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High-Performance Carry Chains for FPGA’s
Scott Hauck, Member, IEEE, Matthew M. Hosler, and Thomas W. Fry

Abstract—Carry chains are an important consideration for most
computations, including FPGA’s. Current FPGA’s dedicate a por-
tion of their logic to support these demands via a simple ripple
carry scheme. In this paper, we demonstrate how more advanced
carry constructs can be embedded into FPGA’s, providing signif-
icantly higher performance carry computations. We redesign the
standard ripple carry chain to reduce the number of logic levels
in each cell. We also develop entirely new carry structures based
on high-performance adders such as carry select, carry lookahead,
and Brent–Kung. Overall, these optimizations achieve a speedup in
carry performance of 3.8 times over current architectures.

Index Terms—Addition, arithmetic, carry chains, FPGA.

I. INTRODUCTION

A LTHOUGH originally intended as a way to efficiently
handle random logic tasks in standard hardware systems,

FPGA’s have become the driving force behind a new com-
puting paradigm. By mapping algorithms to these FPGA’s,
significant performance benefits can be achieved. However, in
order to achieve these gains, the FPGA resources must be able
to efficiently support the computations required in the target
application.

The key to achieving high-performance hardware implemen-
tations is to optimize the circuit’s critical path. For most data-
path circuits, this critical path goes through the carry chain used
in arithmetic and logic operations. In an arithmetic circuit such
as an adder or subtractor, this chain represents the carries from
bit position to bit position. For logical operations such as parity
or comparison, the chain communicates the cumulative infor-
mation needed to perform these computations. Optimizing such
carry chains is a significant area of VLSI design and is a major
focus of high-performance arithmetic circuit design.

Recently, several papers have focused on creating efficient
implementations of high-performance adders in FPGA’s [3],
[10], [11]. These approaches do not seek to modify the under-
lining architecture of the FPGA, but instead use the existing
ripple carry structure of the FPGA’s for their implementations.
In another work, Woo modified the architecture of the FPGA to
change linear cascading chains into tree structured cascade cir-
cuits [8]. This modification significantly reduced the delay of
cascade circuits. However, the equally important carry chains
were not investigated.

In this paper, we will discuss methods of significantly im-
proving the performance of carry computations in FPGA’s by
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redesigning the FPGA architecture itself. In order to support
datapath computations, most FPGA’s already include special re-
sources specifically optimized for implementing carry computa-
tions. However, because these resources use a relatively simple
ripple carry scheme, carry computations can still be a major
performance bottleneck. We will show that creating new carry
schemes for the FPGA architecture can significantly improve
its performance for all datapath operations with a relatively in-
significant increase in chip area.

II. BASIC RIPPLE CARRY CELL

A basic ripple carry cell, similar to that found in the Altera
8000 series FPGA’s [1], is shown in Fig. 1(a). Mux 1, com-
bined with the two-input lookup tables (2-LUT’s) feeding into
it, creates a three-input lookup table (3-LUT). This element can
produce any Boolean function of its three inputs. Two of its in-
puts ( and ) form the primary inputs to the carry chain. The
operands to the arithmetic or logic function being computed are
sent in on these inputs, with each cell computing one bit posi-
tion’s result. The third input can be either another primary input
( ), or the carry from the neighboring cell, depending on the
programming of mux 2’s control bit. The potential to havere-
place the carry input is provided so that an initial carry input can
be provided to the overall carry chain (useful for incrementers,
combined adder/subtractors, and other functions). Alternatively,
the logic can be used as a standard 3-LUT for functions that do
not need a carry chain. An additional 3-LUT (not shown in the
figure) is contained in each cell, which can be used to compute
the sum for addition, or other functions.

Before we discuss modifications to this adder cell to improve
performance, it is important to understand the role of the
“ out ” and “ out ” signals in the carry chain. out and

out are the outputs of the two 2-LUT’s calculated such that
out is function of and where inis true and out is a

function of and where in is false. In the case of a normal
adder, out and out are given by (1) and (2)

out out AND (1)

out out OR (2)

During carry computations the in input that controls mux 1
chooses which of these two signals will be thein for the next
stage in the carry chain. If in is true, out out , while if

in is false, out out . Thus, out is the output when-
ever in , while out is the output whenever in .
If we consider the possible combinations of valuesout and

out , we can assume there are four possibilities, three of which
correspond to concepts from standard adders (Table I). If both
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Fig. 1. (a) Carry computation element for FPGA’s, (b) a simple 2 : 1 mux
implementation, and (c) a slightly more complex version.

