
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997 849

An Evaluation of Bipartitioning Techniques
Scott Hauck and Gaetano Borriello,Member, IEEE

Abstract—Logic partitioning is an important issue in VLSI
CAD, and has been an area of active research for at least the
last 25 years. Numerous approaches have been developed and
many different techniques have been combined for a wide range
of applications. In this paper, we examine many of the existing
techniques for logic bipartitioning and present a methodology
for determining the best mix of approaches. The result is a novel
bipartitioning algorithm that includes both new and preexisting
techniques. Our algorithm produces results that are at least 16%
better than the state of the art while also being efficient in run
time.

I. INTRODUCTION

L OGIC partitioning is one of the critical issues in CAD for
digital logic. Effective algorithms for partitioning circuits

enable one to apply divide-and-conquer techniques to simplify
most of the steps in the mapping process. For example,
standard-cell designs can be broken up so that a placement
tool need only consider a portion of the overall design at any
one time, yielding higher quality results in a shorter period of
time. Also, large designs must be broken up into pieces small
enough to fit into multiple devices. Traditionally, this problem
was important for breaking up a complex system into several
custom ASIC’s. Now, with the increasing use of FPGA-based
emulators and prototyping systems, partitioning is becoming
even more critical.

For all of these tasks, the goal is to minimize the commu-
nication between partitions while ensuring that each partition
is no larger than the capacity of the target device. While it is
possible to solve the case of unbounded partition sizes exactly
[5], the case of balanced partition sizes is NP complete [11].
As a result, numerous heuristic algorithms have been proposed
[1].

In a 1988 survey of partitioning algorithms [7], Donath
stated: “there is a disappointing lack of data comparing par-
titioning algorithms,” and “unfortunately, comparisons of the
available algorithms have not kept pace with their develop-
ment, so we cannot always judge the cost-effectiveness of
the different methods.” This statement still holds true, with
many approaches but few overall comparisons. This paper
addresses the bipartitioning problem by comparing many of
the existing techniques, along with some new optimizations.

Manuscript received January 4, 1995; revised March 26, 1996 and July
16, 1997. This work was supported in part by the Advanced Research
Projects Agency under Contract N00014-J-91-4041. The work of S. Hauck
was supported by an AT&T Fellowship. This paper was recommended by
Associate Editor G. Zimmermann.

S. Hauck is with the Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL 60208 USA.

G. Borriello is with the Department of Computer Science and Engineering,
University of Washington, Seattle, WA 98195 USA.

Publisher Item Identifier S 0278-0070(97)08472-8.

It focuses primarily on those approaches that build on the
Fiduccia–Mattheyses [8] variant of the Kernighan–Lin [16]
algorithm (hereafter referred to as KLFM).

In the rest of this paper, we discuss the basic KLFM
algorithm, and compare numerous optimizations to the basic
algorithm. This includes methods for clustering and uncluster-
ing circuits, initial partition creation, extensions and alterations
to the standard KLFM inner loop, and the effects of increasing
the maximum allowed partition size and the number of runs
per trial. As we will demonstrate in the conclusions, this has
helped build a bipartitioning algorithm that is significantly
better than the current state of the art.

II. M ETHODOLOGY

In our work, we have integrated numerous concepts from
the bipartitioning literature, along with some novel techniques,
to determine what features make sense to include in an
overall system. We are primarily interested in Kernighan–Lin,
Fiduccia–Mattheyses-based algorithms, although we do in-
clude some of the spectral partitioning approaches as well.

The best way to perform this comparison would be to try
every combination of techniques on a fixed set of circuits,
and determine the overall best algorithm. Unfortunately, we
consider such a large number of techniques that the possible
combinations reach into the thousands, even ignoring the
ranges of numerical parameter settings relevant to some of
these algorithms. Instead, we use our experience with these
algorithms to try to choose the best possible set of techniques,
and then try inserting into this mix each technique that was not
chosen. In some cases, where it seemed likely that there would
be some benefit of examining multiple techniques together
and exploiting synergistic effects, we also tested those sets of
techniques. In the comparisons that follow, we always use all
of the features of the best mix of techniques found except
where stated otherwise. Specifically, the default algorithm
includes the following optimizations (each of these techniques
is described later in this paper):

• recursive connectivity clustering;
• presweeping;
• node sizes of (inputs 1), minimum of 0;
• nontechnology mapped (gate-level) netlists;
• iterative unclustering;
• random initialization;
• LIFO gain-array buckets;
• fixed third-level gains;
• maximum partition size of 51% of the total circuit size;
• maximum cluster size of 1% of the total circuit size.

0278–0070/97$10.00 1997 IEEE

850 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

TABLE I
SIZES OF EXAMPLE CIRCUITS

Fig. 1. The Fiduccia–Mattheyses variant of the Kernighan–Lin algorithm.

This algorithm is run ten times, and the best of these ten runs
is returned. The clustering is calculated once, and is shared
among these different runs.

The seven largest circuits from the MCNC partitioning
benchmark suite [18], as well as three commonly used par-
titioning benchmarks (industry2, industry3, biomed) are used
as test cases for this work (Table I). While these circuits have
the advantage of allowing us to compare with other existing
algorithms, the examples are a bit small for today’s partitioning
tasks (the largest is only about 25 000 gates), and it is unclear
how representative they are for bipartitioning. We hope that, in
the future, a standard benchmark suite of real end-user circuits,
with sizes ranging up to the hundreds of thousands of gates,
will be available to the community.

In the sections that follow, we consider each of the possi-
ble optimizations to the basic KLFM algorithm. The results
presented are cut sizes and run times. The cut size is the
number of nets connected to nodes in both partitions, and
thus is the quantity we seek to minimize. Run times are CPU
seconds on a SPARCstation 5 model 70, and include the time
to cluster the circuit as well as the total time to perform
all of the multiple runs of the partitioning algorithm. Note
that when we are making overall comparisons, we use the
geometric mean instead of the more common
arithmetic mean . This is because we believe
that improvements to partitioning algorithms will result in

some percentage decrease in each cut size, not a decrease of
some constant number of nets in all examples. That is, it is
likely that an improved algorithm would reduce cut sizes for
all circuits by 10%, and would not reduce cut sizes by ten
nets in both large and small examples. Thus, the geometric
mean is more appropriate. Also, an arithmetic mean tends to
give more weight to percentage increases and decreases of
larger values. Thus, since our benchmark suite ranges from
3046 to 23 953 nets, and cut sizes should also vary over a
fairly large range, the arithmetic mean would be dominated
by an algorithm’s results on the larger circuits. Finally, we are
primarily concerned with comparing the results of different
algorithms on the set of benchmarks, and will consider the
ratio of their performances. Unfortunately, with an arithmetic
mean, the average of the ratios for each example is different
from the ratio of the averages. However, the geometric mean
of the ratios is identical to the ratio of the geometric means.

III. B ASIC KERNIGHAN–LIN,
FIDUCCIA–MATTHEYSES BIPARTITIONING

One of the best known, and most widely extended, bi-
partitioning algorithms is that of Kernighan and Lin [16],
especially the variant developed by Fiduccia and Mattheyses
[8]. Pseudocode for the algorithm is given in Fig. 1. It is an
iterative-improvement algorithm in that it begins with an initial
partition, and iteratively modifies it to improve the cut size.

HAUCK AND BORRIELLO: EVALUATION OF BIPARTITIONING TECHNIQUES 851

The cut sizeis the number of nets connected to nodes in both
partitions, and is the value to be minimized. The algorithm
moves a node at a time, moving the node that causes the
greatest improvement, or the least degradation, in the cut size.
If we allowed the algorithm to move any arbitrary node, it
could decide to move the node just moved in the previous
iteration, returning to the previous state. Thus, the algorithm
would be caught in an infinite loop, making no progress. To
deal with this, we lock down a node after it is moved, and
never move a locked node. The algorithm continues moving
nodes until no unlocked node can be moved without violating
the size constraints. It is only after the algorithm has exhausted
all possible nodes that it checks whether it has improved the
cutset. It looks back across all the intermediate states since
the last check, finding the minimum cut size. This allows it
to climb out of local minima since it is allowed to try out
bad intermediate moves, hopefully finding a better later state.
After it moves back to the best intermediate state, it unlocks
all nodes and continues. Once the algorithm fails to find a
better intermediate state between checks, it finishes with the
last chosen state.

One important feature of the algorithm is the bucket data
structure used to find the best node to move. The data structure
has an array of lists, where each list contains nodes in the same
partition that cause the same change to the cutset when moved.
Thus, all nodes in partition 1 that increase the cut size by 5
when moved would be in the same list. When a node is moved,
all nets connected to it are updated. There are four situations
to look for: 1) a net that was not in the cutset that now is;
2) a net that was in the cutset that now is not; 3) a net that
was firmly in the cutset that is now removable from the cutset;
and 4) a net that was removable from the cutset that is now
firmly in the cutset. A net is “firmly in the cutset” when it is
connected to two nodes, or a locked node, in each partition. All
other nets in the cutset are “removable from the cutset” since
they are connected to only one node in one of the partitions,
and that node is unlocked. Thus, the net can be removed from
the cutset by moving that node. Each of these four situations
means that moving a node connected to that net may have a
different effect on the cut size now than it would have had if
it was moved in the previous step. All nodes connected to one
of these four types of nets are examined and moved to a new
list in the bucket data structure if necessary.

