138 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 2, APRIL 2000

High-Performance Carry Chains for FPGA's

Scott Hauck Member, IEEEMatthew M. Hosler, and Thomas W. Fry

Abstract—Carry chains are an important consideration formost redesigning the FPGA architecture itself. In order to support
computations, including FPGA's. Current FPGA's dedicate a por- datapath computations, most FPGA's already include special re-
tion of their logic to support these demands via a simple ripple qrceg specifically optimized for implementing carry computa-

carry scheme. In this paper, we demonstrate how more advanced fi H b th latively simol
carry constructs can be embedded into FPGA's, providing signif- 1ONS- HOWeEVer, because (hese resources use a relatively simple

icantly higher performance carry computations. We redesign the Tpple carry scheme, carry computations can still be a major
standard ripple carry chain to reduce the number of logic levels performance bottleneck. We will show that creating new carry

in each cell. We also develop entirely new carry structures based schemes for the FPGA architecture can significantly improve

on high-performance adders such as carry select, carry lookahead, ji5 herformance for all datapath operations with a relatively in-
and Brent—Kung. Overall, these optimizations achieve a speedupin _.
significant increase in chip area.

carry performance of 3.8 times over current architectures.

Index Terms—Addition, arithmetic, carry chains, FPGA. Il. BASIC RIPPLE CARRY CELL

A basic ripple carry cell, similar to that found in the Altera
. INTRODUCTION 8000 series FPGA's [1], is shown in Fig. 1(a). Mux 1, com-

LTHOUGH originally intended as a way to efficiently bined with the two-input lookup tables (2-LUT’s) feeding into
handle random logic tasks in standard hardware systeriiscreates a three-input lookup table (3-LUT). This element can

FPGA's have become the driving force behind a new corffoduce any Boolean function of its three inputs. Two of its in-
puting paradigm. By mapping algorithms to these FPGA®Uts (X andY’) form the primary inputs to the carry chain. The
significant performance benefits can be achieved. However,dgerands to the arithmetic or logic function being computed are
order to achieve these gains, the FPGA resources must be &#t in on these inputs, with each cell computing one bit posi-
to efficiently support the computations required in the targén’s result. The third input can be either another primary input
application. (2), or the carry from the neighboring cell, depending on the

The key to achieving high-performance hardware implemeBtogramming of mux 2's control bit. The potential to h&vee-
tations is to optimize the circuit’s critical path. For most dataPlace the carry input s provided so that an initial carry input can
path circuits, this critical path goes through the carry chain useél provided to the overall carry chain (useful for incrementers,
in arithmetic and logic operations. In an arithmetic circuit suctombined adder/subtractors, and other functions). Alternatively,
as an adder or subtractor, this chain represents the carries fibglogic can be used as a standard 3-LUT for functions that do
bit position to bit position. For logical operations such as paritjot need a carry chain. An additional 3-LUT (not shown in the
or comparison, the chain communicates the cumulative infdigure) is contained in each cell, which can be used to compute
mation needed to perform these computations. Optimizing suié¢ sum for addition, or other functions.
carry chains is a significant area of VLSI design and is a major Before we discuss modifications to this adder cell to improve
focus of high-performance arithmetic circuit design. performance, it is important to understand the role of the

Recently, several papers have focused on creating efficiéftoutl” and “Cout0” signals in the carry chainCout! and
implementations of high-performance adders in FPGA's [3f;out) are the outputs of the two 2-LUT’s calculated such that
[10], [11]. These approaches do not seek to modify the undéroutl is function of A and B whereCinis true andCout0 is a
lining architecture of the FPGA, but instead use the existirffgnction of A and B whereClin is false. In the case of a normal
ripple carry structure of the FPGA's for their implementationgdder,Coutl andCout0 are given by (1) and (2)
In another work, Woo modified the architecture of the FPGA to
change linear cascading chains into tree structured cascade cir- Coutl = cou{4, B,1) = AAND B @)
cuits [8]. This modification significantly reduced the delay of
cascade circuits. However, the equally important carry chains
were not investigated. Coutd = cout(A, B, 0) = AORB. (2)

In this paper, we will discuss methods of significantly im-

proving the performance of carry computations in FPGA's buring carry computations th€in input that controls mux 1
chooses which of these two signals will be thim for the next

. . _ stage in the carry chain. &in is true,Cout = Coutl, while if
Manuscript received January 28, 1998; revised November 13, 1998. T is false.C —C Thus.C is th h
work was supported in part by DARPA Contract DABT63-97-C- 0035 and N In Is false,C'out = Cout. us,Coutl Is the output when-

Grant CDA-9703228. everCin = 1, while Cout0 is the output whenevetin = 0.