out and out are true, out is true no matter what in is,
which is the same as the “generate” state in a standard adder.
Likewise, when both out and out are false, out is false
regardless of the state ofin, and this combination of out
and out signals is the “kill” state for this carry chain. Ifout
and out are different, the out output will depend on thein
input. When out and out , the out output will
be identical to the in input, which is the normal “propagate”
state for this carry chain. The last state, without and

out , is not found in normal adders. In this state, the
output still depends on the input, but in this case theout output
is the inverse of the in input. We will call this state “inverse
propagate.”

For a normal adder, the inverse propagate state is never en-
countered. Thus, it might be tempting to disallow this state.
However, for other computations this state is essential. For ex-
ample, consider implementing a parity circuit with this carry
chain, where each cell takes the XOR of the two inputs,and

, and the parity of the neighboring cell. If and are both
zero, the out of the cell will be identical to the parity of the
neighboring cell, which is brought in on thein signal. Thus,
the cell is in normal propagate mode. However, if is true
and is false, then the out will be the opposite of in, since

in in. Thus, the inverse propagate state is impor-
tant for implementing circuits like parity, and thus supporting
this state in the carry chain we increase the types of circuits that
can be efficiently implemented. In fact, by allowing an inverse
propagate mode in the carry chain, the chain can be viewed as
simply a series of 3-LUT’s connected together, allowing any
critical path to be implemented efficiently.

One last issue must be considered in this carry chain structure.
In an FPGA, the cells represent resources that can be used to
compute arbitrary functions. However, the location of functions
within this structure is completely up to the user. Thus, a user
may decide to start or end a carry computation at any place in the
array. In order to start a carry chain, we must program the first
cell in the carry chain to ignore thein signal. One easy way to

do this is to program mux 2 in the cell to route inputto mux 1
instead of in. For situations where one wishes to have a carry
input to the first stage of an adder (which is useful for imple-
menting combined adder/subtractors as well as other circuits),
this is the right solution. However, in other cases this may not
be possible. The first stage in many carry computations is only
a two-input function, and forcing the carry chain to wait for the
arrival of an additional, unnecessary input will only needlessly
slow down the circuit’s computation. This is not necessary. In
these circuits, the first stage is only a two-input function. Thus,
either 2-LUT in the cell could compute this value. If we program
both 2-LUT’s with the same function, the output will be forced
to the proper value regardless of the input, and thus either the

in or the signal can be routed to mux 1 without changing the
computation. However, this is only true if mux 1 is implemented
such that if the two inputs to the mux are the same, the output
of the mux is identical to the inputs regardless of the state of
the select line. Fig. 1(b) shows an implementation of a mux that
does not obey this requirement. Since the carry chain is part of
an FPGA, the input to this mux could be connected to some un-
used logic in another row which is generating unknown values.
If that unused logic had multiple transitions which caused the
signal to change quicker than the gate could react, then it is pos-
sible that the select signal to this mux could be stuck midway
between true and false (2.5 V for 5-V CMOS). In this case, it
will not be able to pass a true value from the input to the output,
and thus will not function properly for this application. How-
ever, a mux built like that in Fig. 1(c), with both n-transistor and
p-transistor pass gates, will operate properly for this case. Thus,
we will assume throughout this paper that all muxes in the carry
chain are built with the circuit shown in Fig. 1(c), though any
other mux implementation with the same property could be used
(including tristate driver based muxes which can restore signal
drive and cut series R-C chains).

III. D ELAY MODEL

To initially quantify the performance of the carry chains de-
veloped in this paper, a unit gate delay model will be used:
all simple gates of two or three inputs that are directly imple-
mentable in one logic level in CMOS are considered to have a
delay of one. All other gates must be implemented in such gates
and have the delay of the underlying circuit. Thus, inverters and
two–three-input NAND and NOR gates have a delay of one.
A 2 : 1 mux has a delay of one from the or inputs to
the output, but has a delay of two from the select input to the
output due to the inverter delay [see Fig. 1(c)]. The delay of
the 2-LUT’s, and any routing leading to them, is ignored since
this will be a constant delay for all the carry chains developed
in this paper. This delay model will be used to initially discuss
different carry chain alternatives and their advantages and disad-
vantages. Precise circuit timings are also generated using Spice
on the VLSI layouts of the carry chains, as discussed later in
this paper.