The basic KLFM algorithm can be extended in many ways.
We can choose to partition before or after technology mapping.
We can cluster circuit nodes together before partitioning, both
to speed up the algorithm’s run time, and to give some
better local optimization properties to the KLFM’s primarily
global viewpoint. We also have a choice of initial partition
creation methods, from completely random to more intelligent
methods. The main search loop can be augmented with more
complex cost metrics, possibly adding more lookahead to
the choice of nodes to move. We can uncluster the circuit
and reapply partitioning, using the previous cut as the initial
partitioning of the subsequent runs. Finally, we can consider
how these features are improved or degraded by larger or
smaller maximum partition sizes, and by multiple runs. In this
paper, we will consider each of these issues in turn, examining

not only how the different approaches to each step compare
with one another, but also how they combine together to form
a complete partitioning solution.

IV. CLUSTERING AND TECHNOLOGY MAPPING

One of the most common optimizations to the KLFM
algorithm is clustering, the grouping together of nodes in the
circuit being partitioned. Nodes grouped together are removed
from the circuit, and the clusters take their place. Nets that
were connected to a grouped node are instead connected to
the cluster containing that node. Clustering algorithms are
applied to the partitioning problem both to boost performance,
and also to improve quality. The performance gain is due
to the fact that, since many nodes are replaced by a single
cluster, the circuit to be partitioned now has fewer nodes,
and thus the problem is simpler. Note that the clustering
time can be significant, so we usually cluster the circuit
only once, and if several independent runs of the KLFM
algorithm are performed, we use the same clustering for all
runs. The ways in which clustering improves quality are
twofold. First, the KLFM algorithm is a global algorithm,
optimizing for macroscopic properties of the circuit. It may
overlook more local, microscopic concerns. An intelligent
clustering algorithm will often focus on local information,
grouping together a few nodes based on local properties. Thus,
a smart clustering algorithm can perform good local opti-
mization, complementing the global optimization properties
of the KLFM algorithm. Second, it has been shown that the
KLFM algorithm performs much better when the nodes in
the circuit are connected to at least an average of six nets,
while nodes in circuits are typically connected to between 2.8
and 3.5 nets [12]. Clustering should, in general, increase the
number of nets connected to each node, and thus improve
the KLFM algorithm. Note that most algorithms (including
the best KLFM version we found) will partition the clustered
circuit, and then use this as an initial split for another run
of partitioning, this time on the unclustered circuit. Several
variations on this theme will be discussed in a later section.

The simplest clustering method is to randomly combine
connected nodes. The idea here is not to add any local
optimization to the KLFM algorithm, but instead to simply
exploit KLFM’s better results when the nodes in the circuit
have greater connectivity. A maximum random matching of
the circuit graph can be formed by randomly picking pairs of
connected nodes to cluster, and then reclustering as necessary
to form the maximum number of disjoint pairs. Unfortunately,
this is complex and time consuming, possibly requiring
time [9]. We chose to test a simpler algorithm (referred to here
as random clustering) inspired by Buiet al. [4] that should
generate similar results while being more efficient and easier
to implement. Each node is examined in random order and
clustered with one of its neighbors (note that a node connected
to a neighbor by nets is times as likely to be clustered
with that neighbor). A node that was previously the target
of a clustering is not used as a source of another clustering,
but an unclustered node can choose to join a grouping with
an already clustered node. Note that with random clustering,

852 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

a separate clustering is always generated for each run of the
KLFM algorithm.

Numerous more intelligent clustering algorithms exist.
K–L clustering [10] (not to be confused with KL, the
Kernighan–Lin algorithm) is a method that looks for multiple
independent short paths between nodes, expecting that these
nodes should be placed into the same partition. Otherwise,
each of these paths will have a net in the cutset, degrading
the partition quality. In its most general form, the algorithm
requires that two nodes be connected byindependent paths
(i.e., paths cannot share any nets), of lengths at most
respectively, to be clustered together. Checking for K–L
connectedness can be very time consuming, especially for
longer paths. The biggest problem is high fan-out nets, which
are quite common in digital circuits. Specifically, if we are
looking for potential nodes to cluster, and the source node
of the search is connected to a clock or reset line, most of
the nodes in the system are potential candidates, and a huge
number of paths need to be checked. However, since huge
fan-out nets are the most likely to be cut in any partitioning,
we can accelerate the algorithm by ignoring all nets with
fan-out greater than some constant. Also, if , then the
potential cluster mates are limited to the direct neighbors of
a node (although transitive clustering is possible, withand

clustered together with because both and are K–L
connected with node , while and are not directly K–L
connected). In our study of K–L clustering, we ignored all
nets with fan-out greater than 10, and used

. The values of maximum considered fan-out and
were chosen to give reasonable computation times. While
[10] recommends , we have
found that this yielded few clustering opportunities (this will
be discussed later), and the parameters we chose gave the
greatest clustering opportunities with reasonable run time.
Using would increase the clustering opportunities, but
would also greatly increase run times.

A much more efficient clustering algorithm, related to
K–L clustering, has been proposed [20] (referred to here
as bandwidth clustering). In this method, each net in the
circuit provides a bandwidth of between all nodes
connected to it, where is the number of nodes or clusters
connected to that net. All pairs of nodes that have a total
bandwidth between them of more than 1.0 are clustered. Thus,
nodes must be directly connected by at least two two-terminal
nets to be clustered, or a larger number of higher fan-out
nets. This clustering is similar to K–L clustering with

, although it requires greater connectivity if
the connecting nets have more than two terminals. Transitive
clustering is allowed, so if the bandwidth betweenand is
zero, they may still be clustered together ifand and and

each have a bandwidth of greater than 1.0 between them.
There is an additional phase (carried out after all passes of
recursive clustering, discussed below) that attempts to balance
cluster sizes.

A clustering algorithm similar to bandwidth clustering, but
which does not put an absolute lower bound on the necessary
amount of bandwidth between the nodes, and which also
considers the fan-out of the nodes involved, has also been

tested. It is based upon work done by Schuler and Ulrich [21],
with several modifications. We will refer to it asconnectivity
clustering. Like random clustering, each node is examined in
a random order and clustered with one of its neighbors. If a
node has already been clustered, it will not be the source of
a new clustering attempt, although more than two nodes can
choose to cluster with the same node. Nodes are combined with
the neighbor with which they have the greatest connectivity.
Connectivityis defined in

connectivity
bandwidth

size size fan-out bandwidth
fan-out bandwidth

(1)
bandwidth is the total bandwidth between the nodes (as
defined in bandwidth clustering), where each net contributes

bandwidth between each pair of nodes to which
it is connected. In this method, nodes are more likely to be
clustered if they are connected by many nets (thebandwidth
in the numerator), if the nodes are small (thesize andsize in
the denominator), and if most of the nodes’ bandwidth is only
between those two nodes (thefan-out bandwidth andfan-
out bandwidth terms in the denominator). While most of
these goals seem intuitively correct for clustering, the reason
for the size limits is to avoid large nodes (or subsequent large
clusters in recursive clustering, defined below) attracting all
neighbors into a single huge cluster. Allowing larger nodes to
form huge clusters early in the clustering will adversely affect
the circuit partitioning.

While all of the clustering techniques described so far have
been bottom up, using local characteristics to determine which
nodes should be clustered together, it is possible to perform
top-down clustering as well. A method proposed by Yehet al.
[27] (referred to here asshortest path clustering) iteratively
applies a partitioning method to the circuit until all pieces
are small enough to be considered clusters. At each step, it
considers an individual group at a time, where a group contains
all nodes that have always been on the same side of the cuts in
all prior partitionings. The algorithm then iteratively chooses a
random source and sink node, finds the shortest path between
those nodes, and increases the flow on these edges by 0.1. The
flow is a number used in computing net lengths, where the
current net length is Before each partitioning,
all flows are set to zero. When the flow on a net reaches 1.0, the
net is part of the cutset. Once there is no uncut path between
the random pairs of nodes chosen in the current iteration, the
algorithm is finished with the current partitioning. Note that
the original algorithm limits the number of subpartitions of
any one group. Since this is not an important issue for our
purposes, it was not included in our implementation. Once
the algorithm splits up a group into subpartitions, the sizes of
the new groups are checked to determine if they should be
further subdivided. For our purposes, the maximum allowable
cluster size is equal to 1% of the total circuit size. There are
several alterations that can be made to this algorithm to boost
performance, details of which can be found in [15].

Before describing the last clustering method, it is necessary
to discuss how to calculate the size of a logic node in the
circuit being clustered. One possibility is to simply assume

HAUCK AND BORRIELLO: EVALUATION OF BIPARTITIONING TECHNIQUES 853

that all logic functions are the same size, and assign an area
of 1 to all nodes. However, in many cases, the input circuit
can have simple and complex functions mixed together. Since
the goal of bipartitioning is to equalize the logic in the two
partitions, thus allowing the two partitions to each fit into
the same chip area, this model can be quite inaccurate. For
example, this would assume that a five-input AND gate and an
inverter would occupy the same space. In most circumstances,
the AND gate would be much larger than the inverter, and
in fact, in many technologies, this inverter would consume
no area at all since it could be combined with the previous
gate. For example, in a CMOS circuit, a five-input AND
gate followed by an inverter would take up less space than
the AND gate alone since the gates in a CMOS technology
automatically invert their output signals. If the circuit being
partitioned has already been technology mapped (restructured
into physically realizable gates in a given technology), then
direct measurements of the gate areas could be obtained.
Unfortunately, as we will show later in this section, it is
better to partition before technology mapping, and thus some
estimations of the final area of the logic must be made.

