has neighbors (i.e., nodes connected to the same foeind by presweeping. For example, an I/O node connected
as the I/O node), a new I/O must be added to each partitionttoonly one net will never be clustered by the K-L clustering
communicate the signal across the cut. Thus, moving an I&Qyorithm. Since the presweeping clustering should never hurt
node to a partition in which it has a neighbor never uses exgigpartitioning (except due to random variation), presweeping
logic capacity. Also, most technologies have a fixed region farill always be performed in this study unless otherwise stated.
handling all I/O nodes, and thus the I/O nodes do not consuieen in technologies where inverters and 1/0 pads are assigned
space otherwise useable by other logic functions. Althoughsize greater than 0, presweeping inverters on two-terminal
latches should also have a size of 0, since most FPGA'’s haats and all I/O pads is still a reasonable heuristic, although it is
more than sufficient latch resources, for simplicity, we trea longer guaranteed not to degrade the possible partitionings.
them identically to combinational logic nodes. Results for the various clustering algorithms are presented
Even though thg P — 1) size metric has been developedn Table Il. The connectivity clustering algorithm generates
specifically for FPGA technologies, similar metrics can b#he best results, with shortest path clustering performing only



854 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

TABLE I
QuALITY COMPARISON OF CLUSTERING METHODS
Mapping Random K-L Bandwidth Connectivity | Shortest-Path | No Presweep
s38417 134 297 168 57 69 64
s38584 166 ]8 69 54 50 59
$35932 73 86 277 47 45 70
industry3 404 517 436 4?27 462 467
industry2 210 194 239 181 184 269
s15850 70 90 124 60 59 65
s13207 113 94 87 73 72 79
biomed 96 176 158 83 141 83
§9234 63 79 56 52 51 65
55378 84 78 88 68 68 66
Geom. Mean 118.7 135.4 139.6 82.4 87.9 95.1
Time 604.6 386.6 706.1 499.5 1498.6 600.7

Values are minimum cut size for ten runs using the specified clustering algorithm, plus the best
KLFM partitioning and unclustering techniques. Source mappings are not technology mapped. The “No
Presweep” column is connectivity clustering applied without first presweeping. All other columns include
presweeping. The “Time” row values are geometric mean times for running the specified algorithm on
each of the example circuits.

about 7% worse. In terms of performance, partitioning witfor applying the various clustering algorithms to the Xilinx
the shortest path clustering algorithm takes more than thi8@00 technology-mapped versions of the circuits (note that
times as long as with the connectivity clustering algorithnanly the five largest MCNC benchmarks are used because the
This is because clustering with the shortest path algorithmher MCNC benchmarks were small enough that the size
usually takes more than 20 times as long as the connectivitiya single CLB was larger than the allowed partition size
approach. Shortest path clustering would thus be even wovsgiation, and the three other circuits only had connectivity
compared to connectivity clustering if the partitioner does natformation without the actual logic functions). Column 5
share clustering between runs. As we will show later, it ENo Tech Map”) has the results for connectivity clustering on
sometimes a good idea not to share clusterings. Because ofghte-level (nontechnology-mapped) circuits. The results show
significant increase in run time, as well as a slight decreasetlrat technology mapping before partitioning almost doubles
quality, we use the connectivity algorithm for all of our othethe cut size. The K-L and bandwidth clustering algorithms do
comparisons. We can also see that presweeping is a good igeaerate results closer to connectivity clustering’'s for these
since connectivity clustering without presweeping does abatitcuits than the nontechnology-mapped examples, but we are
15% worse in terms of cut size, while taking about 20% longemuch better off simply partitioning the gate-level circuits. This
One surprising result is that both K-L and bandwidthas an added benefit of speeding up technology mapping as
clustering do considerably worse than random clustering. Thell since, after partitioning, we can technology map each of
reason for this is that these clustering algorithms seem ttee partitions in parallel. Note that we may increase the logic
require technology mapping, and the comparisons in the tab&ze by partitioning before technology mapping because there
are for nontechnology-mapped circuits. Technology mappirge fewer groupings for the technology mapper to consider.
for Xilinx FPGA's is the process of grouping together logidHowever, in many technologies, the amount of logic that can
nodes to best fill a CLB (an element capable of implementiriy on the chip is constrained at least as much by the number
any five-input function, or two four-input functions). Thuspf I/O pins as by the logic size, and thus decreasing the cut
it combines several basic gates into a single CLB. The resize by a factor of 2 is worth a small increase in logic size.
son that K-L and bandwidth clustering perform poorly offhis increase in logic size is likely to be small since the gates
nontechnology-mapped (gate-level) circuits is that there afeat technology mapping will group into a CLB share signals,
very few clustering opportunities for these algorithms. Imagirend are thus likely to be placed into the same partition.
a sum-of-products implementation of a circuit. In general, any It is fairly surprising that technology mapping has such
specific AND gate in the circuit will be connected to twaa negative effect on partitioning. There are two possible
or three input signals and some OR gates. Any AND gategplanations: 1) technology mapping produces circuits that
connected to several of the same inputs will in general lage somehow hard for the KLFM algorithm to partition,
replaced by a single AND gate. The OR gates are connected2) technology mapping creates circuits with inherently
to other AND gates, but will never be connected to the sameuch higher minimum cut sizes. There is evidence that the
AND gate twice. Thus, there will be almost no possibilitysecond reason is the underlying cause, that technology-mapped
of finding clusters with bandwidth clustering, and few K-Lcircuits simply cannot be partitioned as well as gate-level
clustering opportunities. While many gate-level circuits wilEircuits, and that it is not simply due to a poor partitioning
not be simple sum-of-products circuits, we have found thatgorithm. To demonstrate this, we use the fact that the
there are still very few clustering opportunities for the K—ltechnology-mapped circuits for the Xilinx 3000 series contain
and bandwidth algorithms. information on what gates are grouped together to form a
Unfortunately, technology mapping before partitioning is aBLB. This lets us consider technology mapping not as a
extremely poor idea. In Table Ill, columns 2—-4 shows resul®rmanent restructuring of the circuit, but instead simply as
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TABLE I
QuALITY COMPARISON OF CLUSTERING METHODS ON TECHNOLOGY-MAPPED CIRCUITS
Mapping K-L Bandwidth Connectivity No Tech Map Unclusterable
s38417 133 116 102 57 43
$38584 169 159 120 54 60
$35932 155 157 143 47 53
515850 97 95 86 60 60
$13207 118 119 116 73 72
Geom. Mean 131.9 126.8 111.8 57.6 56.8

Values are minimum cut size for ten runs using the specified algorithm. The values in the column
marked “Unclusterable” are the results of applying connectivity clustering to technology-mapped
files, but allowing the algorithm to uncluster the groupings formed by the technology mapping.
Note that only the five largest MCNC circuits are used because the non-MCNC circuits only had
connectivity information, not the actual logic functions, and technology mapping for the smaller MCNC
examples causes clusters to exceed 1% of the total circuit size. Because of limitations of our current
implementation, all entries except the “No Tech Map” column use separate clusterings for each of
the ten runs of the algorithm.

technology mapping before partitioning is actually a good idea,
primarily for performance reasons. However, in his study, he
used only a basic implementation of Kernighan—Lin (appar-
ently not even the Fiduccia—Mattheyses optimizations were
applied), thus generating cut sizes significantly larger than
what our algorithm produces, with much slower performance.
Thus, the benefits of any form of clustering would help

the algorithm, making the clustering provided by technology
mapping competitive. However, even these results report a
6% improvement in arithmetic mean cut size for partitioning

before technology mapping, and the difference in geometric
mean is actually 19%.