IV. OPTIMIZED RIPPLE CARRY CELL

As we discussed in an earlier section, the ripple carry design
of Fig. 1(a) is capable of implementing most interesting carry
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computations. However, it turns out that this structure is signifi-
cantly slower than it needs to be since there are two muxes on the
carry chain in each cell (mux 1 and 2). Specifically, the delay of
this circuit is one for the first cell plus three for each additional
cell in the carry chain (one delay for mux 2 and two delays for
mux 1), yielding an overall delay of for an -cell carry
chain. Note that we assume the longest path through the carry
chain comes from the 2-LUT’s and not inputsince the delay
through the 2-LUT’s will be larger than the delay through mux
2 in the first cell.

We can reduce the delay of the ripple carry chain by removing
mux 2 from the carry path. As shown in Fig. 2(a), instead of
choosing between in and for the select line to the output
mux, we instead have two separate muxes, 1 and 2, controlled
by in and , respectively. Then, the circuit chooses between
these outputs with mux 3. In this design, there is a delay of one
in the first cell of a carry chain, a delay of three in the last cell
(two for mux 1 and one for mux 3), and a delay of only two for
all intermediate cells. Thus, the delay of this design is only
for an -b ripple carry chain, yielding up to a 50% faster circuit
than the original design.

Unfortunately, the circuit in Fig. 2(a) is not logically equiv-
alent to the original design. The problem is that the design can
no longer use the input in the first cell of a carry chain as an
initial carry input, since is only attached to mux 2, and mux
2 does not lead to the carry path. The solution to this problem is
the circuit shown in Fig. (b). For cells in the middle of a carry
chain, mux 2 is configured to passout , and mux 3 passes

out . Thus, mux 4 receives out and out and provides
a standard ripple carry path. However, when we start a carry
chain with a carry input (provided by input), we configure
mux 2 and mux 3 to both pass the value from mux 1. Since
this means that the two main inputs to mux 4 are identical, the
output of mux 4 ( out) will automatically be the same as the
output of mux 1, ignoring in. Mux 1’s main inputs are driven
by two 2-LUT’s controlled by and , and thus mux 1 forms a
3-LUT with the other 2-LUT’s. When mux 2 and mux 3 pass the
value from mux 1, the circuit is configured as a 3-LUT starting
a carry chain, while when mux 2 and mux 3 choose their other
input ( out and out , respectively) the circuit is configured
to continue the carry chain. This design is therefore function-
ally equivalent to the design in Fig. 1(a). However, carry chains
built from this design have a delay of three in the first cell (one
in mux 1, one in mux 2 or mux 3, and one in mux 4) and two
in all other cells in the carry chain, yielding an overall delay of

for an -b carry chain. Thus, although this design is one
gate delay slower than that of Fig. 2(a), it provides the ability
to have a carry input to the first cell in a carry chain, something
that is important in many computations. Also, for carry compu-
tations that do not need this feature, the first cell in a carry chain
built from Fig. 2(b) can be configured to bypass mux 1, reducing
the overall delay to , which is identical to that of Fig. 2(a). On
the other hand, in order to implement an-b carry chain with
a carry input, the design of Fig. 2(a) requires an additional cell
at the beginning of the chain to bring in this input, resulting in
a delay of , which is slower than that of the
design in Fig. 2(b). Thus, the design of Fig. 2(b) is the preferred
ripple carry design among those presented so far.

Fig. 2. Carry computation elements with faster carry propagation.

TABLE I
COMBINATION OF Cout0 AND Cout1

VALUES AND THE RESULTING CARRY OUTPUT. THE FINAL COLUMN

LISTS THENAME FOR THAT COMBINATION

V. HIGH-PERFORMANCECARRY LOGIC FORFPGA’s

In the previous section, we discussed how to optimize a ripple
carry chain structure for use in FPGA’s. While this provides
some performance gain over the basic ripple carry scheme found
in many current FPGA’s, it is still much slower than what is done
in custom logic. There have been tremendous amounts of work
done on developing alternative carry chain schemes that over-
come the linear delay growth of ripple-carry adders. Although
these techniques have not yet been applied to FPGA’s, in this
paper we will demonstrate how these advanced adder techniques
can be integrated into reconfigurable logic. The basis for all of
the high-performance carry chains developed in this paper will
be the carry cell of Fig. 2(c). This cell is very similar to that of
Fig. 2(b), except that the actual carry chain (mux 4) has been
abstracted into a generic “fast carry logic” unit and mux 5 has
been added. This extra mux is present because although some
of our faster carry chains will have much quicker carry propaga-
tion for long carry chains, they do add significant delay to non-
carry computations. Thus, when the cell is used as just a normal
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3-LUT, using inputs , , and , mux 5 allows us to bypass
the carry chain by selecting the output of mux 1.