In this work, we have chosen to target FPGA’s such as
the Xilinx 3000 series [24], where all logic is implemented
by lookup tables (LUT’s). A LUT is a logic block that can
implement any function of variables, where is typically
4 or 5. Since we will be partitioning circuits before technology
mapping (the reasons for this will be discussed later), we
cannot simply count the number of LUT’s used since several
of the gates in the circuit may be combined into a single LUT.
An important aspect of a LUT-based implementation is that
we can combine an -input function with a -input function
that generates one of the inputs into an -input
function (see Fig. 2). The reason that it is an -
input function, and not an -input function, is that
the output of the -input function no longer needs to be an
input of the function since it is computed inside the LUT. A
1-input function (inverter or buffer) requires no extra inputs
on a LUT. We can therefore say a logic node of inputs
uses up inputs of a LUT, and thus the size of a-input
function is (), with a minimum size of 0. Although it may
seem strange to have nodes with a 0 logic size, as we have
shown, 1-input functions (inverters or buffers) are often free
in a given technology, or in fact may yield even smaller logic
area than if the function were not on that chip. Any I/O nodes
(i.e., external inputs and outputs) have a cost of 0 as well.
This is because if size keeps an I/O node out of a partition in
which it has neighbors (i.e., nodes connected to the same net
as the I/O node), a new I/O must be added to each partition to
communicate the signal across the cut. Thus, moving an I/O
node to a partition in which it has a neighbor never uses extra
logic capacity. Also, most technologies have a fixed region for
handling all I/O nodes, and thus the I/O nodes do not consume
space otherwise useable by other logic functions. Although
latches should also have a size of 0, since most FPGA’s have
more than sufficient latch resources, for simplicity, we treat
them identically to combinational logic nodes.

Even though the size metric has been developed
specifically for FPGA technologies, similar metrics can be

(a)

(b)

Fig. 2. Example for the discussion of the size of logic functions. TheP-input
andM-input functions cascaded together (a) are combined into a(M+P�1)
input LUT (b).

developed for other target technologies. For example, a rea-
sonable estimate for the size of a CMOS gate is its number
of inputs. Even in this technology, inverters are often free,
and I/O pads should not be counted as part of the logic size
of a partition. Thus, to retarget this partitioner to a CMOS
technology simply requires increasing the size of all non-0
size nodes by one (a size metric with 0 sized inverters and
I/O pads).

The last clustering technique we explored is not a com-
plete clustering solution, but is instead a preprocessor (called
presweeping) that can be used before any other clustering
approach. The idea is that there are some nodes that should
always be in the same partition. Specifically, one of these
nodes has a size of 0, and that node can always be moved
to the other node’s partition without increasing the cut size.
The most obvious case is an I/O node from the original circuit
which is connected to some other node. This I/O node
will have a size of 0, will be connected to one net, and
moving the I/O node to node ’s partition can only decrease
the cut size (the cut size may not actually decrease since
another node connected to the net betweenand the I/O
node may still be in that other partition). Another situation
is a node , which is connected to exactly two nets, and
one of these two nets is a two-terminal net going to node.
Again, node will have a size of 0, and can be moved to

’s partition without increasing the cut size. The presweeping
algorithm goes through the circuit looking for such situations,
and clusters together the involved nodes (with , or with
the I/O node). Note that presweeping can be very beneficial to
some clustering algorithms, such as K–L and bandwidth, since
such algorithms may be unable to cluster together the pairs
found by presweeping. For example, an I/O node connected
to only one net will never be clustered by the K–L clustering
algorithm. Since the presweeping clustering should never hurt
a partitioning (except due to random variation), presweeping
will always be performed in this study unless otherwise stated.
Even in technologies where inverters and I/O pads are assigned
a size greater than 0, presweeping inverters on two-terminal
nets and all I/O pads is still a reasonable heuristic, although it is
no longer guaranteed not to degrade the possible partitionings.

Results for the various clustering algorithms are presented
in Table II. The connectivity clustering algorithm generates
the best results, with shortest path clustering performing only

854 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

TABLE II
QUALITY COMPARISON OF CLUSTERING METHODS

Values are minimum cut size for ten runs using the specified clustering algorithm, plus the best
KLFM partitioning and unclustering techniques. Source mappings are not technology mapped. The “No
Presweep” column is connectivity clustering applied without first presweeping. All other columns include
presweeping. The “Time” row values are geometric mean times for running the specified algorithm on
each of the example circuits.

about 7% worse. In terms of performance, partitioning with
the shortest path clustering algorithm takes more than three
times as long as with the connectivity clustering algorithm.
This is because clustering with the shortest path algorithm
usually takes more than 20 times as long as the connectivity
approach. Shortest path clustering would thus be even worse
compared to connectivity clustering if the partitioner does not
share clustering between runs. As we will show later, it is
sometimes a good idea not to share clusterings. Because of the
significant increase in run time, as well as a slight decrease in
quality, we use the connectivity algorithm for all of our other
comparisons. We can also see that presweeping is a good idea
since connectivity clustering without presweeping does about
15% worse in terms of cut size, while taking about 20% longer.

One surprising result is that both K–L and bandwidth
clustering do considerably worse than random clustering. The
reason for this is that these clustering algorithms seem to
require technology mapping, and the comparisons in the tables
are for nontechnology-mapped circuits. Technology mapping
for Xilinx FPGA’s is the process of grouping together logic
nodes to best fill a CLB (an element capable of implementing
any five-input function, or two four-input functions). Thus,
it combines several basic gates into a single CLB. The rea-
son that K–L and bandwidth clustering perform poorly on
nontechnology-mapped (gate-level) circuits is that there are
very few clustering opportunities for these algorithms. Imagine
a sum-of-products implementation of a circuit. In general, any
specific AND gate in the circuit will be connected to two
or three input signals and some OR gates. Any AND gates
connected to several of the same inputs will in general be
replaced by a single AND gate. The OR gates are connected
to other AND gates, but will never be connected to the same
AND gate twice. Thus, there will be almost no possibility
of finding clusters with bandwidth clustering, and few K–L
clustering opportunities. While many gate-level circuits will
not be simple sum-of-products circuits, we have found that
there are still very few clustering opportunities for the K–L
and bandwidth algorithms.

Unfortunately, technology mapping before partitioning is an
extremely poor idea. In Table III, columns 2–4 shows results

for applying the various clustering algorithms to the Xilinx
3000 technology-mapped versions of the circuits (note that
only the five largest MCNC benchmarks are used because the
other MCNC benchmarks were small enough that the size
of a single CLB was larger than the allowed partition size
variation, and the three other circuits only had connectivity
information without the actual logic functions). Column 5
(“No Tech Map”) has the results for connectivity clustering on
gate-level (nontechnology-mapped) circuits. The results show
that technology mapping before partitioning almost doubles
the cut size. The K–L and bandwidth clustering algorithms do
generate results closer to connectivity clustering’s for these
circuits than the nontechnology-mapped examples, but we are
much better off simply partitioning the gate-level circuits. This
has an added benefit of speeding up technology mapping as
well since, after partitioning, we can technology map each of
the partitions in parallel. Note that we may increase the logic
size by partitioning before technology mapping because there
are fewer groupings for the technology mapper to consider.
However, in many technologies, the amount of logic that can
fit on the chip is constrained at least as much by the number
of I/O pins as by the logic size, and thus decreasing the cut
size by a factor of 2 is worth a small increase in logic size.
This increase in logic size is likely to be small since the gates
that technology mapping will group into a CLB share signals,
and are thus likely to be placed into the same partition.

It is fairly surprising that technology mapping has such
a negative effect on partitioning. There are two possible
explanations: 1) technology mapping produces circuits that
are somehow hard for the KLFM algorithm to partition,
or 2) technology mapping creates circuits with inherently
much higher minimum cut sizes. There is evidence that the
second reason is the underlying cause, that technology-mapped
circuits simply cannot be partitioned as well as gate-level
circuits, and that it is not simply due to a poor partitioning
algorithm. To demonstrate this, we use the fact that the
technology-mapped circuits for the Xilinx 3000 series contain
information on what gates are grouped together to form a
CLB. This lets us consider technology mapping not as a
permanent restructuring of the circuit, but instead simply as

HAUCK AND BORRIELLO: EVALUATION OF BIPARTITIONING TECHNIQUES 855

TABLE III
QUALITY COMPARISON OF CLUSTERING METHODS ONTECHNOLOGY-MAPPED CIRCUITS

Values are minimum cut size for ten runs using the specified algorithm. The values in the column
marked “Unclusterable” are the results of applying connectivity clustering to technology-mapped
files, but allowing the algorithm to uncluster the groupings formed by the technology mapping.
Note that only the five largest MCNC circuits are used because the non-MCNC circuits only had
connectivity information, not the actual logic functions, and technology mapping for the smaller MCNC
examples causes clusters to exceed 1% of the total circuit size. Because of limitations of our current
implementation, all entries except the “No Tech Map” column use separate clusterings for each of
the ten runs of the algorithm.

(a)

(b)

Fig. 3. Example of the impact of technology mapping on partitioning quality.
The circuit s27 is shown (clock, reset lines, and I/O pins are omitted). (a) is a
balanced partition of the unmapped logic, which has a cut size of 2. (b) Gray
loops indicate logic grouped together during technology mapping. The only
balanced partitioning has the largest group in one partition, the other two in
the other partition, yielding a cut size of 5.

another clustering preprocessor. We allowed our algorithm to
partition the circuit with the technology-mapped files, with
connectivity clustering applied on top, then uncluster to basic
gates and partition again. The results are shown in the final
column of Table III. As can be seen, once the technology
mapping is allowed to be removed from the circuit, the
partitioner can produce results just as good as the version
operating on nontechnology-mapped circuits. However, since
technology mapping is a complex, time-consuming process,
and many technology mappers would not retain information
about mapped gates (which is what allowed us to undo the
technology mapping for the “unclusterable” case), partitioning
on nontechnology-mapped files is preferred to technology
mapping, partitioning, and then retechnology mapping.