S. Ha_uck and T._W. Fry are with the Department of Electrical Engineeringt \we consider the possible combinations of valdasutl and
University of Washington, Seattle, WA 98195-2500 USA. Lo .
M. M. Hosler is with Wyle Electronics, Dayton, OH USA. CoutD, we can assume there are four possibilities, three of which

Publisher Item Identifier S 1063-8210(00)00766-6. correspond to concepts from standard adders (Table I). If both

1063-8210/00$10.00 © 2000 IEEE

HAUCK et al: HIGH-PERFORMANCE CARRY CHAINS FOR FPGA'S 139

I 10 do this is to program mux 2 in the cell to route ingfito mux 1
instead ofCin. For situations where one wishes to have a carry
Select [input to the first stage of an adder (which is useful for imple-
menting combined adder/subtractors as well as other circuits),
_—| this is the right solution. However, in other cases this may not
be possible. The first stage in many carry computations is only
a two-input function, and forcing the carry chain to wait for the
[P] = Programming Bit arrival of an additional, unnecessary input will only needlessly
(@ (b) slow down the circuit's computation. This is not necessary. In
I|1 I(i these circuits, the first stage is only a two-input function. Thus,
Select either 2-LUT in the cell could compute this value. If we program
-“:‘:I_h.{ 'o—l both 2-LUT’s with the same function, the output will be forced
| B to the proper value regardless of the input, and thus either the
Cin or theZ signal can be routed to mux 1 without changing the
computation. However, this is only true if mux 1 is implemented
such that if the two inputs to the mux are the same, the output
of the mux is identical to the inputs regardless of the state of
the select line. Fig. 1(b) shows an implementation of a mux that
Fig. 1. (a) Carry computation element for FPGAS, (b) a simple 2: 1 mudoes not obey this requirement. Since the carry chain is part of
implementation, and (c) a slightly more complex version. an FPGA, the input to this mux could be connected to some un-
used logic in another row which is generating unknown values.
Coutd andCoutl are true Cout is true no matter whatin is, If that unused logic had multiple transitions which caused the
which is the same as the “generate” state in a standard adgéal to change quicker than the gate could react, then it is pos-
Likewise, when botiCoutd0 andCoutl are falseCout is false sible that the select signal to this mux could be stuck midway
regardless of the state ¢fin, and this combination offoutt between true and false (2.5 V for 5-V CMOS). In this case, it
andCout0 signals is the “kill” state for this carry chain.dfoutd ~ Will not be able to pass a true value from the input to the output,
andCoutl are different, the?out output will depend on théin and thus will not function properly for this application. How-
input. WhenCoutd = 0 andCoutl = 1, theCout output will €ver, a mux built like thatin Fig. 1(c), with both n-transistor and
be identical to the”in input, which is the normal “propagate” P-transistor pass gates, will operate properly for this case. Thus,
state for this carry chain. The last state, witloutd) = 1 and We will assume throughout this paper that all muxes in the carry
Coutl = 0, is not found in normal adders. In this state, thehain are built with the circuit shown in Fig. 1(c), though any
output still depends on the input, but in this casedioeit output - Other mux implementation with the same property could be used
is the inverse of th&in input. We will call this state “inverse (including tristate driver based muxes which can restore signal

Out

Out
(c)

propagate.” drive and cut series R-C chains).
For a normal adder, the inverse propagate state is never en-
countered. Thus, it might be tempting to disallow this state. Ill. DELAY MODEL

However, for other computations this state is essential. For eX-ro initially quantify the performance of the carry chains de-
ample, consider implementing a parity circuit with this Carr¥eloped in this paper, a unit gate delay model will be used:
chain, where each cell takes the XOR of the two inptsnd ’

. . . all simple gates of two or three inputs that are directly imple-
Y, and the parity of the nel_ghbo_nng geII.Jsf andy’ are both mentable in one logic level in CMOS are considered to have a
zero, theCout of the cell will be identical to the parity of the

.) o i o delay of one. All other gates must be implemented in such gates
ne|ghbor|ng cell, which s brought in on tiein 5|gnall. Thus, and have the delay of the underlying circuit. Thus, inverters and
the cell is in normal propagate mode. HoweverXifis true

. i) S two—three-input NAND and NOR gates have a delay of one.
andY is false, then th€ out will be the opposite of’in, since A 2:1 mux has a delay of one from th® or I1 inputs to

(1@0@@”) — Cin_. Thu_s, th_e in_verse propagate state is impofhe output, but has a delay of two from the select input to the
tant for implementing circuits like parity, and thus supportin utput due to the inverter delay [see Fig. 1(c)]. The delay of

this state in the carry chain we increase the types of circuits tl?ﬁlé 2-LUT's, and any routing leading to them, is ignored since

can be efficiently '|mplemented. In fact, by a]lowmg an INVerSg.i< will be a constant delay for all the carry chains developed
propagate mode in the carry chain, the chain can be viewe

ol . f3LUT ted togeth lowi this paper. This delay model will be used to initially discuss
SImply-a series of o- S connected together, allowing afyi¢terent carry chain alternatives and their advantages and disad-
critical path to be implemented efficiently.

One lasti tb idered inthi hain struct vantages. Precise circuit timings are also generated using Spice
ne jastissue must be considered inthis carry chain structyts. i, /| g layouts of the carry chains, as discussed later in
In an FPGA, the cells represent resources that can be use

. .) . paper.
compute arbitrary functions. However, the location of functions
within this structure is completely up to the user. Thus, a user
may decide to start or end a carry computation at any place in the
array. In order to start a carry chain, we must program the firstAs we discussed in an earlier section, the ripple carry design
cellin the carry chain to ignore thgin signal. One easy way to of Fig. 1(a) is capable of implementing most interesting carry

IV. OPTIMIZED RIPPLE CARRY CELL

140 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 2, APRIL 2000

computations. However, it turns out that this structure is signifi- X Y Z

cantly slower than it needs to be since there are two muxes on the —
2LUT ! 2 LUT

carry chain in each cell (mux 1 and 2). Specifically, the delay of
this circuit is one for the first cell plus three for each additional
cell in the carry chain (one delay for mux 2 and two delays for
mux 1), yielding an overall delay &n — 2 for ann-cell carry
chain. Note that we assume the longest path through the carry
chain comes from the 2-LUT’s and not inpfdtsince the delay
through the 2-LUT’s will be larger than the delay through mux

2 in the first cell.