Fig. 3. Example of the impact of technology mapping on partitioning quality.
The circuit s27 is shown (clock, reset lines, and I/O pins are omitted). (a) is a
balanced partition of the unmapped logic, which has a cut size of 2. (b) Gray V. UNCLUSTERING

loops indicate logic grouped together during technology mapping. The only When we use clustering to improve partitioning, we will
the-other girrtt'itt'igﬂ',ngiggisn;hi largest graup in one partition, the other two,jy ally partition the circuit, uncluster it, and partition again.
The results of partitioning the clustered circuit are used as
an initial partitioning for the subsequent partitioning of the

another clustering preprocessor. We allowed our algorithm $@clustered circuit. There are several ways to uncluster. Most
partition the circuit with the technology-mapped files, witlybviously, we can either choose not to uncluster at adl (
connectivity clustering applied on top, then uncluster to basigclustering, or we can completely remove all clustering in
gates and partition again. The results are shown in the fiRle step ¢omplete unclustering However, there are better
column of Table Ill. As can be seen, once the technologyiternatives. The important observation is that during clus-
mapping is allowed to be removed from the circuit, theering, we can build a hierarchy of clusters by recursively
partitioner can produce results just as good as the versigiplying a clustering method, and then uncluster it in a way
operating on nontechnology-mapped circuits. However, singgat exploits this hierarchy. Inecursive clusteringafter the
technology mapping is a complex, time-consuming processicuit is initially clustered, we reapply the clustering algorithm
and many technology mappers would not retain informatiggain upon the already clustered circuit. Clusters are never
about mapped gates (which is what allowed us to undo th#owed to grow larger than half the allowed partition size
technology mapping for the “unclusterable” case), partitioningariation. That is, if the maximum partition size is 51% of the
on nontechnology-mapped files is preferred to technolo@ygic, and thus the minimum is 49%, the maximum partition
mapping, partitioning, and then retechnology mapping. size variation is 2%, and no cluster can be formed that would

The small example circuit (Fig. 3) demonstrates the proclude more than 1% of the total circuit size. This guarantees
lems technology mapping can cause. There is a balanckdt, ignoring locked nodes, a node from one of the two
partitioning of the circuit with a cut size of two, as showrpartitions can always be moved without violating the partition
in gray at left. However, after technology mapping (CLB'size constraints. Recursive clustering continues until no more
are shown by gray loops), the only balanced partitioning puttusters can be formed. While we are clustering, we remember
the smaller CLB'’s in one partition, and the larger CLB on thehat clusters are formed at each step, with clusters formed in
other. This split has a cut size of five. theith pass forming théth level of a clustering hierarchy.

The effects of technology mapping on cut size have beenThere are two ways to take advantage of the clustering hi-
examined previously by Weinmann [23], who determined thatarchy formed during recursive clustering. The most obvious
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TABLE IV
QuALITY COMPARISON OF UNCLUSTERING METHODS
Single-level Clustering Recursive Clustering
Mapping | No Uncluster | Complete | No Uncluster| Complete Iterative Edge
Uncluster Uncluster Uncluster Uncluster
$38417 178 150 140 87 57 55
$38584 90 69 213 131 54 57
$35932 157 156 90 75 47 45
industry3 580 413 1145 539 427 411
industry?2 268 216 498 245 181 205
s15850 77 67 123 84 60 62
s13207 101 79 119 89 73 72
biomed 212 196 162 109 83 83
$9234 68 61 105 54 52 56
$5378 79 68 125 70 68 68
Geom. Mean 142.5 120.0 i85.3 113.4 82.4 83.6
Time 326.0 436.4 237.0 383.9 499.5 540.8

Values are minimum cut size for ten runs using the specified algorithm. Source mappings are not
technology mapped, and are clustered by presweeping and connectivity clustering. The “Time” row
values are geometric mean times for running the specified algorithm on each of the example circuits.

method is that after partitioning completes (that is, when dustering pass plus complete unclustering yields a cut size
complete pass of moving nodes fails to find any state betd##% larger than the best unclustering (iterative), and even
than the results of the previous pass), we remove the highesinplete unclustering of a recursively clustered mapping
level of the clustering hierarchy, leaving all clusterings atields a 38% larger cut size. The difference between the
the lower levels alone, and continue partitioning. That iswo hierarchical unclustering methods is only 1.5%, with four
subclusters of clusters at the highest level, as well as thasappings having smaller cut sizes with edge unclustering, and
clusters that were not reclustered in the highest level, withur having smaller cut sizes with iterative unclustering. Thus,
remain clustered for the next pass. This process repeats uihtdppears that the difference between the two approaches is
all levels of the clustering have been removed (note thslight enough to be well within the margins of error of this
clustering performed by presweeping is never removed singgrvey, with no conclusive winner. In this survey, we use
there is nothing to be gained by doing so). In this wayterative unclustering except where explicitly stated otherwise.
the algorithm performs coarse-grain optimization during early
passes, medium-grain optimization during the middle passes,
and fine-grain optimization during late passes. This algorithm, VI. INITIAL PARTITION CREATION
which we will refer to here agerative unclusteringis based  KLFM is an iterative-improvement algorithm that gives no
on work by Cong and Smith [6]. guidance on how to construct the initial partitioning that is to
An alternative to iterative unclustering &dge uncluster- pe improved. As one might expect, there are many ways to
ing. This technique is based on the observation that at agynstruct this initial partitioning, and the method chosen has
given point in the partitioning, there is likely to be somen impact on the results.
fine-grained, localized optimization, and some coarse-grained;The simplest method for generating an initial partition is to
global optimization that should be done. Specifically, thogast randomly create oneandom initializatior) by randomly
nodes that are very close to the current cut should be veysdering the clusters in the circuit (initial partition creation
carefully optimized, while nodes far from the cut need mudhakes place after clustering), and then finding the point in this
less detailed examination. The edge unclustering algorithmosiering that best balances the total cluster sizes before and
similar to iterative unclustering in that it keeps unclustering thefter this point. All nodes before this point are in one partition,
highest levels of clustering remaining in between runs of thend all nodes after this point are in the other partition.
KLFM partitioning algorithm. However, instead of removing An alternative to this iseeded initializationwhich is based
all clusters at a given level, it only removes clusters that ao& work by Wei and Cheng [22]. The idea is to allow the
adjacent to the cut (i.e., those clusters connected to edges KilaEM algorithm to do all the work of finding the initial
are in the cutset). In this way, we will end up eventuallpartitioning. It randomly chooses one cluster to put into one
unclustering all clusters next to the cut, while other clustepartition, and all other clusters are placed into the other
may remain. When there are no more clusters left adjacentgartition. The standard KLFM algorithm is then run with the
the cut, we completely uncluster the circuit and patrtition orfellowing alterations: 1) partitions are allowed to be outside
final time with KLFM. the required size bounds, although clusters cannot be moved
As the results in Table IV show, using recursive clustering a partition that is too large, and 2) at the end of the pass, it
and a hierarchical unclustering method (iterative or edg@ecepts any partition within size bounds instead of a partition
unclustering) has a significant advantage. The methods thataldside of the size bounds. Thus, the KLFM algorithm should
not uncluster are significantly worse than all other approachespve clusters related to the initial “seed” cluster over to the
by up to more than a factor of 2. Using only a singlemall partition, thus making all nodes that end up in the
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Fig. 4. Distribution of results from partitioning with random (black bars) and seeded (gray bars) initializatioithTies from the left represents thith
best cut size found by either algorithm, and the height indicates how many different runs of the algorithm (out of ten) achieved that result.