The small example circuit (Fig. 3) demonstrates the prob-
lems technology mapping can cause. There is a balanced
partitioning of the circuit with a cut size of two, as shown
in gray at left. However, after technology mapping (CLB’s
are shown by gray loops), the only balanced partitioning puts
the smaller CLB’s in one partition, and the larger CLB on the
other. This split has a cut size of five.

The effects of technology mapping on cut size have been
examined previously by Weinmann [23], who determined that

technology mapping before partitioning is actually a good idea,
primarily for performance reasons. However, in his study, he
used only a basic implementation of Kernighan–Lin (appar-
ently not even the Fiduccia–Mattheyses optimizations were
applied), thus generating cut sizes significantly larger than
what our algorithm produces, with much slower performance.
Thus, the benefits of any form of clustering would help
the algorithm, making the clustering provided by technology
mapping competitive. However, even these results report a
6% improvement in arithmetic mean cut size for partitioning
before technology mapping, and the difference in geometric
mean is actually 19%.

V. UNCLUSTERING

When we use clustering to improve partitioning, we will
usually partition the circuit, uncluster it, and partition again.
The results of partitioning the clustered circuit are used as
an initial partitioning for the subsequent partitioning of the
unclustered circuit. There are several ways to uncluster. Most
obviously, we can either choose not to uncluster at all (no
unclustering), or we can completely remove all clustering in
one step (complete unclustering). However, there are better
alternatives. The important observation is that during clus-
tering, we can build a hierarchy of clusters by recursively
applying a clustering method, and then uncluster it in a way
that exploits this hierarchy. Inrecursive clustering, after the
circuit is initially clustered, we reapply the clustering algorithm
again upon the already clustered circuit. Clusters are never
allowed to grow larger than half the allowed partition size
variation. That is, if the maximum partition size is 51% of the
logic, and thus the minimum is 49%, the maximum partition
size variation is 2%, and no cluster can be formed that would
include more than 1% of the total circuit size. This guarantees
that, ignoring locked nodes, a node from one of the two
partitions can always be moved without violating the partition
size constraints. Recursive clustering continues until no more
clusters can be formed. While we are clustering, we remember
what clusters are formed at each step, with clusters formed in
the th pass forming theth level of a clustering hierarchy.

There are two ways to take advantage of the clustering hi-
erarchy formed during recursive clustering. The most obvious

856 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

TABLE IV
QUALITY COMPARISON OF UNCLUSTERING METHODS

Values are minimum cut size for ten runs using the specified algorithm. Source mappings are not
technology mapped, and are clustered by presweeping and connectivity clustering. The “Time” row
values are geometric mean times for running the specified algorithm on each of the example circuits.

method is that after partitioning completes (that is, when a
complete pass of moving nodes fails to find any state better
than the results of the previous pass), we remove the highest
level of the clustering hierarchy, leaving all clusterings at
the lower levels alone, and continue partitioning. That is,
subclusters of clusters at the highest level, as well as those
clusters that were not reclustered in the highest level, will
remain clustered for the next pass. This process repeats until
all levels of the clustering have been removed (note that
clustering performed by presweeping is never removed since
there is nothing to be gained by doing so). In this way,
the algorithm performs coarse-grain optimization during early
passes, medium-grain optimization during the middle passes,
and fine-grain optimization during late passes. This algorithm,
which we will refer to here asiterative unclustering, is based
on work by Cong and Smith [6].

An alternative to iterative unclustering isedge uncluster-
ing. This technique is based on the observation that at any
given point in the partitioning, there is likely to be some
fine-grained, localized optimization, and some coarse-grained,
global optimization that should be done. Specifically, those
nodes that are very close to the current cut should be very
carefully optimized, while nodes far from the cut need much
less detailed examination. The edge unclustering algorithm is
similar to iterative unclustering in that it keeps unclustering the
highest levels of clustering remaining in between runs of the
KLFM partitioning algorithm. However, instead of removing
all clusters at a given level, it only removes clusters that are
adjacent to the cut (i.e., those clusters connected to edges that
are in the cutset). In this way, we will end up eventually
unclustering all clusters next to the cut, while other clusters
may remain. When there are no more clusters left adjacent to
the cut, we completely uncluster the circuit and partition one
final time with KLFM.

As the results in Table IV show, using recursive clustering
and a hierarchical unclustering method (iterative or edge
unclustering) has a significant advantage. The methods that do
not uncluster are significantly worse than all other approaches,
by up to more than a factor of 2. Using only a single

clustering pass plus complete unclustering yields a cut size
46% larger than the best unclustering (iterative), and even
complete unclustering of a recursively clustered mapping
yields a 38% larger cut size. The difference between the
two hierarchical unclustering methods is only 1.5%, with four
mappings having smaller cut sizes with edge unclustering, and
four having smaller cut sizes with iterative unclustering. Thus,
it appears that the difference between the two approaches is
slight enough to be well within the margins of error of this
survey, with no conclusive winner. In this survey, we use
iterative unclustering except where explicitly stated otherwise.

VI. I NITIAL PARTITION CREATION

KLFM is an iterative-improvement algorithm that gives no
guidance on how to construct the initial partitioning that is to
be improved. As one might expect, there are many ways to
construct this initial partitioning, and the method chosen has
an impact on the results.

The simplest method for generating an initial partition is to
just randomly create one (random initialization) by randomly
ordering the clusters in the circuit (initial partition creation
takes place after clustering), and then finding the point in this
ordering that best balances the total cluster sizes before and
after this point. All nodes before this point are in one partition,
and all nodes after this point are in the other partition.

An alternative to this isseeded initialization, which is based
on work by Wei and Cheng [22]. The idea is to allow the
KLFM algorithm to do all the work of finding the initial
partitioning. It randomly chooses one cluster to put into one
partition, and all other clusters are placed into the other
partition. The standard KLFM algorithm is then run with the
following alterations: 1) partitions are allowed to be outside
the required size bounds, although clusters cannot be moved
to a partition that is too large, and 2) at the end of the pass, it
accepts any partition within size bounds instead of a partition
outside of the size bounds. Thus, the KLFM algorithm should
move clusters related to the initial “seed” cluster over to the
small partition, thus making all nodes that end up in the

HAUCK AND BORRIELLO: EVALUATION OF BIPARTITIONING TECHNIQUES 857

Fig. 4. Distribution of results from partitioning with random (black bars) and seeded (gray bars) initialization. Theith bar from the left represents theith
best cut size found by either algorithm, and the height indicates how many different runs of the algorithm (out of ten) achieved that result.

initially 1-cluster partition much more related to one another
than a randomly generated partitioning.

We can also generate an initial partitioning that has one
tightly connected partition bybreadth-first initialization. This
algorithm again starts with a single node in one of the
partitions, but then performs a breadth-first search from the
initial node, inserting all nodes found into the seed node’s
partition. Once the seed partition grows to contain as close to
half the overall circuit size as possible, the rest of the nodes are
placed into the other partition. To avoid searching huge fan-out
nets such as clocks and reset lines, which would create a very
unrelated partition, nets connected to more that ten clusters are
not searched.Depth-first initializationcan be defined similarly,
but should produce much less related partitions.

Results for these initial partition construction techniques are
shown in Table V. The data shows that random is actually the
best initialization technique, followed by depth-first search.
The “more intelligent” approaches of seeded and breadth-first
do 16 and 5% worse than random, respectively. There are two
reasons for this. First, the more random the initial partitioning,
the easier it is for the partitioner to move away from the
initial partitioning. Thus, the partitioner is not trapped in a
potentially poor partitioning, and can generate better results.
Second, the “more intelligent” approaches tend to produce
less variation in the initial partitionings, which produces less
variation in the results. Since we pick the best of multiple runs,
by having greater variation in each run, we get better overall
results. These effects can be seen in Fig. 4, which contains the
distribution of results for ten runs of both random (black bars)

TABLE V
QUALITY COMPARISON OFINITIAL PARTITION CREATION METHODS

Values are minimum cut size for ten runs using the specified algorithm.
The “Time” row values are geometric mean times for running the specified
algorithm on each of the example circuits.

and seeded (gray bars) initialization. As can be seen, there is
greater variation for the random algorithm in general. Also, the
two algorithms seem to be finding somewhat different results
since often the seeded algorithm finds cut sizes the random
did not, and vice versa.

While the previous discussion of initial partition genera-
tion has focused on simple algorithms, we can, in fact, use
more complex, complete partitioning algorithms to find initial
partitions. Specifically, there exists a large amount of work
on “spectral” partitioning methods (as well as others) that
constructs a partitioning from scratch. We will consider here
the EIG1 and EIG-IG [13] spectral partitioning algorithms.

858 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

Fig. 5. Graphs of cut sizes for different numbers of runs of our optimized version of KLFM versus the spectral initialization approaches. Values shown
are the geometric means of the results for the nine test circuits (all but industry3).

One important note is that these algorithms are designed
to optimize for the ratio-cut objective [22], which does not
necessarily generate balanced partitions. However, we ob-
tained the programs from the authors, and altered them to
generate only partitions with sizes between 49 and 51% of the
complete circuit size, the same allowed partition size variation
used throughout this paper. These algorithms were applied
to clustered circuits to generate initial partitionings. These
initial partitionings were then used by our KLFM partitioning
algorithm.

