
High-Level Bit-Serial Datapath Synthesis for Multi-FPGA Systems
�

Tsuyoshi Isshiki and Wayne Wei-Ming Dai

Applied Sciences Building,

Computer Engineering

University of California

Santa Cruz, CA 95064, USA

isshiki@cse.ucsc.edu, dai@cse.ucsc.edu

1 Introduction

Field-programmable hardware exhibits a new trend to-
wards computation-intensive applications. The basic
idea is to completely customize the hardware architec-
ture for the very given application in order to alloca-
tion the logic resources e�ciently and e�ectively, im-
proving the performance several orders of magnitude
greater than general-purpose processor implementation
[1][3][5][6]. And at the same time, it still covers a wide
variety of applications for their recon�gurability.
Of the challenges of devel-

oping this �eld-programmable hardware, the software
support for programming the hardware has long been
recognized as one of the most crucial �eld of study.

1. The programming of the �eld-programmable hard-
ware should be easy enough for the application de-
velopers to handle. This requires the support for
high-level design capture without the need for dig-
ital system design skills.

2. Together with the easy programming environment,
the compiler has to be sophisticated enough to pro-
duce area-e�cient, high-speed datapath circuits.

The development of High-Level Synthesis in ASIC-
DSP community [9] cannot simply be applied to the
datapath designs on FPGA. Since the routing resource
and logic resource are physically �xed, it is often hard
to control or even predict the outcome of the layout syn-
thesis on FPGA. If the routing resource is saturated in
a certain location, this may lead to underutilization of
the logic resource, in which most case is more or less
unavoidable. Or when the design has to be partition
across multiple FPGA chips, limitation of the number of
IO pins can lead to underutilization of the logic resource
as well. Therefore, the amount of hardware needed to
implement a certain circuit can be hard to predict. De-
lay prediction can also be very di�cult especially when

�This work is supported in part by ARPA under ONR Grant

N00014-93-1-1334.

pass-transistors are used as interconnects of the routing
wires. Unable to predict these important low-level in-
formation makes the tradeo� decisions in the high-level
synthesis less e�ective. Because of these reasons, some
engineers still prefer manually handling the circuit de-
signs and layout, or at least a part of them [2][3]. We
believe that these problems come from the large grow-
ing gap between the logic synthesis techniques and the
logic implementation technology. Although logic im-
plementation technology have diverged into full-custom,
standard cells, gate arrays and FPGA implementations,
logic synthesis techniques have not been evolving ac-
cordingly. Routing area occupies signi�cant portion of
the chip area in VLSI designs in general, and silicon
resource is thus underutilized. The situation becomes
worse as the logic implementation becomes more robust
from standard cells towards FPGAs. Layout synthesis
studies have long been subjected to this routing-hungry
logic circuits. Our approach towards this problem is
to narrow the gap of logic synthesis and logic imple-
mentation, by designing logic circuits �nely tuned for
the speci�c logic implementation, in which our case is
the FPGA. In this paper, we demonstrate that by us-
ing bit-serial circuits, we are no longer limited by the
available routing resource or the IO resource of the
FPGA. And this opens up a totally new opportunity
for performance-driven partitioning and placement al-
gorithms for FPGA layout, where conventionally we
were subjected to maximum routable placement and
minimum-cut partition. We then have more control of
the outcome of layout synthesis, being able to predict
the performance and the required amount of hardware,
and thus making wiser trade o� decisions on higher level
of abstraction. The �rst part of this paper describes this
bit-serial circuit designs and demonstrates the e�ective-
ness of the bit-serial architecture on FPGA.

The second part of the paper deals with the actual
programming environment developed upon C language
for easy design veri�cation and completely automated
circuit synthesis using the bit-serial datapath modules

1

D 0
D

Sh

Sl

D D
D D
D

D

X
Y

T

D
D

Sh’
Sl’

T’
X’
Y’

T
X
Y

T’

Zl
Zh

D

b a

s
(a) Bit−serial adder

>> >> >> >> >> >>

0

DT

bit−serial adder & shifter

(c) Bit−serial multiplier cell(b) Bit−serial multipler

Figure 1: Bit-serial multiplier module cells

library.