The important thing to realize about the logic of Fig. 2(c) is
that any logic that can compute the value

out out out (3)

where is the position of the cell within the carry chain and
can provide the functionality necessary to support the needs of
FPGA computations. Thus, the fast carry logic unit can con-
tain any logic structure implementing this computation. In this
paper, we will look at four different types of carry logic: carry
select, carry lookahead (including Brent–Kung), variable bit,
and ripple carry (discussed previously). Note that because of
the needs and requirements of carry chains for FPGA’s, we will
have to develop new circuits, inspired by the standard adder
structures, but which are more appropriate for FPGA’s. The
main difference is that we no longer have just the generate, prop-
agate, and kill states for an adder—we must also support in-
verse propagate. These four states are encoded on signals
and as shown in Table I. Also, while standard adders are
concerned only with the maximum delay through an entire N-b
adder structure, the delay concerns for FPGA’s are more com-
plicated. Specifically, when an -b carry chain is built into the
architecture of an FPGA, it does not represent an actual compu-
tation, but only the potential for a computation. A carry chain
resource may span the entire height of a column in the FPGA,
but a mapping to the logic may use only a small portion of this
chain, with the carry logic in the mapping starting and ending
at arbitrary points in the column. Thus, we are concerned with
not just the carry delay from the first to the last position in a
carry chain, but must consider the delay for a carry computation
beginning and ending at any point within this column. For ex-
ample, even though the FPGA architecture may provide support
for carry chains of up to 32 b, it must also efficiently support 8-b
carry computations placed at any point within this carry chain
resource.

VI. CARRY SELECT

The problem with a ripple carry structure is that the compu-
tation of the out for bit position cannot begin until after the
computation has been completed in bit positions . A
carry select structure overcomes this limitation. The main obser-
vation is that for any bit position, the only information it receives
from the previous bit positions is itsin signal, which can be
either true or false. In a carry select adder, the carry chain is
broken at a specific column, and two separate additions occur:
one assuming the in signal is true, the other assuming it is
false. These computations can take place before the previous
columns complete their operation, since they do not depend on
the actual value of the in signal. This in signal is instead used
to determine which adder’s outputs should be used. If thein
signal is true, the output of the following stages comes from the
adder that assumed that thein would be true. Likewise, a false

in chooses the other adder’s output. This splitting of the carry
chain can be done multiple times, breaking the computation
into several pairs of short adders with output muxes choosing
which adder’s output to select. The length of the adders and

Fig. 3. Carry select structure.

the breakpoints are carefully chosen such that the small adders
finish computation just as their in signals become available.
Short adders handle the low-order bits, and the adder length is
increased further along the carry chain, since later computations
have more time until their in signal is available.

A carry select carry chain structure for use in FPGA’s is
shown in Fig. 3. The carry computation for the first two cells is
performed with the simple ripple-carry structure implemented
by mux 1. For cells 2 and 3, we use two ripple carry adders,
with one adder (implemented by mux 2) assuming thein is
true and the other (mux 3) assuming thein is false. Then,
muxes 4 and 5 pick between these two adders’ outputs based
on the actual in coming from mux 1. Similarly, cells 4–6 have
two ripple carry adders (mux 6 and 7 for ain of one, mux 8
and 9 for a in of zero), with output muxes (muxes 10–12)
deciding between the two based upon the actualin (from mux
5). Subsequent stages will continue to grow in length by one,
with cells 7–10 in one block, cells 11–15 in another, and so
on. Timing values showing the delay of the carry select carry
chain relative to other carry chains will be presented later in
this paper.

