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Systolic arrays 
effectively exploit 

massive parallelism in 
computationally 

intensive applications. 
With advances in VLSI, 

WSI, and FPGA 
technologies, they have 
progressed from fixed- 

function to general- 
purpose architectures. 

hen Sun Microsystems introduced its first workstation, the company 
could not have imagined how quickly workstations would revolution- 
ize computing. The idea of a community of engineers, scientists, o r  

researchers time-sharing on a single mainframe computer could hardly have 
become ancient any more quickly. The  almost instant wide acceptance of worksta- 
tions and desktop computers indicates that [hey were quickly recognized as giving 
the best and most flexible performance for the dollar. 

Desktop computers proliferated for three reasons. First, very large scale integra- 
tion (VLSI) and wafer scale integration (WSI), despite some problems, increased 
the gate density of chips while dramatically lowering their production cost.' 
Moreover. increased gate density permits a more complicated processor, which in 
turn promotes parallelism. 

Second, desktop computers distribute processing power to the user in an easily 
customized open architecture. Rcal-time applications that require intensive 110 
and computation need not consume all the resources of a supercomputer. Also, 
desktop computers support high-definition screens with color and motion far  
exceeding those available with any multiple-user. shared-resource mainframe. 

Third, economical. high-bandwidth networks allow desktop computers to share 
data. thus retaining the most appealing aspect of centralized computing, resource 
sharing. Moreover, networks allow the computers to  share data with dissimilar 
computing machines. That is perhaps the most important reason for the accep- 
tance of desktop computers. since all the  performance in the world is worth little 
if the machine is isolated. 

Today's workstations have redefined the way the computing community distrib- 
utes processing resources, and tomorrow's machines will continue this trend with 
higher bandwidth networks and higher computational performance. One way to 
obtain higher computational performance is t o  use special parallel coprocessors t o  
perform functions such as motion and color support of high-definition screens. 
Future computationally intensive applications suited for desktop computing ma- 
chines include real-time text, speech, and image processing. These applications 
require massive parallelism.' 
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Many computational tasks are by their 
very nature sequential: for other tasks 
the degree of parallelism varies. There- 
fore. a massively parallel computation- 
al architecture must maintain sufficient 
application flexibility and computational 
efficiency. It must be’ 

reconfigurable to  exploit applica- 
tion-dependent parallelisms, 
high-level-language programmable 
for task control and flexibility, 
scalable for easy extension to many 
applications. and 
capable of supportingsingle-instruc- 
tion stream, multiple-data stream 
(SIMD) organizations for vector 
operations and multiple-instruction 
s t ream,  mult iple-data  s t ream 
(MIMD) organizations to  exploit 
nonhomogeneous parallelism re- 
quirements. 

Systolic arrays are ideally qualified 
for computationally intensive applica- 
tions. Whether functioningas a dedicat- 
ed  fixed-function graphics processor or  
a more complicated and flexible copro- 
cessor shared across a network, asystol- 
ic array effectively exploits massive par- 
allelism. Falling into an area between 
vector computers and massively paral- 
lel computers. systolic arrays typically 
combine intensive local communication 
and computation with decentralized 
parallelism in a compact package. They 
capitalize on regular, modular, rhyth- 
mic, synchronous. concurrent process- 
es that require intensive, repetitive com- 
putation. While systolic arrays originally 
were used for fixed or  special-purpose 
architectures, the systolic concept has 
be  en ex tend  e d t o  genera  1 -purpose  
SIMD and MIMD architectures. 

Why systolic arrays? 

Ever since Kung proposed the systol- 
ic model..‘ its elegant solutions to  de- 
manding problems and its potential per- 
formance have attracted great attention. 
In physiology, the term sysfolicdescribes 
the contraction (systole) of the heart, 
which regularly sends blood to all cells 
of the body through the arteries, veins, 
and capillaries. Analogously. systolic 
computer processes perform operations 
in a rhythmic. incremental, cellular. and 
repetitive manner. The systolic compu- 
tational rate is restricted by the array’s 
U0 operations. much as the heart con- 
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than processor arrays that execute sys- 
tolic algorithms. Systolic arrays consist 
of elements that take one of the follow- 
ing forms: 

a special-purpose cell with hardwired 
functions, 
a vector-computerlike cell with an 
instruction decoding unit and a pro- 
cessing unit, o r  
a processor complete with a control 
unit and a processing unit. 