2 Bit-Serial Datapath Circuit

Designs on FPGA

2.1 Bit-Serial Arithmetic Operator De-

signs

Bit-serial arithmetic operators have a very simple and
area e�cient structure [7][8]. They operate at each bit,
either in least-signi�cant-bit-�rst or most-signi�cant-
bit-�rst order, and generated carry is fed back to itself.
Fig.1 shows the design of bit-serial adder and 2's com-
plement multiplier. Bit-serial multiplier can produce a
2N -bit double precision product every N clock cycles for
N -bit inputs. Bit-serial double precision data are rep-
resented by two wires and can easily be rounded down
to single precision by various rounding functions. Con-
trol logic which controls the feedback of the carry bits is
basically a chain of shift registers. Each bit-serial data
accompanies a tail bit whose value is 1 when the data
bit is the tail of a data word, and 0 otherwise. Each
bit-serial operator is responsible for generating the tail
bit of the output data as well as the output data it-
self. Bit-serial operators can be connected in a systolic
array fashion to implement a very �ne grain pipeline
network. This network of bit-serial operator cells can
easily be partitioned across multiple FPGA chips be-
cause of their sparce interconnections, and still main-
tain the high throughput by simply inserting pipeline
latches along the chip-to-chip connections.

Table 1 shows some �gures of other bit-serial opera-
tors. We should note here that the logic depth of the
bit-serial circuits is basically independent of the word
length (1 to 2 LUTs) which leads to a very high fre-
quency operation and also accurate performance pre-
diction.

Table 1: Statistics of bit-serial datapath modules. Word
length = N

Modules Area Logic depth

Multiplier
(1-input 1-constant) N � 4N CLBs 1 LUT
(2-inputs) type I 5N CLBs 2 LUTs
(2-inputs) type II 5:5N CLBs 1 LUT

Adder

(single precision) 1 CLB 1 LUT
(double precision) 3 CLBs 1 LUT

Rounder

(truncate) 1 CLB 1 LUT
(round-to-nearest-even) 4 CLBs 1 LUT

Absolute operator 2 + N/2 CLBs 1 LUT

Max-min selector
(least-signi�cant-bit-�rst) 1 + N/2 CLBs 1 LUT
(most-signi�cant-bit-�rst) 4 CLBs 1 LUT

2.2 Comparison of Bit-Serial Modules

Against Bit-Parallel Modules

Let us now discuss how these bit-serial circuits compare
with bit-parallel circuits in terms of area and perfor-
mance under the Xilinx FPGA architecture. Compari-
son is done on three parameters: T = time, A = area,
and A �T = area � time. T refers to the data sampling
period or the inverse of the throughput (ns). Area is
measured by the number of logic blocks (CLBs). A � T

describes the e�ciency of the circuits. Following delay
parameters are used to estimate the performance:

TLUT : Combinational delay (4.5 ns)
TFF : Flip-
op delay (clock to output) (3.0 ns)
Tcarry : Bypass carry logic delay (0.75 ns)
Tsum : Carry-chain overhead delay (10.0 ns)

(Operands to outputs)

Actual numbers are given according to the parameters
of Xilinx XC4000-5 series FPGA chip [10].

2.2.1 Adders

� Bit-parallel ripple-carry adder using bypass carry
generator:

T = N � Tcarry + Tsum + TFF
A = d

N
2
e+ 1

� Bit-parallel ripple-carry adder without bypass
carry generator:

T = N � TLUT + TFF
A = N

� Bit-serial adder:

T = (TLUT + TFF) �N
A = 1:5

2

Table 2: Comparison of ripple-carry adder and bit-serial
adder on thoughput period and area. Data word length
N is assumed to be 16 bits.

Type T (time) A (area) A � T

Ripple-carry adder 25.0 ns 9 CLBs 225
(with carry logic)

Ripple-carry adder 75.0 ns 16 CLBs 1200

(without carry logic)

Bit-serial adder 120.0 ns 1.5 CLBs 180

P0
P1P2P3

0

y0y1y2y3

X
Y

register (product)

P0

P1P2

X
Y

register (product)

Booth
Recoder

Booth
Recoder

Booth
Recoder

3 3 3

(a) Ripple−carry adder based
parallel multipler.