VII. V ARIABLE BLOCK

Like the carry select carry chain, a variable block structure
[5] consists of blocks of ripple carry elements (Fig. 4). However,
instead of precomputing theout value for each possiblein
value, it instead provides a way for the carry signal to skip over
intermediate cells where appropriate. Contiguous blocks of the
computation are grouped together to form a unit with a standard
ripple carry chain. As part of this block, logic is included to
determine if all of the cells are in their propagate state. If so, the

out for this block is immediately set to the value of the block’s
in, allowing the carry chain to bypass this block’s normal carry

chain on its way to later blocks. Thein still ripples through
the block itself, since the intermediate carry values must also
be computed. If any of the cells in the carry chain are not in
propagate mode, theout output is generated normally by the
ripple carry chain. While this carry chain does start at the block’s

in signal and leads to the block’sout, this long path is a false
path. That is, since there is some cell in the block that is not in
propagate mode, it must be in generate or kill mode, and, thus,
the block’s out output does not depend on the block’sin
input.

A major difficulty in developing a version of the variable
block carry chain for inclusion in an FPGA’s architecture is the
need to support both the propagate and inverse propagate states
of the cells. To do this, we compute two values. First, we check
to see if all the cells are in some form of propagate mode (either
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Fig. 4. The variable block carry structure. Mux 1 performs an initial two-stage
ripple carry. Muxes 2–5 form a 2-b variable block. Mux 5 decides whether the
C in signal should be sent directly toCout, while mux 4 decides whether to
invert theC in signal or not.

Fig. 5. The three-level 16-b Brent–Kung structure. At right are the details of
the concatenation block. Note that once theC in has been computed for a given
stage, a mux is used in place of a concatenation block.

normal propagate or inverse propagate) by ANDing together the
XOR of each stage’s and signals. If so, we know that
the out function will be equal to either in or in. To de-
cide whether to invert the signal or not, we must determine how
many cells are in inverse propagate mode. If the number is even
(including zero) the output is not inverted, while if the number
is odd the output is inverted. The inversion check can be done
by looking for inverse propagate mode in each cell and XORing
the results. To check for inverse propagate, we only look at the

signal from each cell. If this signal is true, the cell is in either
generate or inverse propagate mode, and if it is in generate mode
the inversion signal will be ignored anyway (we only consider
inverting the in signal if all cells are in some form of propa-
gate mode). Note that for both of these tests we can use a tree of
gates to compute the result. Also, since we ignore the inversion
signal when we are not bypassing the carry chain, we can use

as the inverse of for the inversion signal’s computation,
which avoids the added inverter in the XOR gate.

The organization of the blocks in the variable block carry
structure bears some similarity to the carry select structure. The
early stages of the structure grow in length, with short blocks
for the low-order bits, building in length further in the chain in
order to equalize the arrival time of the carry from the block with
that of the previous block. However, unlike thecarry select
structure, the variable block adder must also worry about the
delay from the in input through the block’s ripple chain. Thus,
after the carry chain passes the midpoint of the logic, the blocks
begin decreasing in length. This balances the path delays in the
system and improves performance. The division of the overall

structure into blocks depends on the details of the logic structure
and the length of the entire computation. We use a block length
(from low-order to high-order cells) of 2, 2, 4, 5, 7, 5, 4, 2, and
1 for a normal 32-b structure. The first and last block in each
adder is a simple ripple carry chain, while all other blocks use
the variable block structure. Delay values of the variable block
carry chain relative to other carry chains will be presented later
in this paper.

VIII. C ARRY LOOKAHEAD AND BRENT–KUNG

There are two inputs to the fast carry logic in Fig. 2(c):
and . The value of is programmed by the LUT’s so
that it contains the value thatout should have if in is true.
Similarly, the value of is programmed by the LUT’s so that
it contains the value that out should have if in is false.
We can combine the information from two stages together to
determine what the out of one stage will be given thein of
the previous stage. For example

(4)

(5)

where is the value of out assuming that in .
This allows us to halve the length of the carry chain, since
once these new values are computed a single mux can compute

out given in . In fact, similar rules can be used recur-
sively, halving the length of the carry chain with each applica-
tion. Specifically

(6)

(7)

assuming . The digital logic computing both of these
functions will be called a concatenation box. The Brent–Kung
carry chain [2] consists of a hierarchy of these concatenation
boxes, where each level in the hierarchy halves the length of the
carry chain, until we have computed and for each
cell . A single level of muxes at the bottom of the Brent–Kung
carry chain can then use these values to compute theout for
each cell given a in. The Brent–Kung carry chain is shown in
Fig. 5.