Figure 1. General systolic organization. 

trols blood flow to the cells since it is the 
source and destination for all blood.J 

Although there is no widely accepted 
standard definition of systolic arrays 
and systolic cells. the following descrip- 
tion serves as a working definition in 
this article (also see “Systolic array 
summary” below). Systolic arrays have 
balanced. uniform, gridlike architectures 
(Figure I )  in which each line indicates a 
communication path and each intersec- 
tion represents a cell or a systolic ele- 
ment. However, systolic arrays are more 

In all cases, the systolic elements or 
cells are  customized for intensive local 
communications and decentralized par- 
allelism. Because an array consists of 
cells of only one or, a t  most, a few kinds, 
it has regular and simple characteris- 
tics. The array usually is extensible with 
minimal difficulty. 

Three factors have contributed to the 
systolic array’s evolution into a leading 
approach for handling computationally 
intensive applications: technology ad- 
vances, concurrency processing, and 
demanding scientific applicationsP 

Technology advances. Advances in 

Systolic array summary 

Systolic array: A gridlike structure of special processing elements that 
processes data much like an n-dimensional pipeline. Unlike a pipeline, how- 
ever, the input data as well as partial results flow through the array. In addi- 
tion, data can flow in a systolic organization at multiple speeds in multiple di- 
rections. Systolic arrays usually have a very high rate of I/O and are well 
suited for intensive parallel operations. 

Applications: Matrix arithmetic, signal processing, image processing, lan- 
guage recognition, relational database operations, data structure manipula- 
tion, and character string manipulation. 

Special-purpose systolic array: An array of hardwired systolic process- 
ing elements tailored for a specific application. Typically, many tens or hun- 
dreds of cells fit on a single chip. 

General-purpose systolic array: An array of systolic processing ele- 
ments that can be adapted to a variety of applications via programming or 
reconfiguration. 

Programmable systolic array: An array of programmable systolic ele- 
ments that operates either in SIMD or MIMD fashion. Either the arrays inter- 
connect or each processing unit is programmable and a program controls 
dataflow through the elements. 

Reconfigurable systolic array: An array of systolic elements that can be 
programmed at the lowest level. FPGA (field-programmable gate array) tech- 
nology allows the array to emulate hardwired systolic elements at a very low 
level for each unique application. 
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VLSI/WSI technology complement the 
systolic array’s qualifications in the fol- 
lowing ways: 

Demanding scientific applications. 
The technology growth of the last three 
decades has produced computing envi- 
ronments that make it feasible to attack 
demanding scientific applications on a 
larger scale. Large-matrix multiplica- 
tion, feature extraction, cluster analy- 
sis, and radar signal processing are only 
afew examples.’As recent history shows, 
when many computer users work on a 
wide variety of applications, they devel- 
op  new applications requiringincreased 

Cellgranularity.The level of cell gran- 
ular i ty  directly affects t h e  array’s  
throughput and flexibility and deter- 
mines the set of algorithms that it can 
efficiently execute. Each cell’s basic 
operation can range from a logical or 
bitwise operation. to a word-level mul- 
tiplication or addition. to a complete 
program. Granularity is subject to  tech- 
nology capabilities and limitations as 
well as design goals. For  example. inte- 
gration-substrate families have differ- 

Smaller and faster gatesallow a high- 
er  rate of on-chip communication be- 
cause data has a shorter distance to  
travel. 

Higher gate densities permit more 
complicated cells with higher individu- 
al and group performance. Granularity 
increases as word length increases, and 
concurrency increases with more com- 
plicated cells. 

Economical design and fabrication 
processes produce less expensive sys- 
tolic chips, even in small quantities. 
Better design tools allow arrays to be 
designed more efficiently. A systoliccell 
can be fully simulated before fabrica- 
tion, reducing the chances that it will 
fail t o  work as designed. With advances 
in simulation techniques, fully tested, 
unique cells can now be quickly copied 
and arranged in regular, modular ar- 
rays. As VLSIiWSI designs become more 
complicated. “systolicizing” them pro- 
vides an efficient way t o  ensure fault 
tolerance: any fault tolerance precau- 
tions built into one cell are  extensible to 
all cells. 

computational performance. Examples 
of these innovative applications include 
interactive language recognition, rela- 
tional database operations, text recog- 
nition, and virtual reality.’ These appli- 
cations require massive repetitive and 
rhythmic parallel processing, as well as 
intensive U0 operation. Hence, systolic 
computing. 

ent performance and density character- 
istics. Packaging also introduces U0 pin 
restrictions. 