(b) Ripple−carry adder based Booth’s
parallel multipler.

Figure 2: Parallel multipliers. In order to increase the
thoughput, we can insert pipeline latches along the nets
crossing the dotted line.

Table 2 shows the actual numbers based on the above
parameter values. For N = 16, we can see that bit-
serial adder is 1.25 times more e�cient than bit-parallel
ripple-carry adder with bypass carry generators, and
6.67 times more e�cient than ripple-carry adder with-
out the bypass carry generator. These gaps grow larger
as N increases.

2.2.2 Multipliers

Here, we will compare three types of bit-parallel mul-
tiplier against two types of our bit-serial multiplier.
Fig.2(a) shows a conventional parallel multiplier com-
posed of ripple-carry adders, and Fig.2(b) shows the
Booth's parallel multiplier. Although carry-save adders
are more popular than ripple-carry adders for paral-
lel multipliers in VLSI implemetation, parallel multi-
pliers using ripple-carry adders are same in both area
and performance on FPGAs utilizing fast carry logic.
These parallel multipliers are limited in their perfor-
mance since the critical paths include long paths which
do not go through the bypass carry generators. In order
to increase the throughput, we can divide these paths
by inserting pipeline latches. One drawback of this ap-
proach is that the overhead circuit of pipeline retiming
is very large.

Fig.3 shows another design style where the area is

(
XY

>>1

Z

cntrl

cin

Figure 3: Sequential shift & add multiplier.

signi�cantly reduced at the cost of performance. This
shift & add multiplier can perform N -bit 2's comple-
ment multiplication every N cycles.

� Parallel multiplier using bypass carry generator:

T = (2N � 2) � Tcarry + (N � 1)Tsum
+ TLUT + TFF

Tpipe = N � Tcarry + Tsum + TFF
A = (2N � 1) � dN

2
e+ N � 1

Apipe = A+ d
N
4
(3N � 5)e

� Booth's parallel multiplier using bypass carry gen-
erator:

T = (2N � 1) � Tcarry + d
N
2
e � Tsum

+ 3TLUT + TFF
Tpipe = (N + 1) � Tcarry + Tsum + TFF
A = d

N
2
e � (d3N

2
e+ 5)

Apipe = A+ d(dN
2
e � 1)(dN

2
e +N)=2e

� Shift & add multiplier using bypass carry genera-
tor:

T = N (N � Tcarry + Tsum + TFF)
A = 3dN

2
e +N + 1

� Bit-serial multiplier using bit-serial adders and
shifters (type I and type II):

TI = N (2TLUT + TFF)
AI = 5N
TII = N (TLUT + TFF)
AII = 5:5N

Table 3 shows the actual numbers for the various
types of multipliers discussed above. As we can see,
bit-serial multipliers are in fact faster than many of the
bit-parallel multipliers. Pipelined parallel multipliers
which can outperform the bit-serial multiplier (II) by a
factor of 5 are unlikely to be a design option in the ac-
tual design because of their large circuits requiring 300
to 400 CLBs. We should add that while shift & add

3

Table 3: Comparison of parallel multipliers, shift & add
multipliers and bit-serial multipliers on thoughput pe-
riod and area. Data word length N is assumed to be 16
bits.

Type T (time) A (area) A � T

(with carry logic)

Parallel 180.0 ns 263 CLBs 47340
Parallel (pipe) 25.0 ns 435 CLBs 10875
Booth's parallel 119.75 ns 232 CLBs 27782
Booth's parallel (pipe) 25.75 ns 316 CLBs 8137
Shift & add 400.0 ns 41 CLBs 16400

(without carry logic)
Parallel 210.0 ns 368 CLBs 77280
Parallel (pipe) 75.0 ns 540 CLBs 40500
Booth's parallel 187.5 ns 288 CLBs 54000
Booth's parallel (pipe) 79.5 ns 372 CLBs 29574
Shift & add 1200.0 ns 49 CLBs 58800