We can reduce the delay of the ripple carry chain by removing
mux 2 from the carry path. As shown in Fig. 2(a), instead of ® (b)
choosing betweed’in and Z for the select line to the output
mux, we instead have two separate muxes, 1 and 2, controlled
by Cin and Z, respectively. Then, the circuit chooses between
these outputs with mux 3. In this design, there is a delay of one
in the first cell of a carry chain, a delay of three in the last cell
(two for mux 1 and one for mux 3), and a delay of only two for
all intermediate cells. Thus, the delay of this design is @aly

for ann-b ripple carry chain, yielding up to a 50% faster circuit [Fast Carry Logic |

than the original design. Cout
Unfortunately, the circuit in Fig. 2(a) is not logically equiv- %{J—EI

alent to the original design. The problem is that the design can F

no longer use the input in the first cell of a carry chain as an ©

initial carry input, sinceZ is only attached to mux 2, and mung 2. Carry computation elements with faster carry propagation.
2 does not lead to the carry path. The solution to this problem is
the circuit shown in Fig. (b). For cells in the middle of a carry

hain, mux 2 is configured to pasgoutl, and mux 3 ThBLE |
Chain, mu S conngu e 0 pagsoul, a u pe}sses CoMBINATION OF Cout) AND Coutl
Coutd. Thus, mux 4 receive€outl and Coutd and provides VALUES AND THE RESULTING CARRY OUTPUT. THE FINAL COLUMN
a standard ripple carry path. However, when we start a carry LISTS THENAME FOR THAT COMBINATION

chain with a carry input (provided by inpuf), we configure

mux 2 and mux 3 to both pass the value from mux 1. Since ~ Cout0 Coutl Cout Name

this means that the two main inputs to mux 4 are identical, the 0 0 0 Kill
output of mux 4 Cout) will automatically be the same as the 0 1 Cin Propagate
output of mux 1, ignoring”in. Mux 1's main inputs are driven | 0 = Inverse Propagate
by two 2-LUT’s controlled byX andY’, and thus mux 1 forms a

3-LUT with the other 2-LUT’s. When mux 2 and mux 3 pass the 1 ! ! Generate

value from mux 1, the circuit is configured as a 3-LUT starting
a carry chain, while when mux 2 and mux 3 choose their other
input (Couth andCoutl, respectively) the circuit is configured
to continue the carry chain. This design is therefore function- In the previous section, we discussed how to optimize aripple
ally equivalent to the design in Fig. 1(a). However, carry chaimarry chain structure for use in FPGA's. While this provides
built from this design have a delay of three in the first cell (oneome performance gain over the basic ripple carry scheme found
in mux 1, one in mux 2 or mux 3, and one in mux 4) and twim many current FPGA's, it is still much slower than what is done

in all other cells in the carry chain, yielding an overall delay ah custom logic. There have been tremendous amounts of work
2n + 1 for ann-b carry chain. Thus, although this design is ondone on developing alternative carry chain schemes that over-
gate delay slower than that of Fig. 2(a), it provides the abilitgome the linear delay growth of ripple-carry adders. Although
to have a carry input to the first cell in a carry chain, somethirthese techniques have not yet been applied to FPGA's, in this
that is important in many computations. Also, for carry compypaper we will demonstrate how these advanced adder techniques
tations that do not need this feature, the first cell in a carry chaian be integrated into reconfigurable logic. The basis for all of
built from Fig. 2(b) can be configured to bypass mux 1, reducirthe high-performance carry chains developed in this paper will
the overall delay t@r, which is identical to that of Fig. 2(a). On be the carry cell of Fig. 2(c). This cell is very similar to that of
the other hand, in order to implement arb carry chain with Fig. 2(b), except that the actual carry chain (mux 4) has been
a carry input, the design of Fig. 2(a) requires an additional calbstracted into a generic “fast carry logic” unit and mux 5 has
at the beginning of the chain to bring in this input, resulting ibeen added. This extra mux is present because although some
a delay of2(n + 1) = 2n + 2, which is slower than that of the of our faster carry chains will have much quicker carry propaga-
design in Fig. 2(b). Thus, the design of Fig. 2(b) is the preferreihn for long carry chains, they do add significant delay to non-
ripple carry design among those presented so far. carry computations. Thus, when the cell is used as just a normal

V. HIGH-PERFORMANCECARRY LoGIC FORFPGA's

HAUCK et al: HIGH-PERFORMANCE CARRY CHAINS FOR FPGA'S 141

3-LUT, using inputsX, Y, andZ, mux 5 allows us to bypass [ceng| [Cenis| [Ceia] [Cetiz] [Celt2] [cent] [celio]

the carry chain by selecting the output of mux 1. CIJ [Co, Ct] [Co,CI] [co, C1]]Co, C1} }C0, Ci, !col CIJTco,
The important thing to realize about the logic of Fig. 2(c) i = NE"' -t
that any logic that can compute the value 7 (=,
. Vsl
cout; = (Cout_y x Cl;) + (Cout_y + C0;) ©) Ccl;uté C(!uts Ccl>ut4 C(I)-ug Cc!ut2 Cout, Cout,

where: is the position of the cell within the carry chain and
can provide the functionality necessary to support the needd §f 3 Carmy select structure.