initially 1-cluster partition much more related to one another TABLE V
than a randomly generated partitioning. QuALITY COMPARISON OF INITIAL PARTITION CREATION METHODS
We can also generate an initial partitioning that has oneMapping Random | Seeded Breadth-first Depth-first

tightly connected partition bypreadth-first initialization This $38417 57 69 57 65
algorithm again starts with a single node in one of the :gg;g; i‘; i; Zg 2‘7‘
pgrtitions, bu't then performs a breadth.—first search from the,guerys 427 477 427 427
initial node, inserting all nodes found into the seed node’sindustry2 181 181 181 181
partition. Once the seed partition grows to contain as close tos!5850 60 60 60 60
half the overall circuit size as possible, the rest of the nodes are 207 s 7 80 b

_ =asp > _ Giomed 83 105 104 102
placed into the other partition. To avoid searching huge fan-out sg234 52 68 52 52
nets such as clocks and reset lines, which would create a veryss378 68 79 80 8
unrelated partition, nets connected to more that ten clusters &g Mean 824 53 867 865
not searchedDepth-first initializationcan be defined similarly, —Lme 499.5 114 498.6 302.1
but should produce much less related partitions Values are minimum cut size for ten runs using the specified algorithm.

N . ) . The “Time” row values are geometric mean times for running the specified
Results for these initial partition construction techniques aggorithm on each of the example circuits.

shown in Table V. The data shows that random is actually the

best initialization technique, followed by depth-first search. o )
The “more intelligent” approaches of seeded and breadth-fidtd Seeded (gray bars) initialization. As can be seen, there is
do 16 and 5% worse than random, respectively. There are t@/§ater variation for the random algorithm in general. Also, the
reasons for this. First, the more random the initial partitionin§V0 algorithms seem to be finding somewhat different results
the easier it is for the partitioner to move away from théince often the seeded algorithm finds cut sizes the random
initial partitioning. Thus, the partitioner is not trapped in &lid not, and vice versa.

potentially poor partitioning, and can generate better results While the previous discussion of initial partition genera-
Second, the “more intelligent” approaches tend to produ8ién has focused on simple algorithms, we can, in fact, use
less variation in the initial partitionings, which produces lesgore complex, complete partitioning algorithms to find initial
variation in the results. Since we pick the best of multiple runpartitions. Specifically, there exists a large amount of work
by having greater variation in each run, we get better overalh “spectral” partitioning methods (as well as others) that
results. These effects can be seen in Fig. 4, which contains tde@structs a partitioning from scratch. We will consider here
distribution of results for ten runs of both random (black barghe EIG1 and EIG-IG [13] spectral partitioning algorithms.
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Fig. 5. Graphs of cut sizes for different numbers of runs of our optimized version of KLFM versus the spectral initialization approaches. Values shown
are the geometric means of the results for the nine test circuits (all but industry3).

One important note is that these algorithms are designed

TABLE VI

to optimize for the ratio-cut Objective [22] which does notQUALITY COMPARISON OF SPECTRAL INITIAL PARTITION CREATION METHODS

necessarily generate balanced partitions. However, we ob-_ Mapping Random | EIG1 | EIGIIG All Spectral
tained the programs from the authors, and altered them to s38417 57 65 65 65
generate only partitions with sizes between 49 and 51% of the = s38584 54 56 56 56
complete circuit size, the same allowed partition size variation nfjjsgtijz f871 34175 24(;72 24(;’2
used throughqut 'ghis paper. Thes.e'glgorith.nis were applied 5350 60 60 % 60
to clustered circuits to generate initial partitionings. These 13207 73 111 82 82
initial partitionings were then used by our KLFM partitioning biomed 83 87 87 87
algorithm $9234 52 54 54 54
: . $5378 68 78 78 78
As the results sh“ow (Table V,I’), the algonthms (when taken Goo—=re— 8.6 298 770 735
as a group, under “All Spectral”) produce fairly good results, Time 248.1 778 1078 1882

but are still 7% worse than r‘?mdom mltlal_lzatlon'_They do haveElGl and EIG-IG [13] are spectral partitioning algorithms, used here
the advantage of faster run times (including the time to perforia generate initial partitions. “All Spectral” is the best results from the
spectral initialization on the clustered circuits) since they dgo spectral algorithms. The “Time” row values are geometric mean times
not require, and cannot use, mulple partioning runs. [ 1" Speced it o eachof e exele et The
more detailed quality/performance comparison is containeddgectral partitioners.

Fig. 5. This graph shows the quality produced by the different

algorithms versus the amount of time needed to produce the )

results. The line is the results of the ten runs of our optimiz&fnieving good results. To test how our algorithm responded
algorithm, with data point representing the best of the figst {©© Multiple runs, we ran our best algorithm for five sets of 50
runs, and the time needed to complete those runs. As can"$@s each. Thatis, for each test circuit, we ran our algorithm
seen, the spectral approaches are somewhat more time effickstt times, although these 250 times consisted of one glqstenng
than our optimized algorithm, and thus might be useful ighared among each 50 runs, and the value ofttheun within
extremely time-critical situations. However, multiple runs oft Set is the best value from rurs - from that set. For
our optimized algorithm can be run in parallel, performin§omparison, we also ran five sets of 100 runs of the basic
better than the spectral approaches, and with slightly mdfé&FM algorithm, for a total of 500 runs (we ran more runs of
time Sequentia' runs Of our Optimized a|gorithm on a Sing[@e baSiC algorithm because |t iS faster, and we W|Sh to Compare
processor, produce better quality than the spectral approactiggults produced with the same amount of computation time).
Because of this, and also because the spectral approacHe® geometric mean of the results across all benchmarks and
are much more complex than the optimized KLFM algorithrfi€ts of runs for a given benchmark are shown in Fig. 6. As
(since the spectral approaches perform spectral initializationc@n be seen, not only does our optimized algorithm generate
Comp|ex process, and then run our entire optimized a|gorit|"bﬁtter results than the basic KLFM algorithm, but it also has