Extensibility. Because systolic arrays 
are  built of cellular building blocks, the 
cell design should be sufficiently flexi- 
ble for use in a wide variety of topolo- 
gies implemented in a wide variety of 
substrate technologies. 

Implementation issues Clock synchronization. Clock lines of 
different lengths within integrated chips, 
as well as external to  the chips, can 
introduce skews. The risk of clock skew 
is greater when dataflow in the systolic 
array is bidirectional. Wavefront arrays‘ 
reduce the clock skew problem by in- 
troducing more complicated, asynchro- 

A number of implementation issues 
determine a systolic array‘sperformance 
efficiency. Designers should understand 
the following performance trade-offs at 
the design stage. 

Relatively new field-programmable 
gate array (FPGA) technology permits 
a reconfigurable architecture, as op- 
posed t o  a reprogrammable architec- 
ture. 

Algorithms and mapping. Designers 
must be intimately familiar with the 
algorithms they are implementing on 
systolic arrays. Designing a systolic ar- 
ray heuristically from an algorithm is 
slow and error-prone, requiring simula- 
tion for verification and often produc- 
ing aless-than-optimum algorithm. Thus, 
automatic array synthesis is an impor- 
tant research a r e a 6  At  present. howev- 

nous, intercellular communications. 

Reliability. Asintegratedcircuits grow 
larger. designers must build in greater 
fault tolerance to  maintain reliability, 
and diagnostics to  verify proper opera- 
tion. Concurrency processing. Past efforts 

to  add concurrency to the conventional, 
von Neumann computer architecture 
have yielded coprocessors, multiple pro- 

tiple homogeneous processors. Systolic ristics. 
arrays combine features from all of these 
architectures in a massively parallel ar- 
chitecture that can be integrated into 
existing platforms without a complete 
redesign. A systolic array can act as a 
coprocessor, can contain multiple pro- 

Systolic array 
cessing units. data pipelining. and mul- er ,  most array designs are  based on heu- taxonomy 

Integration into existing systems. 
Generally, a systolic array is integrated 
into an existing host as a back-end pro- 
cessor. The array’s high U0 require- 
ments often make system integration a 

The  term systolic array originally re- 
ferred to special-purpose or  fixed-func- 
tion architectures designed as hardware 
implementations of a given algorithm. 
In mass quantities, the production of 

cessing units andlor processors, and can 
act as an n-dimensional pipeline. Al- 
though data pipelining reduces IiO re- 
quirements by allowing adjacent cells 
to  reuse the input data, the systolic ar- 
ray’s real novelty is its incremental in- 
struction processing or  computational 
pipelining.’ Each cell computes an in- 
cremental result. and the computer de- 
rives the complete result by interpret- 
ing the incremental results from the 
entire array in a prespecified algorith- 
mic format. 

significant problem. Because the exist- 
ing IiO channel rarely satisfies the ar- 
ray’s bandwidth requirement, a memo- 
ry subsystem often must be  added 
between the host and the systolic array 
to  support data access and data multi- 
plexing and demultiplexing. The mem- 
ory subsystem can range from the com- 
plicated support and cluster processors 
in the Warp array to the simpler staging 
memory in the Splash array. (These 
systems will be  discussed in greater 
detail later.) 

these arrays was manageable and eco- 
nomical, and, thus, they were well suit- 
ed for common applications. But these 
designs were bound to the specific ap- 
plication at  hand and were not flexible 
or versatile. Every time a systolic array 
was to be  used on a new application, the 
manufacturer had to  undertake the long, 
costly, and potentially risky process of 
designing. testing, and fabricating an 
application-specific integrated chip. 
Although the cost and risks of develop- 
ing ASlCs have decreased in recent 
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Table 1. Systolic array taxonomy. 