The Brent–Kung adder is a specific case of the more general
carry lookahead adder [6]. In a carry lookahead adder, a single
level of concatenation combines together the carry information
from multiple sources. A typical carry lookahead adder will
combine four cells together in one level (computing
and ), combine four of these new values together in the
next level, and so on.

However, while a combining factor of four is considered op-
timal for a standard adder, in FPGA’s combining more than two
values in a level is not advantageous. The problem is that al-
though the logic to concatenate values together grows lin-
early for a normal adder, it grows exponentially for a reconfig-
urable carry chain. For example, to concatenate three values to-
gether for a normal adder we have

(8)
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Fig. 6. Concatenation boxes. (a) A four-cell concatenation box and (b) its
equivalent made up of only two-cell concatenation boxes.

Fig. 7. A two-level 16-b carry lookahead structure.

Fig. 8. The delays of a basic ripple carry chain which start at cellX and end
at cellY using the theoretical delay model.

where and are the propagate and generate values of the
current cell. However, to concatenate three values together for a
reconfigurable carry chain together, we have

(9)

(10)

Fig. 9. The delays of a Brent–Kung carry chain which start cellX and end at
cell Y using the theoretical delay model.

An alternative way to see why combining four cells together
in one level is bad for FPGA’s is to consider how this com-
bining would be implemented. Fig. 6(a) shows a concatenation
box that takes its input from four different cells. Fig. 6(b) then
shows how a four-cell concatenation box can be built using only
three two-cell concatenation boxes. This second method of cre-
ating a four-cell concatenation box is really the equivalent of
a two-level carry lookahead adder using two-cell concatenation
boxes. Using the simple delay model discussed earlier, the delay
for the four-cell concatenation box in Fig. 6(a) is six units since
the signal must travel through three muxes. The delay for the
four-cell concatenation box equivalent found in Fig. 6(b), how-
ever, is only four units since the signal must travel through only
two muxes. Thus, a four-cell concatenation box is never used
since it can always be implemented with a smaller delay using
two-cell concatenation boxes. Therefore, the Brent–Kung struc-
ture is the best approach.

Another option in carry lookahead adders is the possibility
of using fewer levels of concatenation than a Brent–Kung
structure. Specifically, a Brent–Kung structure for a 32-b adder
would require four levels of concatenation. While this allows

in to quickly reach out , there is a significant amount of
delay in the logic that computes the individual and
values. We can instead use fewer levels than the complete
hierarchy of the Brent–Kung adder and simply ripple together
the top-level carry computations of smaller carry lookahead
adders. Specifically, if we talk about an-level carry looka-
head adder, that means that we only applylevels of two-input
concatenation units. A two-level 16-b carry lookahead carry
chain is shown in Fig. 7.

IX. CARRY CHAIN PERFORMANCE

In order to compare the carry chains developed in this paper,
we computed the performance of the carry chains of different
lengths. The delay is computed from the output of the 2-LUT’s
in one cell to the final output () in another using the simple
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Fig. 10. A comparison of the various carry chain structures. The delays represent the maximum delay for anN -b adder placed anywhere within a 32-b carry
structure.

delay model discussed earlier in the delay model section. This
simple model calculates a delay based on the number of gates
that must be traversed by a signal. Precise circuit timings are
discussed later in this paper. Figs. 8 and 9 show the delays of
a carry chain starting at cell and ending at cell for the
basic ripple and Brent–Kung carry chains, respectively. These
figures show how the delay patterns are different for each carry
chain. One important issue to consider is what delay we should
use to compare carry chain performance. While the carry chain
structure is dependent on the length of the carry computation
supported by the FPGA (such as the variable block segmenta-
tion), the user may decide to use any contiguous subsequence
of the carry chain’s length for their mapping. To deal with this,
we assume that the FPGA’s are built to support up to a 32-b
carry chain and record the maximum carry chain delay for any
length carry computation within this structure. That is, since
we do not know where the user will begin their carry computa-
tion within the FPGA architecture, we measure the worst case
delay for a length carry computation starting at any point in
the FPGA. Note that this delay is the critical path within the-b
computation, which means carries starting and ending anywhere
within this computation are considered.