as well), we will use random initialization for our optimizedmuch less variability than the original algorithm, thus requiring
algorithm. fewer runs to be performed in general. Multiple runs are still

valuable since running the algorithm twice produces results
10% better on average than only a single run, and ten runs
VII. MULTIPLE RUNS produces results 18% better than a single run. However, there
While all of our tests have involved ten separate runs of tlage significantly diminished returns from further runs. Twenty
algorithm under consideration, and we retain the best resultrahs produce results only 2% better than ten runs, and the
these ten runs, we can consider using more or less runs bpest values found from all 50 runs are, on average, only 4%
test. Basic KLFM is notoriously variable from run to run, andbetter than those produced from ten runs. For comparison,
using multiple runs (up to even 100 or more) is essential fbasic KLFM produces a 10% improvement from one run to
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Fig. 6. Graphs of cut sizes for different numbers of runs of both basic KLFM and our optimized version of KLFM. Values shown are the geometric
means of the results for all ten test circuits.

gains[17]. If a net has: unlocked nodes in a partition, and no
locked nodes in that partition, it contributes ath-level gain
of 1 to moving a node from that partition, and @n+1)th-level
gain of —1 to moving a node to that partition. The first-level
gains are identical to the standard KLFM gains, with a net
currently uncut giving a first-level gain of1 to its nodes,
. and a net that can be uncut by moving a néddgives a first-
(6) level gain of 1 to nodé\. The idea behind this formulation is
! that annth-level gain of 1 indicates that by moving nodes,
including the node under consideration, we can remove a net
from the cutset. Ar(n + 1)th-level gain of—1 means that by
(b) moving this node, we can no longer remove this net by moving
the n nodes connected to the net in the other partition. Moves
are compared based on the lowest order gain in which they
differ. So a node with gains{1, 1, 0) (first-level gain of—1,
two, 26% from one to ten, 9% from 10 to 20, and 15% frongecond-level oft, third-level of 0) would be better to move
10 t‘? 0. than a node of {1, 0, 2), but worse to move than a node of
It is unclear exactly how many runs should be used i 0o, 0). To illustrate the gain computation better, we give
gengrallsmc.e., for some situations, a 2% improvement tRe example in Fig. 7, right. Neit23 has one node in the left
cutsnzg is critical, while for others, it is performance that iSartition, giving a first-level gain of 1 for moving a node out of
the primary concern. We have chosen to use ten runs for @fis hartition, and a second-level gain-ef for moving a node
of the tests presented in this paper unless stated otherwisgq, this partition. It has two nodes in the right partition, giving
a second-level gain of 1 for moving a node from this partition,
VIII. HIGHER LEVEL GAINS and a third-level gain of 1 for moving a node to this partition.
The basic KLFM algorithm evaluates node moves purely orhus, nodel has a gain vector ofl(0, —1), and node< and
how much the move immediately affects the cut size. Howeverhave gains of (0, 0, 0) since the second-level gains of 1 and
there are often several possible moves that have the saniecancel each other. This makes sense because, after moving
effect on the cut size, but these moves may have very differeither node2 or 3, one has almost the same situation for net
ramifications for later moves. Take, for example, the circuit ih23as the current state. Note that if na8levere locked, node
Fig. 7(a). If we move eitheB or E to the other partition, the 2 would have a gain vector oD(—1,0), and nodel would
cut size remains the same. However, by choosing to nijve have a gain vector of (1, 0, 0) since there is no longer any
we can reduce the cut size by one by then movntp the contribution to the gain vector of né23from the state of the
other partition. If we moveE, it will take two further moves right partition. For ne#i5, there is a second-order gain of 1 for
(C and D) to remove the newly cut three-terminal net frommoving nodes out of the left partition, and a first-order gain of
the cutset, and this would still keep the cut size at 2 becausé& for moving nodes into the right partition, giving nodés
of the edge fronC to the rest of the logic. and5 a gain vector of £1,1,0). If node 4 were locked, then
To deal with this problem, and give the KLFM algorithmnode 5 would have a gain vector 61, 0, 0) since there is no
some lookahead ability, Krishnamurthy proposegher level longer any contribution to the gain vector of n& from the

Fig. 7. Examples for the higher level gains discussion.



860 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

state of the left partition. Ne78 is similar to45, except that TABLE VII
it has a third-order, not a second-order, gain of 1. So, we can QuALITY COMPARISON OF HIGHER LEVEL GAINS
rank the nodes (from best to move to worst)la®3, 45, 678 _Mapping Dynamic 1 2 3 4 5 20
where nodes grouped together have the same gains. If we d8417 57 56 :8 ZZ zz g; z;
: . e s38584 56 57 5
move 1 first, 1 would now be Iock(_ad into the c_)ther partition, cos, 9 e 2 o o e e
and node and 3 would have a first-level gain of1, and  industry3 426 426 | 426 | 427 | 427 | 4271 | 427
no other gains. Thus, they would become the worst nodes figfustry2 180 208§ 180 | 181 | 173 ) 196 | 196
d nod Id be th did 515850 60 64 62 60 60 60 60
move, and nodé or 5 would be the next candidate. 13207 75 77 - 7 73 7 7
Note that the definition ofnth-level gains given above biomed 83 98 83 83 83 83 83
is slightly different than Krishnamurthy's. Specifically, in %234 gé fl‘;’ Sl B 2§ 2| =
Krishnamurthy's definition, the rule that gives ash-level go e 820 372 | 839 | 824 | 820 | 829 | 829
gain to a net withn unlocked nodes in a partition is restricted Time 532.1 388.6 | 404.4 | 4995 | 601.4 | 607.7 | 936.3