As the results show (Table VI), the algorithms (when taken
as a group, under “All Spectral”) produce fairly good results,
but are still 7% worse than random initialization. They do have
the advantage of faster run times (including the time to perform
spectral initialization on the clustered circuits) since they do
not require, and cannot use, multiple partitioning runs. A
more detailed quality/performance comparison is contained in
Fig. 5. This graph shows the quality produced by the different
algorithms versus the amount of time needed to produce the
results. The line is the results of the ten runs of our optimized
algorithm, with data point representing the best of the first
runs, and the time needed to complete those runs. As can be
seen, the spectral approaches are somewhat more time efficient
than our optimized algorithm, and thus might be useful in
extremely time-critical situations. However, multiple runs of
our optimized algorithm can be run in parallel, performing
better than the spectral approaches, and with slightly more
time sequential runs of our optimized algorithm on a single
processor, produce better quality than the spectral approaches.
Because of this, and also because the spectral approaches
are much more complex than the optimized KLFM algorithm
(since the spectral approaches perform spectral initialization, a
complex process, and then run our entire optimized algorithm
as well), we will use random initialization for our optimized
algorithm.

VII. M ULTIPLE RUNS

While all of our tests have involved ten separate runs of the
algorithm under consideration, and we retain the best result of
these ten runs, we can consider using more or less runs per
test. Basic KLFM is notoriously variable from run to run, and
using multiple runs (up to even 100 or more) is essential for

TABLE VI
QUALITY COMPARISON OFSPECTRAL INITIAL PARTITION CREATION METHODS

EIG1 and EIG-IG [13] are spectral partitioning algorithms, used here
to generate initial partitions. “All Spectral” is the best results from the
two spectral algorithms. The “Time” row values are geometric mean times
for running the specified algorithm on each of the example circuits. The
benchmark industry3 was not included because of space limitations in the
spectral partitioners.

achieving good results. To test how our algorithm responded
to multiple runs, we ran our best algorithm for five sets of 50
runs each. That is, for each test circuit, we ran our algorithm
250 times, although these 250 times consisted of one clustering
shared among each 50 runs, and the value of theth run within
a set is the best value from runs from that set. For
comparison, we also ran five sets of 100 runs of the basic
KLFM algorithm, for a total of 500 runs (we ran more runs of
the basic algorithm because it is faster, and we wish to compare
results produced with the same amount of computation time).
The geometric mean of the results across all benchmarks and
sets of runs for a given benchmark are shown in Fig. 6. As
can be seen, not only does our optimized algorithm generate
better results than the basic KLFM algorithm, but it also has
much less variability than the original algorithm, thus requiring
fewer runs to be performed in general. Multiple runs are still
valuable since running the algorithm twice produces results
10% better on average than only a single run, and ten runs
produces results 18% better than a single run. However, there
are significantly diminished returns from further runs. Twenty
runs produce results only 2% better than ten runs, and the
best values found from all 50 runs are, on average, only 4%
better than those produced from ten runs. For comparison,
basic KLFM produces a 10% improvement from one run to

HAUCK AND BORRIELLO: EVALUATION OF BIPARTITIONING TECHNIQUES 859

Fig. 6. Graphs of cut sizes for different numbers of runs of both basic KLFM and our optimized version of KLFM. Values shown are the geometric
means of the results for all ten test circuits.

(a)

(b)

Fig. 7. Examples for the higher level gains discussion.

two, 26% from one to ten, 9% from 10 to 20, and 15% from
10 to 50.

It is unclear exactly how many runs should be used in
general since, for some situations, a 2% improvement in
cutsize is critical, while for others, it is performance that is
the primary concern. We have chosen to use ten runs for all
of the tests presented in this paper unless stated otherwise.

VIII. H IGHER LEVEL GAINS

The basic KLFM algorithm evaluates node moves purely on
how much the move immediately affects the cut size. However,
there are often several possible moves that have the same
effect on the cut size, but these moves may have very different
ramifications for later moves. Take, for example, the circuit in
Fig. 7(a). If we move eitherB or E to the other partition, the
cut size remains the same. However, by choosing to moveB,
we can reduce the cut size by one by then movingA to the
other partition. If we moveE, it will take two further moves
(C and D) to remove the newly cut three-terminal net from
the cutset, and this would still keep the cut size at 2 because
of the edge fromC to the rest of the logic.

To deal with this problem, and give the KLFM algorithm
some lookahead ability, Krishnamurthy proposedhigher level

gains[17]. If a net has unlocked nodes in a partition, and no
locked nodes in that partition, it contributes anth-level gain
of 1 to moving a node from that partition, and an th-level
gain of to moving a node to that partition. The first-level
gains are identical to the standard KLFM gains, with a net
currently uncut giving a first-level gain of to its nodes,
and a net that can be uncut by moving a nodeA gives a first-
level gain of 1 to nodeA. The idea behind this formulation is
that an th-level gain of 1 indicates that by moving nodes,
including the node under consideration, we can remove a net
from the cutset. An th-level gain of means that by
moving this node, we can no longer remove this net by moving
the nodes connected to the net in the other partition. Moves
are compared based on the lowest order gain in which they
differ. So a node with gains () (first-level gain of ,
second-level of , third-level of 0) would be better to move
than a node of (), but worse to move than a node of
(0, 0, 0). To illustrate the gain computation better, we give
the example in Fig. 7, right. Net123 has one node in the left
partition, giving a first-level gain of 1 for moving a node out of
this partition, and a second-level gain of for moving a node
to this partition. It has two nodes in the right partition, giving
a second-level gain of 1 for moving a node from this partition,
and a third-level gain of for moving a node to this partition.
Thus, node1 has a gain vector of (), and nodes2 and
3 have gains of (0, 0, 0) since the second-level gains of 1 and

cancel each other. This makes sense because, after moving
either node2 or 3, one has almost the same situation for net
123as the current state. Note that if node3 were locked, node
2 would have a gain vector of (), and node1 would
have a gain vector of (1, 0, 0) since there is no longer any
contribution to the gain vector of net123 from the state of the
right partition. For net45, there is a second-order gain of 1 for
moving nodes out of the left partition, and a first-order gain of

for moving nodes into the right partition, giving nodes4
and5 a gain vector of (). If node4 were locked, then
node 5 would have a gain vector of () since there is no
longer any contribution to the gain vector of net45 from the

860 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

state of the left partition. Net678 is similar to45, except that
it has a third-order, not a second-order, gain of 1. So, we can
rank the nodes (from best to move to worst) as1, 23, 45, 678,
where nodes grouped together have the same gains. If we do
move1 first, 1 would now be locked into the other partition,
and nodes2 and 3 would have a first-level gain of , and
no other gains. Thus, they would become the worst nodes to
move, and node4 or 5 would be the next candidate.

Note that the definition of th-level gains given above
is slightly different than Krishnamurthy’s. Specifically, in
Krishnamurthy’s definition, the rule that gives anth-level
gain to a net with unlocked nodes in a partition is restricted
to nets that are currently in the cutset. Thus, nets678 and
45 would both have gains (). However, as we have
seen, allowing th-level gains for nets not in the cutset allows
us to see that moving a node on45 is better than moving a
node on678 since it is easier to then remove45 from the
cutset than it is678. Also, this definition handles one-terminal
nets naturally, while Krishnamurthy requires no one-terminal
nets to be present in the circuit. A one-terminal net with our
definitions would have a first-level gain of 1 for having only
one node in the starting partition, but a first-level gain of
because there are no nodes in the other partition, yielding
an overall first-level gain of 0. Note that one-terminal nets
are common in clustered circuits, occurring when all nodes
connected to a net are clustered together.

There is an additional problem with using higher level gains
on clustered circuits: huge run times. The KLFM partitioning
algorithm maintains a bucket for all nodes with the same
gains in each partition. Thus, if the highest fan-out node has
a fan-out of , in KLFM without higher level gains, there
must be buckets per partition (the -fan-out node
can have a total gain between and). If we use -
level gains (i.e., consider higher level gains between first-level
and th-level inclusive), we would require
different buckets. In unclustered circuits this is fine since
nodes will have a fan-out of at most 5 or 6. Unfortunately,
clustered circuits can have nodes with fan-out on the order
of hundreds. This causes not only a storage problem, but also
a performance problem since the KLFM algorithm will often
have to perform a linear search of all buckets of gains between
occupied buckets, and buckets will tend to be sparsely filled.
We have found two different techniques for handling these
problems. First, the run times are acceptable as long as the
number of buckets is reasonable (perhaps a few thousand). So,
given a specific bound on the largest fan-out node (which is
fixed after every clustering and unclustering step), we can set

to the largest value that requires that fewer than a thousand
buckets be maintained. This value is recalculated after every
unclustering step, allowing us to use a greater number of higher
level gains as the remaining cluster sizes get smaller. We call
this techniquedynamic gain levels. An alternative to this is to
exploit the sparse nature of the occupied gain buckets. That is,
among nodes with the same first- and second-level gains, there
will be few different occupied gain buckets. What we can do
is perform the dynamic gain-level computation to determine
the number of array locations to use, but each of these array
locations is actually a sorted list of occupied buckets. That is,

TABLE VII
QUALITY COMPARISON OF HIGHER LEVEL GAINS

Numbers in column headings are the highest higher level gains considered.
Note that a fixed gain level of 1 is identical to optimized KLFM without higher
level gains. Values are minimum cut size for ten runs using the specified
algorithm. The “Time” row values are geometric mean times for running the
specified algorithm on each of the example circuits.

once the dynamic computation yields a given, all occupied
gain buckets with the same first gains will be placed in
the list in the same array location. In this way, circuits with
large clusters, and thus very sparse usage of the possible gain
levels, have only two or three gain levels determining the
array location, while circuits with small or no clusters, and
thus more dense usage of the smaller possible gain locations,
have more of their gain orders determining the array locations.
In this latter technique, calledfixed gain levels, the user can
specify how many gain levels the algorithm should consider,
and the algorithm automatically adapts its data structures to
the current cluster sizes.