Bit-serial (I) 192.0 ns 80 CLBs 15360
Bit-serial (II) 120.0 ns 88 CLBs 10560

multiplier is smaller than our bit-serial multipliers, its
operations are bit-serial in nature and therefore can be
changed into bit-serial multiplier simply by modifying
the input and output registers into shift registers.
These observations show that bit-serial operators are

more e�cient in terms of area � time measure for 16-
bit word data. Area-time complexity of bit-parallel
adders and multipliers are O(N2) and O(N3), respec-
tively, whereas bit-serial adder and multipliers are O(N)
and O(N2), respectively, which means that as the word
size grows, bit-serial operators become more and more
e�cient compared to bit-parallel operators. It is im-
portant to note that these observations are based upon
the existing FPGA architecture utilizing fast carry logic
which is biased toward bit-parallel operations. Bit-serial
operators require large number of storage elements, and
large portion of the logic resource is used only for latch-
ing data. If we were to strip away the fast carry logic
and put more
ip-
ops inside the logic blocks instead,
this would further favor the bit-serial operators, requir-
ing even fewer number of logic blocks.

2.3 Impact on the Circuit Layout on

FPGA Architecture

The advantage of bit-serial circuits on the physical lay-
out on FPGA architecture is just as appealing. The
unique features of the FPGA architectures (as for our
interest, Xilinx FPGAs in particular) makes the layout
problem very di�erent from ASIC designs:

� Limited routing resource

� Limited IO resources

� Large routing delays

Table 4: Layout result of 5� 5 2D FIR bit-serial �lter.
There are 25 multipliers and 25 adders. Word length is 8
bits (external) and 16 bits (internal). Circuit includes 5
parallel-to-serial converters and 1 serial-to-parallel con-
verters for communicating with the outside. Delay esti-
mation assumes XC3042-100 parts.

of Logic # of Critical path delay
CLBs utili- IOBs Pad to Clock Clock

zation setup to pad to setup

1 137 95.1% 44 17.0ns 21.2ns 38.8ns
2 119 82.6% 10 17.0ns 19.0ns 26.4ns

3 123 85.4% 7 17.0ns 11.0ns 24.8ns
4 136 94.4% 22 17.0ns 20.4ns 24.2ns
5 113 78.5% 7 17.0ns 11.0ns 26.5ns
6 114 79.2% 22 17.0ns 19.0ns 23.0ns

Under these circumstances, bit-serial circuits are far
more suited for mapping on FPGAs compared to bit-
parallel circuits.

1. Partition:

(a) IO pin limitation is a major problem in bit-
parallel datapath circuits. Also the large size
of the module cluster can leave a lot of unused
spaces and make the logic resources underuti-
lized.

(b) Bit-serial datapath modules are easy to par-
tition since cell-to-cell connections are sparse
and would not lead to IO pin limitation prob-
lem. Chip-to-chip communication penalty
can be totally eliminated by simply adding
pipeline latches on the partitioned inter-cell
connections. Logic resources can be utilized
to their maximum limits for the small size of
the bit-serial operator cells.

2. Routing:

(a) Wiring distance can be considerably long for
some large fanout nets. Routability of such
modules are hard to predict, and their routing
delays are also unpredictable.

(b) Bit-serial modules consisting of systolic array
cells only has local connections. Since the dis-
tance of those wires are all short, the prop-
agation delays of those wires can be highly
predictable. Also because of the local con-
nections, routing wires tend to be evenly dis-
tributed throughout the chip, naturally avoid-
ing routing congestions.

To support the above argument, we have provided
with some examples to demonstrate the high logic re-
source utilization of the bit-serial datapath modules

4

Table 5: Layout result of 8-point Inverse DCT bit-
serial circuit. There are 20 multipliers and 28 adders.
Word length is 16 bits (external) and 32 bits (inter-
nal). Circuit includes 8 parallel-to-serial converters and
8 serial-to-parallel converters. Delays estimation as-
sumes XC3042-100 parts.