to nets that are currently in the cutset. Thus, r&t8 and _ _ _ _ _ _
45 would both have gains—(l, 0, O). However, as we have Nol;l:mt;?:ﬁlgecaolumnl hee}dl?%s_ a_ge th_e hlghest_hl_gher level gains con;ldered.
gain level of 1 is identical to optimized KLFM without higher
seen, allowingth-level gains for nets not in the cutset allowsevel gains. Values are minimum cut size for ten runs using the specified
us to see that moving a node @5 is better than moving a algorithm. The “Time” row values are geometric mean times for running the
node on678 since it is easier to then removs from the specified algorithm on each of the example circuits.
cutset than it i678 Also, this definition handles one-terminal
nets naturally, while Krishnamurthy requires no one-termin@nce the dynamic computation yields a givéh all occupied
nets to be present in the circuit. A one-terminal net with o§@in buckets with the same firdt/ gains will be placed in
definitions would have a first-level gain of 1 for having onlyfhe list in the same array location. In this way, circuits with
one node in the starting partition, but a first-level gain-df large clusters, and thus very sparse usage of the possible gain
because there are no nodes in the other partition, yieldilgyels, have only two or three gain levels determining the
an overall first-level gain of 0. Note that one-terminal ne@ray location, while circuits with small or no clusters, and
are common in clustered circuits, occurring when all nodd3us more dense usage of the smaller possible gain locations,
connected to a net are clustered together. have more of their gain orders determining the array locations.
There is an additional problem with using higher level gail8 this latter technique, callefixed gain levelsthe user can
on clustered circuits: huge run times. The KLFM partitionin§Pecify how many gain levels the algorithm should consider,
algorithm maintains a bucket for all nodes with the san@hd the algorithm aqtomatically adapts its data structures to
gains in each partition. Thus, if the highest fan-out node hHi current cluster sizes. _ .
a fan-out of N, in KLFM without higher level gains, there As shown in Table VII, using more gain Ieyels improves the
must be2 « N + 1 buckets per partition (thé/-fan-out node results, but only up to a point. Once we consider gains up to the
can have a total gain betweerV and —N). If we use M- fourth level, we get all of the benefits of up to 20 gain levels,
level gains (i.e., consider higher level gains between first-lev@ld in fact, the values for fourth-level gains are better than
and Mth-level inclusive), we would requiré2 + N + 1)M for 20th-level gains. Thus, extra gain Ieyels beyond the fourth
different buckets. In unclustered circuits this is fine sind§Vel only serve to slow down the algorithm, up to a factor of
nodes will have a fan-out of at most 5 or 6. UnfortunateI)P,O% or more. Note that the only circuit with an improvement
clustered circuits can have nodes with fan-out on the ordépm third-level to fourth-level gains is industry2, and it then
of hundreds. This causes not only a storage problem, but afggrades significantly when fifth-level gains are added. We
a performance problem since the KLFM algorithm will ofteffhus fee_l that this circuit should be ignored Whe_n con5|der|_ng
have to perform a linear search of all buckets of gains betweWhat gain levels to apply, and conclude that third-level gains
occupied buckets, and buckets will tend to be sparsely filledf€ the best tradeoff between quality and run times. Dynamic
We have found two different techniques for handling the&Q&in levels produce results between those of two-level and
problems. First, the run times are acceptable as long as tHgge-level fixed gains. This is to be expected since, at high
number of buckets is reasonable (perhaps a few thousand). @gstering levels, the dynamic algorithm uses only two gain
given a specific bound’ on the largest fan-out node (which is!evels, although once the circuit |s.almost totally 'unclustered,
fixed after every clustering and unclustering step), we can defxpands to use several more gain levels. In this survey, we
M to the largest value that requires that fewer than a thousdfrf fixed, three-level gains.
buckets be maintained. This value is recalculated after every
unclustering step, allowing us to use a greater number of higher
level gains as the remaining cluster sizes get smaller. We calEven with the higher level gains discussed in the previous
this techniquedynamic gain levelsAn alternative to this is to section, there will be many times where multiple nodes have
exploit the sparse nature of the occupied gain buckets. Thattiee same gain values, and thus end up in the same gain bucket.
among nodes with the same first- and second-level gains, thBepending on how nodes are inserted and removed from
will be few different occupied gain buckets. What we can dilhese buckets, either a last-in, first-out (LIFO), first-in, first-
is perform the dynamic gain-level computation to determir@ut (FIFO), or random policy can be implemented. Although
the number of array locations to use, but each of these arthis issue has, in general, been ignored in the literature, it has
locations is actually a sorted list of occupied buckets. That iseen shown [14] that the policy can have an effect on the

IX. BUCKET MANAGEMENT
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TABLE VIl size is restored. Primal and dual passes are alternated, and
QuALITY  COMPARISON OF BUCKET the algorithm ends when two consecutive passes (one primal,
MANAGEMENT POLICIES . . .
one dual, in either order) produce no improvement. When
Mapping LIFO | FIFO performing unclustering, we start with a primal pass after each
38417 57 57 unclustering.
:gggg; j‘; i; While the concept of moving nets may seem straightfor-
industry3 427 426 ward, there are some details to consider. First, when we move
industry?2 181 195 a net, we actually move all nodes connected to that net to the
513850 60 60 destination partition. Nodes already in that partition remain
23;(; gg ;g unlocked, while moved nodes are locked. Because we are
<9234 52 52 moving nets and not nodes, the bucket data structure holds
§5378 68 68 nets sorted by their impact in the cut size, not nodes. An
Geom. Mean 824 82.7 odd situation occurs when a net is currently in the cutset.
Time 499.5 489.3 Since it has nodes in each partition, it is a candidate to be
The “Time” row values are geo- moved to either partition. Also, because we are moving nets
metric mean times for running the and not nodes, it is unclear how to apply higher level gains
specified algorithm on each of the . . . . .
example circuits. to this problem, so higher level gains are only considered in

the primal passes.

. i One of the problems with the dual partitioning passes is
result; produced. S_pecmcally, consider what happens Whe_’fhﬁt they are excessively slow. When we move a net, it not
node is moved. This move can alter the gain values of ity affects the potential gain/loss of moving neighboring nets
neighbors, and any neighbor whose gain values are alte{gflere two nets are neighbors if they both connect to a shared

will be inserted into a new gain.bucket. _Under a LIFO policymode), it can affect the neighbor’s neighbors as well. The gain
one of these moved neighbors is more likely to be moved n moving a net is the sum of the gain of removing the net

than in a FIFO policy since, under a LIFO policy, it would D&, the cutset (1 if the net is currently cut, O otherwise),

considered before any other nodes with the same gain valyggs gains or losses from adding or removing neighboring nets
Thus, a LIFO policy tends to continue optimizing in the samgqn the cutset (by moving a node connected to a neighboring
area of the circuit over time, while a FIFO policy will te”dnet, we may add or remove that net from the cutset). Thus,
to optimize more smoothly over the entire circuit. Intuitively, hon e move a net, we may add or remove a neighboring
it would seem that a LIFO ordering would be preferred ove{ot 14 or from the cutset. That neighbor's neighbors may
a FIFO ordering, and that is, in fact, what has been foupd e aready expected to add or remove the neighbor from

previously [14]. the cutset, and their gains may need to be recalculated. In a

In TabI.eIVIII, we compare LIFO and F”:C_) b_ucket mar_‘ager'ecursively clustered circuit, or even in a circuit with very high
ment policies within the context of our optimized algor'thmfan-out nets (such as clocks and reset lines), most of the nets