As shown in Table VII, using more gain levels improves the
results, but only up to a point. Once we consider gains up to the
fourth level, we get all of the benefits of up to 20 gain levels,
and in fact, the values for fourth-level gains are better than
for 20th-level gains. Thus, extra gain levels beyond the fourth
level only serve to slow down the algorithm, up to a factor of
50% or more. Note that the only circuit with an improvement
from third-level to fourth-level gains is industry2, and it then
degrades significantly when fifth-level gains are added. We
thus feel that this circuit should be ignored when considering
what gain levels to apply, and conclude that third-level gains
are the best tradeoff between quality and run times. Dynamic
gain levels produce results between those of two-level and
three-level fixed gains. This is to be expected since, at high
clustering levels, the dynamic algorithm uses only two gain
levels, although once the circuit is almost totally unclustered,
it expands to use several more gain levels. In this survey, we
use fixed, three-level gains.

IX. BUCKET MANAGEMENT

Even with the higher level gains discussed in the previous
section, there will be many times where multiple nodes have
the same gain values, and thus end up in the same gain bucket.
Depending on how nodes are inserted and removed from
these buckets, either a last-in, first-out (LIFO), first-in, first-
out (FIFO), or random policy can be implemented. Although
this issue has, in general, been ignored in the literature, it has
been shown [14] that the policy can have an effect on the

HAUCK AND BORRIELLO: EVALUATION OF BIPARTITIONING TECHNIQUES 861

TABLE VIII
QUALITY COMPARISON OF BUCKET

MANAGEMENT POLICIES

The “Time” row values are geo-
metric mean times for running the
specified algorithm on each of the
example circuits.

results produced. Specifically, consider what happens when a
node is moved. This move can alter the gain values of its
neighbors, and any neighbor whose gain values are altered
will be inserted into a new gain bucket. Under a LIFO policy,
one of these moved neighbors is more likely to be moved next
than in a FIFO policy since, under a LIFO policy, it would be
considered before any other nodes with the same gain values.
Thus, a LIFO policy tends to continue optimizing in the same
area of the circuit over time, while a FIFO policy will tend
to optimize more smoothly over the entire circuit. Intuitively,
it would seem that a LIFO ordering would be preferred over
a FIFO ordering, and that is, in fact, what has been found
previously [14].

In Table VIII, we compare LIFO and FIFO bucket manage-
ment policies within the context of our optimized algorithm.
As can be seen, although LIFO buckets do perform better than
FIFO buckets, it is only by about 0.4%. In fact, FIFO buckets
actually produce results at least as good as LIFO buckets for
nine of the ten benchmarks, and produce better results for
three of them. Thus, we conclude that the order of insertion
and deletion from the gain buckets in an optimized KLFM
algorithm has little or no effect on the quality of the results
produced. In this survey, we use LIFO bucket management
except where specifically stated otherwise.

X. DUAL PARTITIONING

During partitioning, the goal is to minimize the number
of nets in the cutset. Because of this, it seems odd that we
move nodes from partition to partition instead of moving nets.
As suggested by Yehet al. [26], [28], we can combine both
approaches in a single partitioning algorithm. The algorithm
consists of primal passes, which are the basic KLFM outer
loop, and dual passes, which are the KLFM outer loop, except
that nets are moved instead of nodes. In this way, the dual pass
usually removes a net from the cutset at each step, although
this may be more than balanced by the addition of other nets
into the cutset. Just as in the KLFM algorithm, a single primal
or dual pass moves each node or net once, and when no
more objects can be moved, the state with the lowest cut

size is restored. Primal and dual passes are alternated, and
the algorithm ends when two consecutive passes (one primal,
one dual, in either order) produce no improvement. When
performing unclustering, we start with a primal pass after each
unclustering.

While the concept of moving nets may seem straightfor-
ward, there are some details to consider. First, when we move
a net, we actually move all nodes connected to that net to the
destination partition. Nodes already in that partition remain
unlocked, while moved nodes are locked. Because we are
moving nets and not nodes, the bucket data structure holds
nets sorted by their impact in the cut size, not nodes. An
odd situation occurs when a net is currently in the cutset.
Since it has nodes in each partition, it is a candidate to be
moved to either partition. Also, because we are moving nets
and not nodes, it is unclear how to apply higher level gains
to this problem, so higher level gains are only considered in
the primal passes.

One of the problems with the dual partitioning passes is
that they are excessively slow. When we move a net, it not
only affects the potential gain/loss of moving neighboring nets
(where two nets are neighbors if they both connect to a shared
node), it can affect the neighbor’s neighbors as well. The gain
of moving a net is the sum of the gain of removing the net
from the cutset (1 if the net is currently cut, 0 otherwise),
plus gains or losses from adding or removing neighboring nets
from the cutset (by moving a node connected to a neighboring
net, we may add or remove that net from the cutset). Thus,
when we move a net, we may add or remove a neighboring
net to or from the cutset. That neighbor’s neighbors may
have already expected to add or remove the neighbor from
the cutset, and their gains may need to be recalculated. In a
recursively clustered circuit, or even in a circuit with very high
fan-out nets (such as clocks and reset lines), most of the nets
in the system will be neighbors or neighbors of neighbors.
Thus, each move in a dual pass will need to recalculate the
gains of most of the nets in the system, taking a significant
amount of time.

The solution we adopted is to ignore high fan-out nets in
the dual pass. In our study, we do not consider moving high
fan-out nets (those nets connected to more than ten nodes)
since it is unlikely that moving a high fan-out net will have
a positive effect on the cutsize. We also do not consider the
impact of cutting these high fan-out nets when we decide what
nets to move. Thus, when a neighbor of this net is moved,
we do not have to recalculate the gains of all neighbors of
this high fan-out net since these nets do not have to worry
about cutting or uncutting the high fan-out net. Note that this
makes the optimization inexact, and at the end of a dual pass,
we may return to what we feel is the best intermediate state,
but which is actually worse than other states, including the
starting point for this pass. To handle this, we reevaluate the
cutsize at this state, and only accept it if it is, in fact, better
than the original starting point. Otherwise, we backtrack to
the starting point. In our experience, the cutsize calculation is
almost always correct.

Data from testing the dual partitioning passes within our best
algorithm are shown in Table IX. Only the smaller examples

862 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

TABLE IX
QUALITY COMPARISON OF DUAL PARTITIONING

Values are minimum cut size for ten runs of the
specified algorithm. The data do not include the larger
circuits due to excessive run times. The “Time” row
values are geometric mean times for running the
specified algorithm on each of the example circuits.

are included since, for larger examples, the partitioner was
unable to finish even a single run with dual passes within
an hour’s time. As can be seen, there is little difference in
the quality of the two solutions, and in fact, using the dual
passes actually degrades the quality slightly. The dual passes
also slow overall algorithm run times by a factor of over
20 times, even with the performance enhancements discussed
previously. Obviously, without any signs of improvement in
partitioning results, there is no reason to suffer such a large
performance degradation.

XI. PARTITION MAXIMUM SIZE VARIATION

Variation in the allowed partition size can have a significant
impact on partitioning quality. In partitioning, we put limits
on the sizes of the partitions so that the partitioner cannot
place most of the nodes into a single partition. Allowing all
nodes into a single partition obviously defeats the purpose of
partitioning in most cases since we are usually trying to divide
the problem into manageable pieces. The variance in partition
size defines the range of sizes allowed, such as between 45 and
55% of the entire circuit. There are two incentives to allow as
much variance in the partition sizes as possible. First, the larger
the allowable variation, the greater the number of possible
partitionings. With more possible partitionings, it is likely that
there will be better partitionings available, and hopefully the
partitioner will generate smaller cut sizes. The second issue
is that there needs to be enough variance in partition sizes
to let each node move between partitions. If the minimum
partition size plus the size of a large node is greater than the
maximum partition size, then this node can never be moved.
This will artificially constrain the placement of this node to
the node’s initial partition assignment, which is often a poor
choice. While we might expect that the size of the nodes
in the graph being partitioned will be small, and thus not
require a large variation in partition sizes, we will usually
cluster together nodes before partitioning, greatly increasing
the maximum node size. A smaller partition variation will
limit the maximum cluster size, limiting the effectiveness of
clustering optimizations. In general, we will require that the
maximum cluster size be at most half the size of the allowable
variation in partition sizes. In this way, if we have maximum
sized clusters as move candidates from both partitions, at least
one of them will be able to move.

Conflicting with the desire to allow as much variation
in partition sizes as possible is the fact that the larger the
variation, the greater the wastage of logic resources in a
multichip implementation. Specifically, when we partition to
a system of 32 chips, we iteratively apply our bipartitioning
algorithm. We split the overall circuit in half, then split each of
these partitions in half, and so on until we generate a total of 32
subpartitions. Now, consider allowing partition sizes to vary
between 40 and 60% of the logic being split. On average, it is
likely that better partitions exist at points where the partition
sizes are most unbalanced since, with the least amount of logic
in one partition, there is the least chance that a net is connected
to one of those nodes, and thus the cut size is likely to be
smaller. This means that many of the cuts performed may
yield one partition containing nearly 60% of the nodes, and
the other containing close to 40%. Thus, after five levels of
partitioning, there will probably be one partition containing

of the logic. Now, we usually assume that a
chip has a fixed amount of logic capacity, and since we need
to ensure that each partition fits into an individual chip, all
chips must be able to hold that amount of logic. Thus, for
a mapping of size , we need a total chip logic capacity of

, yielding a wastage of about 60%.
In contrast, if we restrict each partition to between 49 and 51%,
the maximum subpartition size is , the required
total logic capacity is , and the wastage is about 10%.
This is a much more reasonable overhead, and we will thus
restrict the partition sizes considered in this paper to between
49–51% of the total logic size, except where stated otherwise.