of Logic # of Critical path delay
CLBs utili- IOBs Pad to Clock Clock

zation setup to pad to setup

1 133 92.4% 39 17.0ns 12.4ns 37.5ns
2 138 95.8% 16 17.0ns 14.2ns 23.7ns

3 143 99.3% 36 17.0ns 24.6ns 26.6ns
4 130 90.3% 30 17.0ns 13.1ns 24.0ns
5 143 99.3% 37 17.0ns 13.1ns 26.4ns
6 121 84.0% 17 17.0ns 12.4ns 22.8ns
7 111 77.1% 19 17.0ns 18.1ns 22.5ns
8 80 55.6% 8 17.0ns 11.1ns 24.9ns
9 72 50.0% 8 17.0ns 14.2ns 27.6ns
10 136 94.4% 23 17.0ns 16.3ns 23.7ns

and their consistent propagation delay �gures. Table
4 shows the layout result of a 5 � 5 2D FIR �lter im-
plemented by bit-serial circuits. 5 line-delays are im-
plemented outside the FPGA implementation and the
datapath contains 5 parallel-to-serial converters and 1
serial-to-parallel converters to communicate with the
outside world which are implemented on FPGA as well.
The external word length is 8 bits and internal word
length is 16 bits using double precision adders and a
rounder to convert to 8 bits. Table 5 shows the layout
result of an 8-point Inverse Discrete Cosine Transform
circuit with 8 parallel-to-serial input ports and 8 serial-
to-parallel output ports. External and internal word
lengths are 16 bits and 32 bits, respectively. Under a
20 MHz clock, the performance is 62.5 MOPS for 5� 5
2D FIR �lter and 60.0 MOPS for 8-point IDCT. With
newer FPGA devices such as XC4000 and XC3100 se-
ries, clock is expected to run as fast as 50 MHz, where
the performance would reach 156 MOPS for 5 � 5 2D
FIR �lter and 150 MOPS for 8-point IDCT.
As shown in the tables, the circuits are always 100%

routed even with the very high logic utilization of over
99%. Also, the critical path delays are constantly in the
same range for both algorithms. Usage of the IO pins
are low, meaning that the IO pin limitation is no longer
critical in the partitioning problem.

3 High-Level Datapath Synthe-

sis in C-code

Let us now describe how these design examples are gen-
erated. We are currently developing a high-level data-
path synthesis tool for multi-FPGA designs on C lan-
guage using the bit-serial datapath module library. The

0O r

x[0][0]x[0][1]x[0][2]x[1][0]x[1][1]x[1][2]x[2][1] x[2][0]x[2][2]

u[2][2] u[2][1] u[2][0] u[1][2] u[1][1] u[1][0] u[0][2] u[0][1] u[0][0]

y[0]y[1]y[2]y[3]y[4]y[5]y[6]y[7]

yy

y[8]
y[9]

22 21 20 12 11 10 02 01 00

D D D D D DI I I

}

for(k = 0; k < tapY; k ++){

for(l = 0; l < tapX − 1; l ++){

for(l = 0; l < tapX; l ++){

}

for(k = 0; k < tapY; k ++){

}

}

FPGA_set(y[0],0);

FPGA_mult_c(u[k][l],x[k][l],coef[tapY−k−1][tapX−l−1],WORD);

FPGA_round_even(yy,y[tapX*tapY],WORD);

FPGA_delay(x[k][l],x[k][l+1],WORD);

FPGA_dadd(y[tapY*k+l+1],y[tapY*k+l],u[k][l],WORD);

FPGA_read(&out_frame[i][j],yy,WORD);

FPGA_write(x[k][tapX−1],in_frame[i][j],WORD);

Figure 4: C description for 2D FIR �lter. Function
calls FPGA xxx() denotes the hardware operations. Ar-
guments of the function calls are the input and output
variables of the operation and the word length of the
data.

main features of the tool are:

1. High-level design capture in C.

2. Algorithm veri�cation at behavioral level.

3. Fully automated circuit and layout synthesis.
Functional and logic simulations are unnecessary
due to this automated processes which assure cor-
rect functionality and timing constraints.

4. Bit-serial datapath module library written as C
functions.

3.1 High-Level Design Capture in C

Fig.4 shows the C-code for 2D FIR �lter. Programmer
would describe their algorithm in a very similar way as
writing a normal C-code. The only di�erence is that
the programmer would explicitly specify which opera-
tions are to be performed on the �eld-programmable
hardware. Hardware operations are speci�ed by func-
tion calls FPGA xxx(). Variables are also declared as
either software variables or hardware variables. Com-
munication between these two types of variables are ex-
plicitly performed by FPGA write() and FPGA read()

function calls.