FPGA computations. Thus, the fast carry logic unit can con-

tain any logic structure implementing this computation. In thige breakpoints are carefully chosen such that the small adders
paper, we will look at four different types of carry logic: carnyfinish computation just as the'in signals become available.
select, carry lookahead (including Brent—Kung), variable bi§hort adders handle the low-order bits, and the adder length is
and ripple carry (discussed previously). Note that becauseinfreased further along the carry chain, since later computations
the needs and requirements of carry chains for FPGA's, we wilkve more time until thei€in signal is available.

have to develop new circuits, inspired by the standard adderA carry select carry chain structure for use in FPGA’s is
structures, but which are more appropriate for FPGA's. Thahown in Fig. 3. The carry computation for the first two cells is
main difference is that we no longer have just the generate, prgerformed with the simple ripple-carry structure implemented
agate, and kill states for an adder—we must also support by mux 1. For cells 2 and 3, we use two ripple carry adders,
verse propagate. These four states are encoded on sighalswith one adder (implemented by mux 2) assuming ¢he is

and C0 as shown in Table I. Also, while standard adders ateue and the other (mux 3) assuming & is false. Then,
concerned only with the maximum delay through an entire N¥buxes 4 and 5 pick between these two adders’ outputs based
adder structure, the delay concerns for FPGA's are more coamthe actual”in coming from mux 1. Similarly, cells 4-6 have
plicated. Specifically, when al¥V-b carry chain is built into the two ripple carry adders (mux 6 and 7 for&n of one, mux 8
architecture of an FPGA, it does not represent an actual compud 9 for aCin of zero), with output muxes (muxes 10-12)
tation, but only the potential for a computation. A carry chaideciding between the two based upon the actiial(from mux
resource may span the entire height of a column in the FPG3), Subsequent stages will continue to grow in length by one,
but a mapping to the logic may use only a small portion of thigith cells 7-10 in one block, cells 11-15 in another, and so
chain, with the carry logic in the mapping starting and endingn. Timing values showing the delay of the carry select carry
at arbitrary points in the column. Thus, we are concerned withain relative to other carry chains will be presented later in
not just the carry delay from the first to the last position in this paper.

carry chain, but must consider the delay for a carry computation

beginning and ending at any point within this column. For ex- VII. V ARIABLE BLOCK

ample, even though the FPGA architecture may provide suppor
for carry chains of up to 32 b, it must also efficiently support 8-
carry computations placed at any point within this carry cha
resource.

Like the carry select carry chain, a variable block structure
] consists of blocks of ripple carry elements (Fig. 4). However,
Instead of precomputing th@out value for each possiblgin
value, it instead provides a way for the carry signal to skip over
intermediate cells where appropriate. Contiguous blocks of the
computation are grouped together to form a unit with a standard
The problem with a ripple carry structure is that the compuipple carry chain. As part of this block, logic is included to
tation of theCout for bit position: cannot begin until after the determine if all of the cells are in their propagate state. If so, the
computation has been completed in bit positions-: — 1. A Cout for this block is immediately set to the value of the block’s
carry select structure overcomes this limitation. The main obsérin, allowing the carry chain to bypass this block’s normal carry
vation is that for any bit position, the only information it receiveshain on its way to later blocks. Th&in still ripples through
from the previous bit positions is itSin signal, which can be the block itself, since the intermediate carry values must also
either true or false. In a carry select adder, the carry chainkis computed. If any of the cells in the carry chain are not in
broken at a specific column, and two separate additions occpropagate mode, th€out output is generated normally by the
one assuming th€'in signal is true, the other assuming it igipple carry chain. While this carry chain does start at the block’s
false. These computations can take place before the previdtia signal and leads to the block’%out, this long path is a false
columns complete their operation, since they do not dependmstth. That is, since there is some cell in the block that is not in
the actual value of th€'in signal. Thig”in signal is instead used propagate mode, it must be in generate or kill mode, and, thus,
to determine which adder’s outputs should be used. Iihe the block’sCout output does not depend on the blocK's
signal is true, the output of the following stages comes from tleput.
adder that assumed that th@ would be true. Likewise, afalse A major difficulty in developing a version of the variable
Cin chooses the other adder’s output. This splitting of the carbyock carry chain for inclusion in an FPGA's architecture is the
chain can be done multiple times, breaking the computatioeed to support both the propagate and inverse propagate states
into several pairs of short adders with output muxes choosin§the cells. To do this, we compute two values. First, we check
which adder’s output to select. The length of the adders atuaisee if all the cells are in some form of propagate mode (either

VI. CARRY SELECT

142 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 2, APRIL 2000

| Cell 3J [Cell 2] fCell 1 l [Cell 0] structure into blocks depends on the details of the logic structure
C1} {co,c1] [Co, C1<|: Co, C1] Co, and the length of the entire computation. We use a block length
l(x} (from low-order to high-order cells) of 2, 2, 4,5, 7, 5, 4, 2, and
] 1 for a normal 32-b structure. The first and last block in each
adder is a simple ripple carry chain, while all other blocks use
the variable block structure. Delay values of the variable block
carry chain relative to other carry chains will be presented later
Cout, Cout, in this paper.