As we just discussed, the greater the allowed variation in
partition sizes, the better the expected partitioning results. To
test this, we applied our partitioning algorithm with various
allowed size variations. The results are shown in Fig. 8, and
contain all of the optimizations discussed in this paper, except:
the “Clustering with 1% Max Size” only allows clusters to
grow to 1% of the total circuit size, while the others allow
clusters to be as large as half the allowed partition size
variation (that is, (maximum partition size minimum par-
tition size)). The “Separate Clustering” line does not share
clusterings, while the other lines share one clustering among
all runs with the same partition size bound. As is shown,
the achieved geometric means of the ten circuits decreases
steadily as we increase the maximum partition size. However,
how we perform clustering has an impact on achieved quality,
and the difference is greater for larger allowed partition sizes.
Specifically, when the maximum allowed partition size is
51%, using the same clustering for all runs of the algorithm
produces results as good as using separate clusterings for each
run. Using a shared clustering is also faster than separate
clustering, at least when all runs are performed sequentially.
However, as the allowed partition size gets larger, it becomes
important to use multiple different clusterings. Note that
while each of these runs is performed with the connectivity
clustering algorithm, the algorithm randomly chooses nodes as
starting points of clusters, and thus different runs will produce
somewhat different clusterings.

The reason why a single clustering does poorly for larger
partition sizes is that it reduces the value of multiple runs,

HAUCK AND BORRIELLO: EVALUATION OF BIPARTITIONING TECHNIQUES 863

(a)

(b)

Fig. 8. Graphs of partitioning results as the maximum allowed partition size
is increased. In (a) are the results for separate clustering calculations for
each run of the algorithm (“Separate”), one clustering for each partition size
(“Shared”), and one clustering for each partition size, plus a maximum cluster
size of 1% of the total circuit (“1% Max”). In (b), we have more detail on
the “Separate” runs, with the results for all circuits, plus one line for the four
largest circuits (excluding industry3), and one for the other six. Both “Large”
and “Small” lines are scaled to have the same value as “All Circuits” for the
leftmost data point.

with almost all runs producing identical results. Specifically,
as the allowed partition size grows, the allowed cluster size
grows as well. When a partition is only allowed to be at
most 51% of the total circuit size, no cluster can contain
more than 1% of the circuit, and there will be at least 100
clusters. When the maximum partition size is 75%, a cluster
can be 25% of the circuit size, and there will be relatively few
top-level clusters. Thus, when partitioning is performed with
these few clusters, all of the different runs will get the same
results before the first unclustering, even though we create the
initial partitionings randomly. Since the algorithm is totally
deterministic, all of these runs will produce the same values.
In fact, for partition sizes greater than 60%, all ten runs of the
algorithm with shared clustering produced the same results
for each circuit, and only s15850 and s35932 had more than
one result for a maximum partition size of 60%. To deal with
this, we also ran the algorithm with a maximum cluster size
of 1% of the total circuit size regardless of the maximum
partition size. This technique is successful not only in better
using multiple partition runs, with many different results being

generated for a circuit with a specific maximum partition size,
but also produces results that are up to 17% lower than the
normal clustering results. However, this is still not as good
as separate clusterings per run, which produces results up to
9% lower than clustering with a fixed maximum size. Because
of this, for partition maximum sizes larger than 51%, we use
separate clusterings for each run of the partitioner.

While increasing the maximum partition size can produce
lower cut sizes, most of this gain is due to improvement on the
smaller circuits, while the larger circuits sometimes actually
have worse results as the size variation increases. The line
“Large” in Fig. 8, right is the geometric mean of four of
the largest circuits (industry2, s38584, s35932, s38417), while
“Small” represents the other test cases. These lines have been
scaled to be identical to the “Separate” value at the leftmost
data point, so that if the benefit of increasing the maximum
partition size were uniform across all circuits, the three lines
should line up perfectly. However, our algorithm does worse
on the larger circuits as the maximum partition size increases,
with the geometric mean actually increasing at the rightmost
trial. The true optimum cut size cannot get larger with larger
maximum partition sizes since, when increasing the allowed
partition size, the algorithm could still return a partitioning that
satisfies the smaller partition bounds. Thus, the results should
never increase as the maximum partition size increases, and
should, in general, decrease. We are forced to conclude that our
algorithm is unable to exploit the larger partition size bounds
for the larger circuits, and in fact, gets sidetracked by this
extra flexibility.

XII. OVERALL COMPARISON

Throughout this paper, we have discussed how individual
techniques impact an overall partitioning algorithm. It is
natural to also wonder which of these techniques is the most
important, and how much of the cut-size improvement is
due to any specific technique. We have attempted to answer
this question in Fig. 9. The figure contains most of the
comparisons presented in the paper, which represent removing
a given technique from our optimized algorithm, as well as
similar comparisons which use the basic KLFM algorithm as
a baseline. Basic KLFM is assumed to operate on gate-level
(nontechnology-mapped) circuits, uses random initialization
and FIFO buckets, and has no clustering, higher level gains, or
dual passes. Note that some techniques are used by both the
basic and optimized KLFM algorithms (specifically random
initialization, gate-level netlists, and FIFO buckets). The height
of the bars represents the difference between including the
specified technique and using the worst alternative technique.
Thus, the height of the “Random Initialization” bars represents
the difference between random and seeded initialization, with
the right bar using all of the other techniques from the
optimized KLFM algorithm, while the left bar uses only
the techniques from the basic KLFM algorithm. A gray
bar indicates that including the specified technique actually
degrades the results. Thus, using technology-mapped files
within the optimized KLFM algorithm is a bad idea, as was
discussed earlier.

864 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

Fig. 9. Graph comparing the impact of various partitioning techniques on both basic and optimized KLFM. The vertical scale is geometric mean cut
size, with the baseline being the results of optimized KLFM, and the upper line the results of basic KLFM (gate-level netlists, no clustering, random
initialization, FIFO buckets, and no higher level gains or dual passes). The distance between these two lines is proportional to the change in cut size
between basic and optimized KLFM. The height of the bars represents the change in cut size when the technique is included or removed, with a black bar
indicating the specified technique causes an improvement, while a gray bar indicates that the technique degrades the results. The left “FIFO Buckets”is
cut off for readability, and is actually about six times as tall as shown.

As shown in the graphs in Fig. 9, the results are mixed. It
appears that for the optimized algorithm, the most important
optimizations relate to circuit clustering, with recursive con-
nectivity clustering, iterative unclustering, and nontechnology-
mapped circuits having large impacts. Presweeping, random
initialization, and higher level gains also have a significant
impact, while dual passes and FIFO bucket management do
not seem to make a difference.

The discussion above gives the illusion that we can pick
specifically which optimization gives us what benefit inde-
pendent of what other optimizations are used. However, if
we compare the results of optimizations within the optimized
algorithm with those within the basic algorithm, we see that
this is not true. Specifically, the only optimizations that have
a consistent impact on the cut size are recursive connectivity
clustering, iterative unclustering, and presweeping. For FIFO
bucket management, which has only a slight impact on the
optimized algorithm, it has a huge impact on the basic KLFM
algorithm, greater than any other considered (in fact, its bar
stretches to six times the length shown, and was chopped
off to make the impact of the other optimizations visible).
For technology mapping, random versus seeded initialization,
higher level gains,1 and dual passes, these optimizations have

1While it is quite surprising that in our tests higher level gains actually
degrade the quality of the basic KLFM algorithm, it appears that the effect
is more of producingdifferentresults than worse results. Specifically, the cut
sizes produced by the basic KLFM algorithm with higher level gains vary
greatly from the results produced by the basic KLFM without higher level
gains, with some much better and some much worse, while other optimizations
tend to produce a more uniform increase or decrease in cut size across all of
the benchmarks.

opposite impacts on the cut size, where the technique that is
best for our optimized algorithm actually degrades the quality
produced by a basic KLFM algorithm. Thus, it appears that we
cannot simply consider optimizations in isolation because the
interaction between techniques can have a significant impact
on the results, and some optimizations may negate, or even be
hindered by, the results of others.

We believe that these results have an impact on how
partitioning algorithms should be developed and evaluated.
Specifically, Fig. 9 clearly demonstrates that we cannot simply
consider optimizations in isolation since the performance of
an optimization within the framework of the basic KLFM
algorithm can be radically different from its performance
within a high-quality partitioning algorithm. Thus, we believe
that future optimizations must be evaluated not solely upon
whether they produce better results that the basic KLFM
algorithm, but must instead be shown to contribute to a
complete partitioning algorithm, one capable of producing
results better than those of the best current algorithms. As
we will show in the conclusions, the partitioning algorithm
developed in this paper produces results significantly better
than the current state of the art in logic bipartitioning.

XIII. C ONCLUSIONS

There are numerous approaches to augmenting the basic
Kernighan–Lin, Fiduccia–Mattheyses partitioning algorithm,
and the proper combination is far from obvious. We have
demonstrated that technology mapping before partitioning
is a poor choice, significantly impacting mapping quality.

HAUCK AND BORRIELLO: EVALUATION OF BIPARTITIONING TECHNIQUES 865

TABLE X
QUALITY COMPARISON OF PARTITIONING METHODS

Values for basic FM and Strawman are the best of ten trials. The EIG1 and MELO results are from [2] (although EIG1 was proposed in [13]), the
Paraboli results are from [19], and the FBB results are from [25]. All tests require partition sizes to be between 45 and 55% of the total circuit sizes,
and assume that all non-I/O nodes have unit area.