3.2 Behavioral Simulation

This hardware C-code can simply be a part of any C
program. Each hardware operation function includes
the behavioral model of the operation. Thus behavioral

5

for(i = 0; i < sizeY + originY; i ++)
{

for(j = 0; j < sizeX + originX; j ++)
{

}
}

read_image(image, in_frame);

read_filter_coefficient(coef_file, coef);

display_image(out_image);

Hardware C−code
for 2D FIR filter

Figure 5: Hardware C-code in behavioral simulator

simulator can be written just by adding the hardware
C-code in the routine (Fig.5), and is, of course, signi�-
cantly faster than logic simulation. Design veri�cation
on lower levels are not needed due to fully automated
circuit synthesis.

3.3 Bit-serial datapath module library

Bit-serial datapath module library is composed of
groups of C functions. Each datapath module is as-
sociated with a set of C functions which establish the
following hierarchical netlist data structures:

1. Module netlist:
This can also be seen as the data-
ow graph de-
scribing the algorithm. This netlist is a logi-

cal description of the given algorithm which con-
sists of modules, ports and variables. This netlist
is generated when hardware operation functions
FPGA xxx() are invoked. Ports and variables are
associated with scheduling information such as la-
tency of output ports of each module, latest and
earliest time of each variable. This netlist is used
for various high-level synthesis processes such as
pipeline synchronization and architecture synthesis.

2. Cell netlist:
This is the physical description of the given algo-
rithm which consists of cells, pins and nets. Parti-
tion algorithm works on this netlist, and if needed,
dedicated placement algorithm can also be devel-
oped on it. A cell is composed of the following
primitives:

(a) CLB: name, BASE, CONFIG, EQUATE, pin.

(b) IOB: name, CONFIG, pin.

(c) COMPONENT: name, type (TBUF,
PULLUP for longlines, and BUF for global
clock bu�ers), pin.

Important characteristic of the bit-serial datapath cells
is that the cell circuits are complete sequential logic
circuits where all the output signals are latched. All
the critical paths unaccounting the routing delays are
known in advance, and therefore the maximum opera-
tional clock frequency can be associated with each cell.
This greatly simpli�es the early assessment of system
performance during high-level synthesis.

3.4 Circuit Synthesis

1. Architecture Synthesis:

Architecture synthesis routine, a translation of a
logical description into a physical one, generates
the cell netlist from the module netlist. As of
now, a trivial algorithm is used for architecture
synthesis. All logically allocated module instances
are given distinct physical allocations. That is,
all hardware operations are executed on seperate
hardwares. Logical variables have a distinct physi-
cal allocation of nets. More sophisticated architec-
ture synthesis routines involving scheduling, loop
unfolding, resource assignment, register allocation
and memory allocation will be implemented in the
near future.

2. Flip-Flop Minimization:
Some of the bit-serial datapath modules include
large amount of shift registers. Data sampling de-
lays are key component of convolution circuits such
as FIR �lter, and they are implemented only by
shift registers. Since bit-serial multiplier includes
these shift registers, they can be shared. After the
initial architecture synthesis routine, register ele-
ments are shared whenever possible.

3. Pipeline Synchronization:
For datapath modules with multiple inputs, all in-
puts have to be completely synchronized. That is,
the arrival time of all the tail bits have to be the
same. Since each module may have di�erent la-
tency, we have to retime the inputs in order to make
the modules function properly. Register elements
are inserted or deleted to achieve this synchroniza-
tion.

4. IO Port Scheduling:
IO ports sharing the same parallel bus to the out-
side world has to be statically scheduled in order to
avoid bus con
icts. Retiming registers are inserted
according to the scheduling.