Cout, Cout,

Fig. 4. The variable block carry structure. Mux 1 performs an initial two-stage VIIl. CARRY LOOKAHEAD AND BRENT-KUNG
ripple carry. Muxes 2-5 form a 2-b variable block. Mux 5 decides whether the) o
Cin signal should be sent directly ©Gout, while mux 4 decides whether to ~ There are two inputs to the fast carry logic in Fig. 2@);

invert theC'in signal or not. and C0;. The value ofC1; is programmed by the LUT’s so
that it contains the value thatout; should have iin; is true.
Similarly, the value of”0; is programmed by the LUT’s so that

Gl M E I EE I] = 0 [it contains the value thaPout; should have ifCin; is false.
D) ® ® ® ® ® ® We can combine the information from two stages together to
SIS ollie ollle determine what th€’out of one stage will be given th&in of

the previous stage. For example

C]-i,i—l = (Cli_l * Clz) =+ (Cli_l * COZ) (4)

@: % 00; ;_1 =(C0;_1 % C1,) + (CO,_; * CO;) (5)

whereC1, , is the value ofCout, assuming tha€in, = 1.

This allows us to halve the length of the carry chain, since
Fig. 5. The three-level 16-b Brent—Kung structure. At right are the details gnece these new values are computed a single mux can compute
the concatenation block. Note that once @ie has been computed for a given Cout; given Cin;_;. In fact, similar rules can be used recur-
stage, a mux is used in place of a concatenation block. sively, halving the length of the carry chain with each applica-
tion. Specifically

normal propagate or inverse propagate) by ANDing together the
XOR of each stage’§’1 and C0 signals. If so, we know that Clip =(Clj—1,k % Cli j) + (CLj—1,x * CO;) (6)
the Cout function will be equal to eithe€in or Cin. To de- CO; 1, =(C0;_1, 5% CL; ;) + (CO;—1 % CO; ;) (7)
cide whether to invert the signal or not, we must determine how
many cells are in inverse propagate mode. If the number is evagsuming > j > k. The digital logic computing both of these
(including zero) the output is not inverted, while if the numbeiunctions will be called a concatenation box. The Brent—Kung
is odd the output is inverted. The inversion check can be doeary chain [2] consists of a hierarchy of these concatenation
by looking for inverse propagate mode in each cell and XORirdmpxes, where each level in the hierarchy halves the length of the
the results. To check for inverse propagate, we only look at tharry chain, until we have computéll; , andCO0; (for each
C0 signal from each cell. If this signal is true, the cellis in eithetell :. A single level of muxes at the bottom of the Brent—Kung
generate or inverse propagate mode, and if itis in generate modey chain can then use these values to comput€’the for
the inversion signal will be ignored anyway (we only considezach cell given &in. The Brent—Kung carry chain is shown in
inverting theCin signal if all cells are in some form of propa-Fig. 5.
gate mode). Note that for both of these tests we can use a tree dfhe Brent—Kung adder is a specific case of the more general
gates to compute the result. Also, since we ignore the inversicarry lookahead adder [6]. In a carry lookahead adder, a single
signal when we are not bypassing the carry chain, we can Ueeel of concatenation combines together the carry information
C1 as the inverse of 0 for the inversion signal’s computation,from multiple sources. A typical carry lookahead adder will
which avoids the added inverter in the XOR gate. combine four cells together in one level (computifid; ;s

The organization of the blocks in the variable block carrgndCO0; ;_3), combine four of these new values together in the
structure bears some similarity to the carry select structure. Tiext level, and so on.
early stages of the structure grow in length, with short blocks However, while a combining factor of four is considered op-
for the low-order bits, building in length further in the chain irtimal for a standard adder, in FPGA's combining more than two
order to equalize the arrival time of the carry from the block withialues in a level is not advantageous. The problem is that al-
that of the previous block. However, unlike thecarry select though the logic to concatenafé values together grows lin-
structure, the variable block adder must also worry about tkarly for a normal adder, it grows exponentially for a reconfig-
delay from theCin input through the block’s ripple chain. Thus,urable carry chain. For example, to concatenate three values to-
after the carry chain passes the midpoint of the logic, the bloagsther for a normal adder we have
begin decreasing in length. This balances the path delays in the
system and improves performance. The division of the overall Cr =G+ (PpxCyp1) (8)

HAUCK et al: HIGH-PERFORMANCE CARRY CHAINS FOR FPGA'S

a) DI1DO C1Co B1BO A1A0

Coutl Cout0
A

Coutl Cout0

143

X
123 4 5 6 7 8 9 1011213141516

5 [9]
6 [9]
7 [9]
Y 8 [9]
9 [i1] [1[o]1[E]
10 1] [1lel(s][s]
i] l]llis]ls]
12 i1
13 [}
14 {11}
15 1]
16 11l

Fig. 6. Concatenation boxes. (a) A four-cell concatenation box and (b) its

equivalent made up of only two-cell concatenation boxes.

Fig. 7. A two-level 16-b carry lookahead structure.

X
I 23 456 7 8 9 1011121314 1516

Fig. 8. The delays of a basic ripple carry chain which start atX¥eéind end

at cellY using the theoretical delay model.

Fig. 9. The delays of a Brent—Kung carry chain which start &elind end at
cell Y using the theoretical delay model.

An alternative way to see why combining four cells together
in one level is bad for FPGA's is to consider how this com-
bining would be implemented. Fig. 6(a) shows a concatenation
box that takes its input from four different cells. Fig. 6(b) then
shows how a four-cell concatenation box can be built using only
three two-cell concatenation boxes. This second method of cre-
ating a four-cell concatenation box is really the equivalent of
a two-level carry lookahead adder using two-cell concatenation
boxes. Using the simple delay model discussed earlier, the delay
for the four-cell concatenation box in Fig. 6(a) is six units since
the signal must travel through three muxes. The delay for the
four-cell concatenation box equivalent found in Fig. 6(b), how-
ever, is only four units since the signal must travel through only
two muxes. Thus, a four-cell concatenation box is never used
since it can always be implemented with a smaller delay using
two-cell concatenation boxes. Therefore, the Brent—Kung struc-
ture is the best approach.