As can be Seen, glthough LIFO buckets do perform better trWﬂnthe system will be neighbors or neighbors of neighbors.
FIFO buckets, itis only by about 0.4%. In fact, FIFO bUCI(et'?hus, each move in a dual pass will need to recalculate the

a_ctually produce results at least as good as LIFO buckets ins of most of the nets in the system, taking a significant
nine of the ten benchmarks, and produce better results ount of time

thrgedml‘ themf. Thusr,] we FO”S'Udke th?t the ord.er' Ofd'néilr:t'onThe solution we adopted is to ignore high fan-out nets in
and deletion from the gain buckets in an optimize e dual pass. In our study, we do not consider moving high

algorithm has Ii'_[tle or no effect on the quality of the resu“?an-out nets (those nets connected to more than ten nodes)
produced. In this survey, we use LIFO. bucket managemelif e it is unlikely that moving a high fan-out net will have
except where specifically stated otherwise. a positive effect on the cutsize. We also do not consider the
impact of cutting these high fan-out nets when we decide what
X. DUAL PARTITIONING nets to move. Thus, when a neighbor of this net is moved,
During partitioning, the goal is to minimize the numbewe do not have to recalculate the gains of all neighbors of
of nets in the cutset. Because of this, it seems odd that thés high fan-out net since these nets do not have to worry
move nodes from partition to partition instead of moving netabout cutting or uncutting the high fan-out net. Note that this
As suggested by Yebt al. [26], [28], we can combine both makes the optimization inexact, and at the end of a dual pass,
approaches in a single partitioning algorithm. The algorithiwe may return to what we feel is the best intermediate state,
consists of primal passes, which are the basic KLFM outbut which is actually worse than other states, including the
loop, and dual passes, which are the KLFM outer loop, excegitarting point for this pass. To handle this, we reevaluate the
that nets are moved instead of nodes. In this way, the dual pestsize at this state, and only accept it if it is, in fact, better
usually removes a net from the cutset at each step, althoubhn the original starting point. Otherwise, we backtrack to
this may be more than balanced by the addition of other nél® starting point. In our experience, the cutsize calculation is
into the cutset. Just as in the KLFM algorithm, a single primalmost always correct.
or dual pass moves each node or net once, and when n®ata from testing the dual partitioning passes within our best
more objects can be moved, the state with the lowest @lgorithm are shown in Table IX. Only the smaller examples
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TABLE IX

QuALITY COMPARISON OF DUAL PARTITIONING
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Conflicting with the desire to allow as much variation
in partition sizes as possible is the fact that the larger the

Mapping No Dual Passes Dual Passes variation, the greater the wastage of logic resources in a
s15850 60 62 multichip implementation. Specifically, when we partition to
$13207 73 75 a system of 32 chips, we iteratively apply our bipartitioning
Z‘;’;Zd g; 2 algorithm. We split the overall circuit in half, then split each of

§5378 68 67 these partitions in half, and so on until we generate a total of 32
Geom. Mean 66.3 66.7 subpartitions. Now, consider allowing partition sizes to vary
Time 227.7 4729.6 between 40 and 60% of the logic being split. On average, it is

likely that better partitions exist at points where the partition
sizes are most unbalanced since, with the least amount of logic
in one patrtition, there is the least chance that a net is connected
to one of those nodes, and thus the cut size is likely to be
smaller. This means that many of the cuts performed may

) ] » yield one partition containing nearly 60% of the nodes, and
are included since, for larger examples, the partitioner W, other containing close to 40%. Thus, after five levels of

unable to finish even a single run with dual passes withifl itioning, there will probably be one partition containing
an hour_s time. As can be_seen, there is little _dlfference 6> = 0.078 of the logic. Now, we usually assume that a
the quality of the wo solutions, a_nd In fact, using the du<FL"lhip has a fixed amount of logic capacity, and since we need
passes actually degrades the quality slightly. The dual pasgeng e that each partition fits into an individual chip, all
also slow overall algorithm run times by a factor of OVefning must be able to hold that amount of logic. Thus, for
20 t|mes, even Wlth the performance_enhanqements d'scu,sﬁ%apping of sizeV, we need a total chip logic capacity of
preylpugly. Obviously, Wlthout any signs of improvement "3‘52*(0.078*N) = 2.488x N, yielding a wastage of about 60%.
partitioning results, there is no reason to suffer such a largeq,nirast, if we restrict each partition to between 49 and 51%,
performance degradation. the maximum subpartition size §51° = 0.035, the required
total logic capacity id.104x N, and the wastage is about 10%.
Xl.  PARTITION MAXIMUM SIZE VARIATION This is a much more reasonable overhead, and we will thus
Variation in the allowed partition size can have a significariestrict the partition sizes considered in this paper to between
impact on partitioning quality. In partitioning, we put limits49-51% of the total logic size, except where stated otherwise.
on the sizes of the partitions so that the partitioner cannotAs we just discussed, the greater the allowed variation in
place most of the nodes into a single partition. Allowing alpartition sizes, the better the expected partitioning results. To
nodes into a single partition obviously defeats the purposetest this, we applied our partitioning algorithm with various
partitioning in most cases since we are usually trying to dividglowed size variations. The results are shown in Fig. 8, and
the problem into manageable pieces. The variance in partitiopntain all of the optimizations discussed in this paper, except:
size defines the range of sizes allowed, such as between 45 thed“Clustering with 1% Max Size” only allows clusters to
55% of the entire circuit. There are two incentives to allow ggrow to 1% of the total circuit size, while the others allow
much variance in the partition sizes as possible. First, the largéusters to be as large as half the allowed partition size
the allowable variation, the greater the number of possiblariation (that is, (maximum partition size minimum par-
partitionings. With more possible partitionings, it is likely thatition size)/2). The “Separate Clustering” line does not share
there will be better partitionings available, and hopefully thelusterings, while the other lines share one clustering among
partitioner will generate smaller cut sizes. The second issalk runs with the same partition size bound. As is shown,
is that there needs to be enough variance in partition sizbe achieved geometric means of the ten circuits decreases
to let each node move between partitions. If the minimusteadily as we increase the maximum partition size. However,
partition size plus the size of a large node is greater than thew we perform clustering has an impact on achieved quality,
maximum partition size, then this node can never be moveahd the difference is greater for larger allowed partition sizes.
This will artificially constrain the placement of this node tdSpecifically, when the maximum allowed partition size is
the node’s initial partition assignment, which is often a po&@1%, using the same clustering for all runs of the algorithm
choice. While we might expect that the size of the nodgsoduces results as good as using separate clusterings for each
in the graph being partitioned will be small, and thus noun. Using a shared clustering is also faster than separate
require a large variation in partition sizes, we will usuallglustering, at least when all runs are performed sequentially.
cluster together nodes before partitioning, greatly increasiktpwever, as the allowed partition size gets larger, it becomes
the maximum node size. A smaller partition variation willmportant to use multiple different clusterings. Note that
limit the maximum cluster size, limiting the effectiveness ofvhile each of these runs is performed with the connectivity
clustering optimizations. In general, we will require that thelustering algorithm, the algorithm randomly chooses nodes as
maximum cluster size be at most half the size of the allowaldtarting points of clusters, and thus different runs will produce
variation in partition sizes. In this way, if we have maximunsomewhat different clusterings.
sized clusters as move candidates from both partitions, at leasthe reason why a single clustering does poorly for larger
one of them will be able to move. partition sizes is that it reduces the value of multiple runs,

Values are minimum cut size for ten runs of the
specified algorithm. The data do not include the larger
circuits due to excessive run times. The “Time” row
values are geometric mean times for running the
specified algorithm on each of the example circuits.
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90 — generated for a circuit with a specific maximum partition size,
but also produces results that are up to 17% lower than the

80 normal clustering results. However, this is still not as good
as separate clusterings per run, which produces results up to

o 707 9% lower than clustering with a fixed maximum size. Because

2 60 + of this, for partition maximum sizes larger than 51%, we use

S separate clusterings for each run of the partitioner.