Clustering is very important, and we found that connectivity
clustering performs well. Recursive clustering and a hierar-
chical unclustering technique help take advantage of the full
power of the clustering algorithm, with iterative unclustering
being slightly preferred to edge unclustering. Augmenting the
basic KLFM inner loop with at least second- and third-level
gains improves the final results, while dual passes are not
worthwhile, and greatly increase run times. Bucket insertion
and removal ordering also does not seem to significantly
impact the quality of an optimized KLFM algorithm. Finally,
when the allowed maximum partition size is greater than 51%
of the total circuit size, creating a clustering on a per-run basis
produces better results than shared clustering.

By appropriately applying the techniques discussed in this
paper, an algorithm based upon KLFM can produce results
better than the current state of the art. In Table X, we present
the results of our algorithm (Strawman2), along with results
of four of the best current methods (Paraboli [19], EIG1 [13],
MELO [2], and FBB [25]) on a set of standard benchmarks.
Those benchmarks beginning with “s” are the XNF versions
of the MCNC partitioning benchmark suite [18], while the
rest were obtained from Alpert’s benchmark set [3] in NET
format and translated into XNF. All partitioners were restricted
to finding partitions containing at most 55% of the logic,
and all non-I/O nodes have a size of 1. The results show

2Strawman, the optimized KLFM algorithm developed in this paper,
includes recursive connectivity clustering, presweeping, per-run clustering on
gate-level netlists, iterative unclustering, random initialization, FIFO bucket
management, and fixed third-level gains. All non-I/O nodes have unit area.
Presweeping is allowed to cluster inverters (which also have a size of 1), and
the clusters thus formed are the total size of all nodes clustered together.

that our algorithm produces significantly better solutions than
the current state-of-the-art bipartitioning algorithms, with the
nearest competitor producing results 19% worse than ours
(thus, our algorithm is 16% better). Our algorithm is also fast,
taking at most 5 min per run on the largest examples, resulting
in a total sequential run time of at most 46 min.

This paper has included several novel techniques, or ef-
ficient implementations of existing work. We have started
from the base work of Schuler and Ulrich [21] to develop an
efficient, effective clustering method. We have also created the
presweeping clustering preprocessor to help most algorithms
handle small fan-out gates. We have shown how shortest
path clustering can be implemented efficiently. We developed
the edge unclustering method, which is competitive with
iterative unclustering. Finally, we have extended the work of
Krishnamurthy [17], both to allow higher order gains to be
applied to nets not in the cutset, and also to give an efficient
implementation, even when the circuit is clustered.

Beyond the details of how exactly to construct the best
partitioner, there are several important lessons to be learned.
As we have seen, the only way to determine whether a given
optimization to a partitioning algorithm makes sense is to
actually try it out, and to consider how it interacts with other
optimizations. We have shown that many of the optimizations
had greater difficulty working on clustered circuits than on
unclustered circuits, yet clustering seems to be important
to achieve the best results. Also, many of the clustering
algorithms seem to assume that the circuit will be technology
mapped before partitioning, yet technology mapping the circuit
will greatly increase the cut size of the resulting partitionings.

866 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 8, AUGUST 1997

However, it is quite possible to reach a different conclusion
if we use only the basic KLFM algorithm, and not any of
the numerous enhancements proposed since then. Thus, it is
important that, as we continue research in partitioning, we
properly place new concepts and optimizations in the context
of what has already been discovered.

ACKNOWLEDGMENT

This paper has benefited from the help of several people,
including L. Hagen, A. B. Kahng, D. F. Wong, and H. Yang.

REFERENCES

[1] C. J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning:
A survey,” Integration: VLSI J., vol. 19, no. 1–2, pp. 1–81, 1995.

[2] C. J. Alpert and S.-Z. Yao, “Spectral partitioning: The more eigenvec-
tors, the better,” inProc. Design Automation Conf., 1995, pp. 195–200.

[3] C. Alpert, http://ballade.cs.ucla.edu:8080/�cheese/benchmarks.html,
1996.

[4] T. Bui, C. Heigham, C. Jones, and T. Leighton, “Improving the perfor-
mance of the Kernighan-Lin and simulated annealing graph bisection
algorithms,” inProc. Design Automation Conf., 1989, pp. 775–778.

[5] C. K. Cheng and T. C. Hu, “Maximum concurrent flow and minimum
ratio-cut,” Tech. Rep. CS88-141, Univ. California, San Diego, Dec.
1988.

[6] J. Cong and M. Smith, “A parallel bottom-up clustering algorithm with
applications to circuit partitioning in VLSI design,” inProc. Design
Automation Conf., 1993, pp. 755–760.

[7] W. E. Donath, “Logic partitioning,” inPhysical Design Automation of
VLSI Systems, B. Preas and M. Lorenzetti, Eds. Menlo Park, CA:
Benjamin/Cummings, 1988, pp. 65–86.

[8] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improved network partitions,” inProc. Design Automation Conf., 1982,
pp. 241–247.

[9] Z. Galil, “Efficient algorithms for finding maximum matching in
graphs,”ACM Computing Surveys, vol. 18, pp. 23–38, Mar. 1986.

[10] J. Garbers, H. J. Pr¨omel, and A. Steger, “Finding clusters in VLSI
circuits,” in Proc. Int. Conf. Computer-Aided Design, 1990, pp. 520–523.

[11] M. Garey and D. S. Johnson,Computers and Intractability: A Guide to
the Theory of NP-Completeness. San Francisco, CA: Freeman, 1979.

[12] M. K. Goldberg and M. Burstein, “Heuristic improvement technique for
bisection of VLSI networks,” inProc. Int. Conf. Comput. Design, 1983,
pp. 122–125.

[13] L. Hagen and A. B. Kahng, “New spectral methods for ratio cut
partitioning and clustering,”IEEE Trans. Computer-Aided Design, vol.
11, pp. 1074–1085, Sept. 1992.

[14] L. Hagen, J. H. Huang, and A. B. Kahng, “On implementation choices
for iterative improvement partitioning algorithms,” inProc. European
Design Automation Conf., 1995, pp. 144–149.

[15] S. Hauck and G. Borriello, “Logic partition orderings for Multi-FPGA
systems,” inProc. Int. Symp. Field-Programmable Gate Arrays, 1995,
pp. 32–38.

[16] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning of electrical circuits,”Bell Syst. Tech. J., vol. 49, pp.
291–307, Feb. 1970.

[17] B. Krishnamurthy, “An improved min-cut algorithm for partitioning
VLSI networks,” IEEE Trans. Comput., vol. C-33, pp. 438–446, May
1984.

[18] MCNC Partitioning93 benchmark suite. e-mail: benchmarks@mcnc.org,
for ftp access.

[19] B. M. Riess, K. Doll, and F. M. Johannes, “Partitioning very large
circuits using analytical placement techniques,” inProc. Design Au-
tomation Conf., 1994, pp. 646–651.

[20] K. Roy and C. Sechen, “A timing drivenn-way chip and multi-
chip partitioner,” inProc. Int. Conf. Computer-Aided Design, 1993, pp.
240–247.

[21] D. M. Schuler and E. G. Ulrich, “Clustering and linear placement,” in
Proc. Design Automation Conf., 1972, pp. 50–56.

[22] Y.-C. Wei and C.-K. Cheng, “Toward efficient hierarchical designs by
ratio cut partitioning,” inProc. Int. Conf. Computer-Aided Design, 1989,
pp. 298–301.

[23] U. Weinmann, “FPGA partitioning under timing constraints,” inMore
FPGAs, W. R. Moore and W. Luk, Eds. Oxford: Abingdon EE&CS
Books, 1984, pp. 120–128.

[24] Xilinx, Inc., The Programmable Gate Array Data Book, 1992.
[25] H. Yang and D. F. Wong, “Efficient network flow based min-cut

balanced partitioning,” inProc. Int. Conf. Comput.-Aided Design, 1994,
pp. 50–55.

[26] C.-W. Yeh, C.-K. Cheng, and T.-T. Y. Lin, “A general purpose multiple
way partitioning algorithm,” inProc. Design Automation Conf., 1991,
pp. 421–426.

[27] , “A probabilistic multicommodity-flow solution to circuit clus-
tering problems,” inProc. Int. Conf. Comput.-Aided Design, 1992, pp.
428–431.

[28] , “Optimization by iterative improvement: An experimental eval-
uation on two-way partitioning,”IEEE Trans. Computer-Aided Design,
vol. 14, pp. 145–153, Feb. 1995.

Scott Hauck received the B.S. degree in computer
science from the University of California at Berke-
ley in 1990, and the M.S. and Ph.D. degrees in
computer science from the University of Washing-
ton in 1992 and 1995, respectively.

He is an Assistant Professor in the Department of
Electrical and Computer Engineering, Northwestern
University. His research interests are in reconfig-
urable computing, including multi-FPGA systems,
mixed processor-FPGA systems, and FPGA archi-
tectures and CAD tools.

Dr. Hauck is active on the Program Committees of several conferences
on FPGA’s, including the ACM/Sigda International Symposium on Field
Programmable Gate Arrays and the IEEE Symposium on FPGA’s for Custom
Computing Machines. He is a member of the IEEE Circuits and Systems
Society.

Gaetano Borriello (M’87) received the Ph.D. de-
gree in computer science from the University of
California at Berkeley in 1988.

He is an Associate Professor in the Department
of Computer Science and Engineering, University
of Washington. His current research interests focus
on the automatic synthesis of both the hardware
and software components of embedded systems. His
focus is on retargetable specifications that seperate
communication and computation issues. Other in-
terests include architectures for the processors and

programmable logic used to implement modern embedded systems.
Dr. Borriello continues to be active on the Program Committees of several

conferences and workshops on computer-aided design topics. Most recently,
he served as Program Chair and General Chair of the IEEE/ACM/IFIP
International Workshop of Hardware/Software Codesign. He is a member of
the IEEE Computer Society.