Another option in carry lookahead adders is the possibility
of using fewer levels of concatenation than a Brent—Kung
structure. Specifically, a Brent—Kung structure for a 32-b adder
would require four levels of concatenation. While this allows
Cing to quickly reachCoutsy, there is a significant amount of
delay in the logic that computes the individdal; o andC0; ¢
values. We can instead use fewer levels than the complete
hierarchy of the Brent—Kung adder and simply ripple together
the top-level carry computations of smaller carry lookahead
adders. Specifically, if we talk about a¥-level carry looka-
head adder, that means that we only ap@lievels of two-input

whereP, andG, are the propagate and generate values of tRgncatenation units. A two-level 16-b carry lookahead carry
current cell. However, to concatenate three values together féi®in is shown in Fig. 7.

reconfigurable carry chain together, we have

Clw,z = (C]-ac—l,z * Clw,x) + (C]-ac—l,z * Cow,x)

= ((Cly—lu‘«’ * Clw—l,y) + (Cly—I,Z * Cow—l,y))

* Cl'w,rn + ((Cly—l,z * Clrn—l,y)
+(Cly_1 % C0y_1,4)) *CO0y 5.

IX. CARRY CHAIN PERFORMANCE

In order to compare the carry chains developed in this paper,
we computed the performance of the carry chains of different
lengths. The delay is computed from the output of the 2-LUT’s
in one cell to the final outputK) in another using the simple

144 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 2, APRIL 2000

=
(=]

Basic Ripple Optimized Ripple

(V8]
w

Variable Block

Max Delay
IS
o W <

[
w

10
Brent-Kung

28
30
32

<t O o0 [=
— o™

— —

2
4
6
g |
10
12
24
26

22

Carry Length

Fig. 10. A comparison of the various carry chain structures. The delays represent the maximum delay foraalder placed anywhere within a 32-b carry
structure.

delay model discussed earlier in the delay model section. This TABLE I

simple model calculates a delay based on the number of ga g:OMPARISON OF THEDELAYS OF DIFFERENT STRUCTURES FOR(a) A 32-B
ARRY AND (b) A NONCARRY COMPUTATION OF AFUNCTION, f(X, Y, Z)

that must be traversed by a signal. Precise circuit timings are
discussed later in this paper. Figs. 8 and 9 show the delays

a carry chain starting at ce)X and ending at cell” for the Carry Chain 32-bit delay (ns) 3-LUT delay (ns)
basic ripple and Brent—Kung carry chains, respectively. The Basic Ripple Carry 23.4 1.6
figures show how the delay patterns are different for each ca Optimized Ripple 18.7 25
chain. One important issue to consider is what delay we shoi Brent-Kung 6.1 21

use to compare carry chain performance. While the carry chi
structure is dependent on the length of the carry computation
supported by the FPGA (such as the variable block segmeritare, we believe that the Brent—Kung structure is the preferred
tion), the user may decide to use any contiguous subsequesitacture for FPGA carry computations and that it is capable
of the carry chain’s length for their mapping. To deal with thisyf providing significant performance improvement over current
we assume that the FPGA's are built to support up to a 32HPGA carry chains.
carry chain and record the maximum carry chain delay for anyIn this paper, we also considered other carry lookahead adder
length L carry computation within this structure. That is, sinceesigns which do not use as many levels of concatenation boxes
we do not know where the user will begin their carry computas a full Brent—Kung adder. However, as can be see in Fig. 11,
tion within the FPGA architecture, we measure the worst cadee other carry structures provide only modest improvements
delay for a lengthl. carry computation starting at any point inover the Brent—Kung structure for short distances and perform
the FPGA. Note that this delay is the critical path withinfie significantly worse than the Brent—Kung structure for longer
computation, which means carries starting and ending anywheegry chains.
within this computation are considered. Another consideration when choosing a carry chain structure
Fig. 10 shows the maximum carry delays for each of the caris/the size of the circuit. Fig. 12 shows the number of transistors
structures discussed in this paper, as well as the basic riptlat are used in the design of the basic ripple, optimized ripple,
carry chain found in current FPGA's. These delays are basealry select, variable block, and Brent—Kung carry chains. The
on the simple delay model that was discussed earlier. More ptensistor counts here are based on a CMOS implementation of
cise delay timings from VLSI layouts of the carry chains will behe inverting tristate mux. One concern with the Brent—Kung
discussed later. As can be seen, the best carry chain structuresfarcture is that it requires four times more transistors to imple-
short distances is different from the best chain for longer compument than the basic ripple carry. However, in typical FPGA's
tations, with the basic ripple carry structure providing the beste carry structure occupies only a tiny fraction of the chip area,
delay for length 2 carry computations, while the Brent—Kungince the programming bits, LUT's, and programmable routing
structure provides the best delay for computations of four bits structures dominate the chip area. Therefore, the increase in chip
more. In fact, the ripple carry structure is more than twice as fastea required by the higher performance carry chains developed
as the Brent—Kung structure for 2-b carry computations, yetiisthis paper is relatively insignificant, yet the performance im-
approximately eight times slower for 32-b computations. Hovwprovements can greatly accelerate many types of applications.
ever, short carries are often not that critical, since they can Ble area and performance of the high-performance carry chains
supported by the FPGA's normal routing structure and will tenalith respect to those of the basic ripple carry chains will be dis-
not to dominate the performance of the overall system. Themissed further in the next section of this paper.