50 '=—6— Shared While increasing the maximum partition size can produce

=8 1% Max lower cut sizes, most of this gain is due to improvement on the

40 - — Separate | smaller circuits, while the larger circuits sometimes actually
have worse results as the size variation increases. The line
“Large” in Fig. 8, right is the geometric mean of four of
the largest circuits (industry2, s38584, s35932, s38417), while
“Small” represents the other test cases. These lines have been
@ scaled to be identical to the “Separate” value at the leftmost
90 - data point, so that if the benefit of increasing the maximum
partition size were uniform across all circuits, the three lines
should line up perfectly. However, our algorithm does worse
on the larger circuits as the maximum partition size increases,
with the geometric mean actually increasing at the rightmost
trial. The true optimum cut size cannot get larger with larger
maximum partition sizes since, when increasing the allowed
partition size, the algorithm could still return a partitioning that

30 e b e
0.5 0.55 06 065 07 0.75

Maximum Partition Size

60 T

Cutsize

50 +
= Separate satisfies the smaller partition bounds. Thus, the results should
a0 { T€Large never increase as the maximum partition size increases, and
—+—Small should, in general, decrease. We are forced to conclude that our
30 * * ’ ‘ ! algorithm is unable to exploit the larger partition size bounds
0.5 055 06 065 0.7 075 for the larger circuits, and in fact, gets sidetracked by this
Maximum Partition Size extra flexibility.

(b)

Fig. 8. Graphs of partitioning results as the maximum allowed partition size

is increased. In (a) are the results for separate clustering calculations for XlIl. OVERALL COMPARISON

each run of the algorithm (“Separate”), one clustering for each partition size . . L
(“Shared”), and one clustering for each partition size, plus a maximum cluster Throughout this paper, we have discussed how individual

size of 1% of the total circuit (*1% Max"). In (b), we have more detail ontechniques impact an overall partitioning algorithm. It is
s (o iy o o e csedfatural to also wonder which of these techniques is the most
and “Small” lines are scaled to have the same value as “All Circuits” for thénportant, and how much of the cut-size improvement is
leftmost data point. due to any specific technique. We have attempted to answer

this question in Fig. 9. The figure contains most of the
with almost all runs producing identical results. Specificalllgomparisons presented in the paper, which represent removing
as the allowed patrtition size grows, the allowed cluster sizegiven technique from our optimized algorithm, as well as
grows as well. When a partition is only allowed to be asimilar comparisons which use the basic KLFM algorithm as
most 51% of the total circuit size, no cluster can contaia baseline. Basic KLFM is assumed to operate on gate-level
more than 1% of the circuit, and there will be at least 10Montechnology-mapped) circuits, uses random initialization
clusters. When the maximum partition size is 75%, a clustand FIFO buckets, and has no clustering, higher level gains, or
can be 25% of the circuit size, and there will be relatively fewual passes. Note that some techniques are used by both the
top-level clusters. Thus, when partitioning is performed withasic and optimized KLFM algorithms (specifically random
these few clusters, all of the different runs will get the saninitialization, gate-level netlists, and FIFO buckets). The height
results before the first unclustering, even though we create tifethe bars represents the difference between including the
initial partitionings randomly. Since the algorithm is totallyspecified technique and using the worst alternative technique.
deterministic, all of these runs will produce the same valueBhus, the height of the “Random Initialization” bars represents
In fact, for partition sizes greater than 60%, all ten runs of thihe difference between random and seeded initialization, with
algorithm with shared clustering produced the same resultee right bar using all of the other techniques from the
for each circuit, and only s15850 and s35932 had more thaptimized KLFM algorithm, while the left bar uses only
one result for a maximum patrtition size of 60%. To deal witthe techniques from the basic KLFM algorithm. A gray
this, we also ran the algorithm with a maximum cluster sizgar indicates that including the specified technique actually
of 1% of the total circuit size regardless of the maximurdegrades the results. Thus, using technology-mapped files
partition size. This technique is successful not only in bettaithin the optimized KLFM algorithm is a bad idea, as was
using multiple partition runs, with many different results beindiscussed earlier.



864 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

Basic

KLFM I

.
MIPPing |

Optimized } .= | ' i
KLFM
5 g B g g @ 2
o &l & < £% % 4
28 g £ e 3 B =
£33 55 £ S £3 3 a =
o = o O [~ =1 & @] =1
3832 & = | = 2 A
ek a g =
k5 5
— —
)

Fig. 9. Graph comparing the impact of various partitioning techniques on both basic and optimized KLFM. The vertical scale is geometric mean cut
size, with the baseline being the results of optimized KLFM, and the upper line the results of basic KLFM (gate-level netlists, no clustering, random
initialization, FIFO buckets, and no higher level gains or dual passes). The distance between these two lines is proportional to the change in cut size
between basic and optimized KLFM. The height of the bars represents the change in cut size when the technique is included or removed, with a black bar
indicating the specified technique causes an improvement, while a gray bar indicates that the technique degrades the results. The left “FIF® Buckets”
cut off for readability, and is actually about six times as tall as shown.

As shown in the graphs in Fig. 9, the results are mixed. dpposite impacts on the cut size, where the technique that is
appears that for the optimized algorithm, the most importabést for our optimized algorithm actually degrades the quality
optimizations relate to circuit clustering, with recursive corproduced by a basic KLFM algorithm. Thus, it appears that we
nectivity clustering, iterative unclustering, and nontechnologgannot simply consider optimizations in isolation because the
mapped circuits having large impacts. Presweeping, randameraction between techniques can have a significant impact
initialization, and higher level gains also have a significamin the results, and some optimizations may negate, or even be
impact, while dual passes and FIFO bucket management ldodered by, the results of others.
not seem to make a difference. We believe that these results have an impact on how