3.5 Layout Synthesis

1. Partition:
Currently implemented partitioning algorithm is

6

based on a classical min-cut hyper-graph biparti-
tioning heuristics by Fiduccia and Mattheyses [4]
for its simplicity. The netlist is recursively par-
titioned into clusters of a given size. Although
this simple algorithm achieves satisfactory results
in terms of number of IO pins used as see in Ta-
ble 4 and Table 5, we believe that carefully tuning
this algorithm for our bit-serial datapath circuits
would further improve the logic utilization. Since
IO pin limitation is no longer a problem, it is now
practical for us to search for a performance driven,
maximum logic utilizing partitioning algorithm.

After the partition is completed, the tool will gen-
erate seperate mapped netlist �les (.xtf �les) with
only CLB, IOB, TBUF, PULLUP and GCLK prim-
itives.

2. Placement and Routing:
XNFMAP from Xilinx is performed to each .xtf

�les to perform design rule checking and elimina-
tion of loadless CLBs and IOBs. Placement and
routing is performed by the APR also from Xilinx.

We believe that the placement algorithmused in APR
is not well-suited for our bit-serial circuits where most
of the nets are low fan-in low fan-out local connections.
From the layout results of our bit-serial circuits where
the designs were always completely routed all at the �rst
try with logic utilization as high as 99%, we strongly
believe that we have succeeded in designing a group of
circuits which use substantially small amount of routing,
and therefore a performance driven placement instead
of a maximum routability placement is now a reality for
FPGA layout.

4 Summary

In this paper, we �rst described our bit-serial datapath
circuit designs and their advantages over bit-parallel cir-
cuits on FPGA implementation. We have given some
circuit layout examples of 2D FIR �lter and IDCT cir-
cuits which demonstrates the e�ciency of bit-serial cir-
cuits in terms of logic resource utilization, routability,
IO pin utilization and performance. Also, we have de-
scribed our high-level datapath synthesis tool under de-
velopment. It accepts high-level C-code description of
the desired algorithm and generates the fully mapped
and partitioned netlists to be fed to the APR tool.
We have demonstrated that this high-level synthesis ap-
proach is now practical in generating highly e�cient de-
signs on multi-FPGA system using the bit-serial data-
path circuits.

References

[1] P. Bertin, D. Roncin and J. Vuillemin, \Programmable
Active Memories - Performance Measurements," Proc.

ACM/SIGDA Workshop on Field Programmable Gate

Arrays, 1992.

[2] P. Bertin and H. Touati, \PAM Programming Environ-
ments: Practice and Experience," Proc. IEEE Work-

shop on FPGAs for Custom Computing Machines,
April 1994.

[3] C. E. Cox andW. E. Blanz, \GANGLION{A Fast Field-
Programmble Gate Array Implementation of a Connec-
tionist Classi�er," IEEE Solid-State Circuits Vol. 27,
No. 3, pp. 288{299, March 1992.

[4] C. M. Fiduccia and R. M. Mattheyses, \A Linear-Time
Heuristic for Improving Network Partitions,"Proc. 19th
Design Automation Conference, pp.241-247

[5] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Min-
nich and D. Sweely, \Building and Using a Highly Paral-
lel Programmable Logic Array," IEEE Computers, pp.
81-89, Jan. 1991.

[6] Dzung T. Hoang, \Searching Genetic Databases on
Splash 2," Proc. IEEE Workshop on FPGAs for Cus-

tom Computing Machines, pp. 185-191, April 1993.

[7] T. Isshiki and W. W.-M. Dai, \High-Performance Dat-
apath Implementation on Field-Programmable Multi-

Chip Module (FPMCM)," Proc. 4th International

Workshop on Field-Programmable Logic and Applica-

tions, FPL '94, Sept. 1994.

[8] T. Isshiki and W. W.-M. Dai, \Field-Programmable

Multi-Chip Module (FPMCM) for High-Performance
DSP Accelerator," IEEE Asia-Paci�c Conference on

Circuits and Systems, Dec. 1994.

[9] J. Vanhoof, K. V. Rompaey, I. Bolsens, G. Goossens
and H. De Man," \High-Level Synthesis for Real-Time

Digital Signal Processing," Kluwer Academic Publish-

ers, 1993.

[10] \The Programmable Logic Data Book," Xilinx, Inc.,

1994.

7

	Compendium95
	FPGA95
	Front Matter
	Table of Contents
	Session Index
	Author Index