Fig. 10 shows the maximum carry delays for each of the carry
structures discussed in this paper, as well as the basic ripple
carry chain found in current FPGA’s. These delays are based
on the simple delay model that was discussed earlier. More pre-
cise delay timings from VLSI layouts of the carry chains will be
discussed later. As can be seen, the best carry chain structure for
short distances is different from the best chain for longer compu-
tations, with the basic ripple carry structure providing the best
delay for length 2 carry computations, while the Brent–Kung
structure provides the best delay for computations of four bits or
more. In fact, the ripple carry structure is more than twice as fast
as the Brent–Kung structure for 2-b carry computations, yet is
approximately eight times slower for 32-b computations. How-
ever, short carries are often not that critical, since they can be
supported by the FPGA’s normal routing structure and will tend
not to dominate the performance of the overall system. There-

TABLE II
A COMPARISON OF THEDELAYS OF DIFFERENTSTRUCTURES FOR(a) A 32-B
CARRY AND (b) A NONCARRY COMPUTATION OF A FUNCTION, f(X; Y; Z)

fore, we believe that the Brent–Kung structure is the preferred
structure for FPGA carry computations and that it is capable
of providing significant performance improvement over current
FPGA carry chains.

In this paper, we also considered other carry lookahead adder
designs which do not use as many levels of concatenation boxes
as a full Brent–Kung adder. However, as can be see in Fig. 11,
the other carry structures provide only modest improvements
over the Brent–Kung structure for short distances and perform
significantly worse than the Brent–Kung structure for longer
carry chains.

Another consideration when choosing a carry chain structure
is the size of the circuit. Fig. 12 shows the number of transistors
that are used in the design of the basic ripple, optimized ripple,
carry select, variable block, and Brent–Kung carry chains. The
transistor counts here are based on a CMOS implementation of
the inverting tristate mux. One concern with the Brent–Kung
structure is that it requires four times more transistors to imple-
ment than the basic ripple carry. However, in typical FPGA’s
the carry structure occupies only a tiny fraction of the chip area,
since the programming bits, LUT’s, and programmable routing
structures dominate the chip area. Therefore, the increase in chip
area required by the higher performance carry chains developed
in this paper is relatively insignificant, yet the performance im-
provements can greatly accelerate many types of applications.
The area and performance of the high-performance carry chains
with respect to those of the basic ripple carry chains will be dis-
cussed further in the next section of this paper.
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Fig. 11. A comparison of carry lookahead structures. CLA(i) represents a Brent–Kung style carry lookahead structure with onlyi levels of concatenation boxes.

Fig. 12. The transistor counts of the basic ripple, optimized ripple, carry select, variable block, and Brent–Kung carry chains.

TABLE III
AREAS OFDIFFERENTCARRY CHAIN IMPLEMENTATIONS

Fig. 13. The location of the carry chains (shaded region) within the FPGA.

X. LAYOUT RESULTS

The results of the simple delay model described earlier sug-
gest that the Brent–Kung carry chain has the best performance
of any of the carry chains. However, the performance results
used to make this decision are based only on the simple delay

model, which may not accurately reflect the true delays. The
simple delay model does not take into account transistor sizes or
routing delays. Therefore, in order to get more accurate compar-
isons, the carry chains were sized using logical effort [7], layouts
were created, and timing numbers were obtained from Spice for
a 0.6- m process. Only the most promising carry chains were
chosen for implementation. These include the basic ripple carry,
which can be found in current FPGA’s, as well as the new opti-
mized ripple and Brent–Kung carry chains.

Table II shows the delays of a 32-b carry for the carry chains
that were implemented. Notice that the delay for basic ripple
carry chain is 23.4 ns, and the delay for the optimized ripple
carry chain is 18.7 ns resulting in a speedup of 1.25 times over
the basic ripple carry chain. Furthermore, the delay for the
Brent–Kung carry chain is only 6.1 ns. Thus, the best carry
chain developed here has a delay 3.8 times faster than the basic
ripple carry chain used in industry. Table II also shows the
delays of the FPGA cell assuming that the cell is programmed
to compute a function of three variables and avoid the carry
chain [as shown by Mux 5 in Fig. 2(c)]. The delay for the basic
ripple carry chain in this case is 1.6 ns, while the delay for
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Fig. 14. Two cells from the Chimaera FPGA, including the most complex bit slice of the Brent–Kung adder. The adder logic is the isolated logic in the upper
right of each cell (four blocks in the right cell, five in the left). Metal 3 routing (not shown) for other purposes occupies the empty space in the adder.The logic for
the entire adder represents approximately 8% of the chip area.

the Brent–Kung carry chain is 2.1 ns. Thus, the Brent–Kung
implementation does slow down noncarry operations, but only
by a small amount. Table III shows the area of these carry
chains as measured from the layouts. One item to note is the
size of the Brent–Kung carry chain. Its size is shown as 9.47
times larger than the basic ripple carry chain. This number
should be viewed purely as an upper bound, since the layout
of the basic ripple carry was optimized much more than the
Brent–Kung layout. We believe that further optimization of
the Brent–Kung design could reduce its area by 600 000,
yielding only a factor of a five-size increase over the basic
ripple carry scheme.