HAUCK et al: HIGH-PERFORMANCE CARRY CHAINS FOR FPGA'S 145

Max Delay

Carry-Length

Fig. 11. A comparison of carry lookahead structures. GlApresents a Brent—Kung style carry lookahead structure withideliels of concatenation boxes.

2500
£ 2000
E 1500
=
S
© 1000
2
z
0 - ;
Ripple Optimized Carry Variable Brent-
Carry Ripple Select Block Kung

Fig. 12. The transistor counts of the basic ripple, optimized ripple, carry select, variable block, and Brent—-Kung carry chains.

TABLE Il
AREAS OFDIFFERENT CARRY CHAIN IMPLEMENTATIONS
Carry Chain Area (1Y) % Increase for Chimaera % Increase for General-
FPGA Purpose FPGA
Basic Ripple Carry 171368 0 0
Optimized Ripple 394953 1.3 0.18
Brent-Kung 1622070 8.5 1.18

model, which may not accurately reflect the true delays. The
simple delay model does not take into account transistor sizes or
routing delays. Therefore, in order to get more accurate compar-
isons, the carry chains were sized using logical effort [7], layouts
were created, and timing numbers were obtained from Spice for
a 0.6um process. Only the most promising carry chains were
chosen for implementation. These include the basic ripple carry,
which can be found in current FPGA's, as well as the new opti-
mized ripple and Brent—Kung carry chains.

Table Il shows the delays of a 32-b carry for the carry chains
that were implemented. Notice that the delay for basic ripple
carry chain is 23.4 ns, and the delay for the optimized ripple
carry chain is 18.7 ns resulting in a speedup of 1.25 times over
Fig. 13. The location of the carry chains (shaded region) within the FPGA.'[he basic ripple carry chain. Furthermore, the delay for the
Brent—Kung carry chain is only 6.1 ns. Thus, the best carry
chain developed here has a delay 3.8 times faster than the basic
ripple carry chain used in industry. Table Il also shows the

The results of the simple delay model described earlier sugglays of the FPGA cell assuming that the cell is programmed
gest that the Brent—Kung carry chain has the best performameecompute a function of three variables and avoid the carry
of any of the carry chains. However, the performance resuttbain [as shown by Mux 5 in Fig. 2(c)]. The delay for the basic
used to make this decision are based only on the simple detgple carry chain in this case is 1.6 ns, while the delay for

X. LAYOUT RESULTS

146 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 8, NO. 2, APRIL 2000

Fig. 14. Two cells from the Chimaera FPGA, including the most complex bit slice of the Brent—Kung adder. The adder logic is the isolated logic in the uppe
right of each cell (four blocks in the right cell, five in the left). Metal 3 routing (not shown) for other purposes occupies the empty space in fhigedddér.for
the entire adder represents approximately 8% of the chip area.

the Brent—Kung carry chain is 2.1 ns. Thus, the Brent—Kurtge portion of Chimaera'’s chip area devoted to routing up to the
implementation does slow down noncarry operations, but or#p% of chip area typical in general-purpose FPGA's.
by a small amount. Table Il shows the area of these carry
chains as measured from the layouts. One item to note is the
size of the Brent—Kung carry chain. Its size is shown as 9.47
times larger than the basic ripple carry chain. This numberThus far, we have explained why high-performance carry
should be viewed purely as an upper bound, since the layatiains should be used in FPGAs. Now we will explain
of the basic ripple carry was optimized much more than thvehere the carry chain is located in the FPGA and how it is
Brent—Kung layout. We believe that further optimization oprogrammed. In our design, the carry chain is row-based and
the Brent—Kung design could reduce its area by 603800 unidirectional as shown in Fig. 13. There is exactly one carry
yielding only a factor of a five-size increase over the basithain per row, and it spans the entire length of that row. The
ripple carry scheme. carry chains in different rows are not interconnected. However,
A more accurate comparison of the size implications of theormal FPGA routing could connect these carry chains if a
improved carry chains is to consider the area impact of includifeyger carry chain is needed.
these carry chains in an actual FPGA. We have conducted sucfihe Brent—Kung carry chain that we designed isidmcarry
experiments with the Chimaera FPGA [4], a special-purposbain wheren is a power of two. The carry chain is placed in
FPGA which has been carefully optimized to reduce the amoworte row of the FPGA, and it interfaces with the FPGA cells
of chip area devoted to routing. As shown in Table IlI, replacinig that row. Each FPGA cell connects to a different part of the
the basic ripple carry structure in the Chimaera FPGA with tlearry chain. Since the Brent—Kung carry chain is not uniform,
Brent—Kung structure results in an area increase of 8.5%. Qhe carry chain logic seen by each FPGA cell will be different.
estimates of the area increase on a general-purpose FPGA, dtigh14 shows two cells of the Chimaera FPGA and the portion
as the Xilinx 4000 [9] or Altera 8000 FPGA's, where the moref the Brent—Kung carry chain contained within them.
complex routing structure consumes a much greater portion ofOne additional feature of the carry chain is that it can be
the chip area, are that the Brent—Kung structure would only ibroken into smaller, independent carry chains at any point by
crease the total chip area by 1.2%. This is based upon increaginggramming the LUT’s. Recall that one LUT producesutl,

Xl. USING THE CARRY CHAIN

HAUCK et al: HIGH-PERFORMANCE CARRY CHAINS FOR FPGA'S

which is the value o€out if Cin is equal to one. Similarly, the
other LUT produceg£’outd, which is the value ofCout if Cin
is equal to zero. In order to break the carry chain, we programys
the LUT'’s so that bottCoutl andCout0 have the same value.