The discussion above gives the illusion that we can piglartitioning algorithms should be developed and evaluated.
specifically which optimization gives us what benefit indeSpecifically, Fig. 9 clearly demonstrates that we cannot simply
pendent of what other optimizations are used. However, dbnsider optimizations in isolation since the performance of
we compare the results of optimizations within the optimizeah optimization within the framework of the basic KLFM
algorithm with those within the basic algorithm, we see thalgorithm can be radically different from its performance
this is not true. Specifically, the only optimizations that haveithin a high-quality partitioning algorithm. Thus, we believe
a consistent impact on the cut size are recursive connectivilyat future optimizations must be evaluated not solely upon
clustering, iterative unclustering, and presweeping. For FIR@hether they produce better results that the basic KLFM
bucket management, which has only a slight impact on thégorithm, but must instead be shown to contribute to a
optimized algorithm, it has a huge impact on the basic KLFMomplete partitioning algorithm, one capable of producing
algorithm, greater than any other considered (in fact, its baasults better than those of the best current algorithms. As
stretches to six times the length shown, and was chopped will show in the conclusions, the partitioning algorithm
off to make the impact of the other optimizations visible)developed in this paper produces results significantly better
For technology mapping, random versus seeded initializatidghan the current state of the art in logic bipartitioning.
higher level gaind,and dual passes, these optimizations have

1while it is quite surprising that in our tests higher level gains actually X1l. CONCLUSIONS

degrade the quality of the basic KLFM algorithm, it appears that the effect Th h t i the basi
is more of producinglifferentresults than worse results. Specifically, the cut _ere are_ num_erous_ approaches 10 aggmgn Ing e asic
sizes produced by the basic KLFM algorithm with higher level gains vad{ernighan—Lin, Fiduccia—Mattheyses partitioning algorithm,

greatly from the results produced by the basic KLFM without hlgher IeV%nd the proper combination is far from obvious. We have

gains, with some much better and some much worse, while other optimizati(ﬁTs d th hnol . bef .
tend to produce a more uniform increase or decrease in cut size across al Gf“onStfate that technology mapping before partitioning

the benchmarks. is a poor choice, significantly impacting mapping quality.
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TABLE X
QuALITY COMPARISON OF PARTITIONING METHODS
Example | Nodes Nets Pins FM_ EIGl  Paraboli MELO _ FBB  Strawman Time
balu 801 735 2697 30 110 41 28 27 36
51423 831 757 2317 19 23 16 13 14 37
prim1 833 902 2908 56 75 53 64 49 44
bml 882 903 2910 58 75 48 49 42
test04 1515 1658 5975 124 207 61 48 100
test03 1607 1618 5807 87 85 60 55 84
test02 1663 1720 6134 134 196 106 93 102
test06 1752 1641 6638 77 295 90 60 119
struct 1952 1920 5471 45 49 40 38 33 58
test0S 2595 2750 10076 124 167 102 72 189
19ks 2844 3282 10547 130 179 119 112 191
prim2 3014 3029 11219 | 249 254 146 169 143 193
$5378 3225 3046 8241 102 59 143
$9234 6098 5870 15026 70 166 74 79 70 42 250
biomed 6514 5742 21040 135 286 135 115 83 923
$13207 9445 8776 23442 108 110 91 104 74 57 594
s15850 11071 10474 27209 170 125 91 52 67 44 640
indust2 12637 13419 48158 | 705 525 193 319 188 1084
indust3 15406 21923 65791 377 399 267 256 1268
$35932 19880 18152 55420 162 105 62 49 47 2762
avq.sm 21918 22124 76231 499 598 224 131 1056
s38584 22451 20999 61309 168 76 55 47 49 2265
avq.lrg 25178 25384 82751 431 571 139 140 1095
s38417 25589 23953 64299 | 419 121 49 58 53 2661
Norm. Geom. Mean 1.99 2.39 1.28 1.29 1.19 1.00

Values for basic FM and Strawman are the best of ten trials. The EIG1 and MELO results are from [2] (although EIG1 was proposed in [13]), the
Paraboli results are from [19], and the FBB results are from [25]. All tests require partition sizes to be between 45 and 55% of the total circuit sizes,
and assume that all non-l/O nodes have unit area.

Clustering is very important, and we found that connectivithat our algorithm produces significantly better solutions than
clustering performs well. Recursive clustering and a hierathe current state-of-the-art bipartitioning algorithms, with the
chical unclustering technique help take advantage of the fukkarest competitor producing results 19% worse than ours
power of the clustering algorithm, with iterative unclusteringthus, our algorithm is 16% better). Our algorithm is also fast,
being slightly preferred to edge unclustering. Augmenting theking at most 5 min per run on the largest examples, resulting
basic KLFM inner loop with at least second- and third-leveh a total sequential run time of at most 46 min.
gains improves the final results, while dual passes are notrhis paper has included several novel techniques, or ef-
worthwhile, and greatly increase run times. Bucket insertiitient implementations of existing work. We have started
and removal ordering also does not seem to significanfyym the base work of Schuler and Ulrich [21] to develop an
impact the quality of an optimized KLFM algorithm. Finally,efficient, effective clustering method. We have also created the
when the allowed maximum partition size is greater than 51%’esweeping clustering preprocessor to help most algorithms
of the total circuit size, creating a clustering on a per-run bagiSndle small fan-out gates. We have shown how shortest
produces better results than shared clustering. _path clustering can be implemented efficiently. We developed

By appropriately applying the techniques discussed in thig, eqge unclustering method, which is competitive with
paper, an algorithm based upon KLFM can produce reSiis,asve unclustering. Finally, we have extended the work of
better than the current s_tate of the art. In Table X we pres ishnamurthy [17], both to allow higher order gains to be
the results of our algorithm (Strawnn along with results pplied to nets not in the cutset, and also to give an efficient
of four of the best current methods (Paraboli [19], EIG1 [131a : N

mplementation, even when the circuit is clustered.

MELO [2], and FBB [25]) on a set of standard benchmarks. .
Those benchmarks beginning with “s” are the XNF versions Beyond the details of how exactly to construct the best

of the MCNC partitioning benchmark suite [18], while theDartlt'O?]er’ there a;ﬁ seV(IeraI |m|?or;art1t Ie;sonshtothbe Iear.ned.
rest were obtained from Alpert's benchmark set [3] in NE S We have seen, the only way to determine whether a given

format and translated into XNF. All partitioners were restricte§Ptimization to a partitioning algorithm makes sense is to

to finding partitions containing at most 55% of the Iogic‘?‘Ctua”y try it out, and to consider how it interacts with other

and all non-I/O nodes have a size of 1. The results Sh&,gtimizations. We have shown that many of the optimizations
had greater difficulty working on clustered circuits than on

2strawman, the optimized KLFM algorithm developed in this papelL,mCIUSt,ered circuits, yet clustering seems to be |mport§nt
includes recursive connectivity clustering, presweeping, per-run clustering h achieve the best results. Also, many of the clustering

gate-level netlists, iterative unclustering, random initialization, FIFO bUCk‘éﬁgoritth seem to assume that the circuit will be technology
management, and fixed third-level gains. All non-I/O nodes have unit area. d bef titioni t technol ina the ci it
Presweeping is allowed to cluster inverters (which also have a size of 1), dngpped betore partiioning, yet technology mapping the circul

the clusters thus formed are the total size of all nodes clustered together.will greatly increase the cut size of the resulting partitionings.
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