A more accurate comparison of the size implications of the
improved carry chains is to consider the area impact of including
these carry chains in an actual FPGA. We have conducted such
experiments with the Chimaera FPGA [4], a special-purpose
FPGA which has been carefully optimized to reduce the amount
of chip area devoted to routing. As shown in Table III, replacing
the basic ripple carry structure in the Chimaera FPGA with the
Brent–Kung structure results in an area increase of 8.5%. Our
estimates of the area increase on a general-purpose FPGA, such
as the Xilinx 4000 [9] or Altera 8000 FPGA’s, where the more
complex routing structure consumes a much greater portion of
the chip area, are that the Brent–Kung structure would only in-
crease the total chip area by 1.2%. This is based upon increasing

the portion of Chimaera’s chip area devoted to routing up to the
90% of chip area typical in general-purpose FPGA’s.

XI. USING THE CARRY CHAIN

Thus far, we have explained why high-performance carry
chains should be used in FPGA’s. Now we will explain
where the carry chain is located in the FPGA and how it is
programmed. In our design, the carry chain is row-based and
unidirectional as shown in Fig. 13. There is exactly one carry
chain per row, and it spans the entire length of that row. The
carry chains in different rows are not interconnected. However,
normal FPGA routing could connect these carry chains if a
larger carry chain is needed.

The Brent–Kung carry chain that we designed is an-b carry
chain where is a power of two. The carry chain is placed in
one row of the FPGA, and it interfaces with the FPGA cells
in that row. Each FPGA cell connects to a different part of the
carry chain. Since the Brent–Kung carry chain is not uniform,
the carry chain logic seen by each FPGA cell will be different.
Fig. 14 shows two cells of the Chimaera FPGA and the portion
of the Brent–Kung carry chain contained within them.

One additional feature of the carry chain is that it can be
broken into smaller, independent carry chains at any point by
programming the LUT’s. Recall that one LUT producesout ,
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which is the value of out if in is equal to one. Similarly, the
other LUT produces out , which is the value of out if in
is equal to zero. In order to break the carry chain, we program
the LUT’s so that both out and out have the same value.
In this case, out has the same value regardless of the value
of in, and the original carry chain has been segmented into
smaller, independent carry chains.

XII. CONCLUSIONS

One of the critical performance bottlenecks in most systems
is the carry chains contained in many arithmetic and logical
operations. Current FPGA’s optimize for these elements by
providing some support specifically for carry computations.
However, these systems rely on relatively simple ripple carry
structures which provide much slower performance than
current high-performance carry chain designs. With the advent
of reconfigurable computing and the demands of implementing
complex algorithms in FPGA’s, the slowdown of carry compu-
tations in FPGA’s is an even more crucial concern.

In order to speed up the carry structure found in current
FPGA’s, we developed several innovative techniques. A novel
cell design is used to reduce the delay through the cell to a
single mux by moving the decision of whether to use the carry
chain off of the critical path. This results in approximately a
factor of 1.25 speedup over current FPGA carry delays.

High-performance adders are not limited to simple ripple
carry schemes and, in fact, rely on more advanced formulations
to speed up their computation. However, as we demonstrated
in this paper, the demands of FPGA-based carry chains are
different than standard adders, especially because of the
“inverse propagate” cell state. Thus, we cannot directly take
standard high-performance adder carry chains and embed them
into current FPGA architectures.

In this paper, we developed novel high-performance carry
chain structures appropriate to reconfigurable systems. These
include implementations of carry select, variable block, and
carry lookahead (including Brent–Kung) adders. We have
been able to produce a carry chain that is up to a factor of 3.8
faster than current FPGA structures while maintaining all the
flexibility of current systems. This provides a significant per-
formance boost for the implementation of future FPGA-based
systems.
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