In this caseCout has the same value regardless of the value[G]
of Cin, and the original carry chain has been segmented into
smaller, independent carry chains. [7

(8]

(4]

XIl. CONCLUSIONS

One of the critical performance bottlenecks in most systemsg
is the carry chains contained in many arithmetic and logicall0]
operations. Current FPGA's optimize for these elements by
providing some support specifically for carry computations.11
However, these systems rely on relatively simple ripple carry
structures which provide much slower performance than
current high-performance carry chain designs. With the advent
of reconfigurable computing and the demands of implementing
complex algorithms in FPGA's, the slowdown of carry comp
tations in FPGA's is an even more crucial concern.

In order to speed up the carry structure found in curre
FPGA's, we developed several innovative techniques. A no
cell design is used to reduce the delay through the cell tg
single mux by moving the decision of whether to use the ca
chain off of the critical path. This results in approximately i
factor of 1.25 speedup over current FPGA carry delays.

147

S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The chimaera re-
configurable functional unit,” iIlEEE Symp. FPGA's for Custom Com-
puting Machines1997.

V. G. Oklobdzija and E. R. Barnes, “On implementing addition in VLSI
technology,”J. Parallel Distrib. Comput.vol. 5, no. 6, pp. 716-728,
Dec. 1988.

J. Sklansky, “Conditional sum addition logic|RE Trans. Electron.
Computersvol. EC-9, no. 6, pp. 226-231, June 1960.

Logical Effort: Designing Fast MOS CircuitSutherland, Sproull, and
Associates, Palo Alto, CA, 1990.

N.-S. Woo, “Reuvisiting the cascade circuit in logic cells of lookup table
based FPGAs,” iHEEE Symp. FPGA'’s for Custom Computing Ma-
chines 1995, pp. 90-96.

The Programmable Logic Data Bogkilinx Corp., San Jose, CA, 1996.
S. Xing and W. H. Yu, “FPGA adders: Performance evaluation and op-
timal design,”IEEE Design and Test of Computel. 15, no. 1, pp.
24-29, 1998.

W. H. Yu and S. Xing, “Performance evaluation of FPGA implementa-
tions of high-speed addition algorithms,"®moc. SPIE vol. 2914, 1996.

Scott Hauck (M'95) received the B.S. degree in
computer science from the University of California
at Berkeley in 1990 and the M.S. and Ph.D. degrees
in computer science from the University of Wash-
ington, Seattle, in 1992 and 1995, respectively.
From 1995 to 1999, he was an Assistant Professor
in the Department of Electrical and Computer
Engineering, Northwestern University, Evanston, IL.
He is now an Assistant Professor in the Department
of Electrical Engineering, University of Washington.
His research interests are in field-programmable

High-performance adders are not limited to simple ripplgate arrays (FPGAS), including applications, architectures, and CAD for

h d. in fact. rel d df lati FPGA's and reconfigurable systems. He is an Associate Editor of the IEEE
carry schemes and, In fact, rely on more advanced rormulaliOflansacrions oNVERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS.

to speed up their computation. However, as we demonstratedr. Hauck is active in program committees of several conferences on

in this paper, the demands of FPGA-based carry chains HRSGAS, ipcl_uding serving as Program _Chairforthe ACM/SIGDA Symposium
different than standard adders. especially because of fzﬁn FPGA's in 2000. In 1999, he received an NSF CAREER Award and the
' ! p y EE TRANSACTIONS ONVERY LARGE SCALE INTEGRATION (VLSI) SysTEMS

“inverse propagate” cell state. Thus, we cannot directly taleest Paper Award.
standard high-performance adder carry chains and embed them
into current FPGA architectures.

In this paper, we developed novel high-performance carry
; ; : hew M. Hosler received the B.S. degree in electrical engineering from the
,Cham structures app_roprlate to reconflgurabl? systems. Th versity of Dayton, Dayton, OH, and the M.S. degree in computer engineering
include implementations of carry select, variable block, anggm Northwestern University, Evanston, IL.
carry lookahead (including Brent—Kung) adders. We haveHe was with Motorola’s Corporate Research Labs, Schaumburg, IL, where

been able to produce a carry chain that is upto a factor of %%developed new reconfigurable arrays optimized for digital signal processing.
€ is currently a Field Applications Engineer for Wyle Electronics, Dayton.

faster than current FPGA structures while maintaining all the
flexibility of current systems. This provides a significant per-
formance boost for the implementation of future FPGA-based

systems. Thomas W. Fry received the B.S. degree in com-
puter engineering from Northwestern University,
Evanston, IL. He is currently with the Department
of Electrical Engineering, University of Washington,
Seattle.

He was a Software Engineer for the investment

bank Warburg Dillon Read, Stamford, CT.

REFERENCES

[1] Data Book Altera Corp., San Jose, CA, 1995.

[2] R.P.Brentand H. T. Kung, “A regular layout for parallel addetEEE
Trans. Comput.vol. C-31, Mar. 1982.

[3] R. Hashemian, “Algorithm and design procedure for high speed ca
select adders using FPGA technology,”Rmoc. 37th Midwest Symp.
Circuits and Systemsol. 1, 1994.