Class 

Type 

General-purpose ‘ Special-purpose 

Programmable Reconfigurable Hybrid Hardwired 

Organization SIMD or MIMD VFIMD VFIMD 

Fixed 

Fixed 

Topology 

Interconnections 

Dimensions I n-dimensional (n > 2 is rare due to complexity) n-dimensional 

Programmable 

Static Dynamic 

SIMD: single-instruction stream, multiple-data stream: MIMD: multiple-instruction stream, multiple-data stream; VFTMD: very-few- 
instruction stream, multiple-data stream 

Fixed 

years, budget constraints have motivat- 
ed a trend away from unique hardware 
development. Consequently. general- 
purpose systolic architectures have be- 
come a logical alternative. I n  addition 
to  serving in a wide variety of applica- 
tions. they also provide test beds for 
developing, verifying, and debugging 
new systolic algorithms. Table 1 shows 
a taxonomy of general-purpose and spe- 
cial-purpose systolic arrays. 

Static Dynamic 

Special-purpose architectures. Spe- 
cial-purpose systolic architectures are 
custom designed for each application. 
Few problems resist attack from systol- 
ic arrays, but some problems may re- 
quire elegant algorithms. Generally 
speaking, the systolic design requires a 
performance algorithm that can be effi- 
ciently implemented with today’s VLSI 
technology. 

One  area that easily utilizes systolic 
algorithms is matrix operations. Figure 
2 illustrates the algorithm for the sum of 
a scalar product, computed in a single 
systolic element. After the cell is initial- 
ized. the a’s and the b’s are synchro- 
nously shifted through the processing 
element. The accumulator stores the 
sum of the a,b products. All the a and b 
data synchronously exits the processing 
element unmodified to  be available for 
the next element. At the  end ofprocess- 
ing, the sum of the products is shifted 
out of the accumulator. This principle 
easily extends to a matrix product. as 
shown in Figure 3. The only difference 
between single-element processing and 
array processing is that the latter delays 
each additional column and row by one 
cycle so that the columns and rows line 
up for a matrix multiply. The product 
matrix is shifted out after completion of 
processing. 

An obvious problem with this ap- 
proach is that matrix products involving 
a matrix larger than the systolic array 
must be  divided into a set of smaller 
matrix products. This resource and im- 
plementation problem affects all systol- 

icarrays. Proper algorithm development 
compensates for the problem, but per- 
formance decreases nevertheless. 

The matrix product example also dem- 
onstrates another problem with special- 
purpose systolic arrays and hardware in 

ib-type data exits 

~ ~ ~ 

Figure 2. A systolic processing element that computes the sum of a scalar 
product. 

a13 a12 al l  

a23 ‘22 * 

a33 a32 a31 * . 

b-type data exits array 
Figure 3. The sys- 
tolic product of 
two 3 x 3 matrices. 
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Host 

Data in I - - - _ _  

Array 

Data out : 
I I 

Figure 4. General organization of SIMD programmable linear systolic arrays. 

general. The more specialized the hard- 
ware, the higher the performance: but 
cost per application also rises and flex- 
ibility decreases. Therein lies the at- 
tractiveness of general-purpose systolic 
architectures. 

General-purpose architectures. The 
two basic types of general-purpose sys- 
tolic arrays are the programmable mod- 
el and the reconfigurable model. Re- 
cently. hybrid models have also been 
proposed. 

In the programmable model, cell ar- 
chitectures and array architectures re- 
main the same from application to ap- 
plication. However, a program controls 
data operations in the cells and data 
routing through the array. All commu- 
nication paths and functional units are 
fixed, and the program determines when 
and which paths are utilized. One of the 
first programmable architectures was 
Carnegie Mellon’s programmable sys- 
tolic chip. 

In the reconfigurable model, cell ar- 
chitectures as well as array architec- 
tures change from one application to  
another. The architecture for each ap- 
plication appears as a special-purpose 
array. The primary means of implement- 
ing the reconfigurable model is FPGA 
technology. Splash was one of the early 
FPGA-based reconfigurable systolic 
arrays. 

Hybridmodelsmake use of both VLSI 
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and FPGA technology. They usually 
consist of VLSI circuits embedded in an  
FPGA-reconfigurable interconnection 
network. 

Systolic topologies.  Array topologies 
can be either programmable o r  re- 
configurable. Likewise, array cells are 
either programmable o r  reconfigur- 
able. 

A programmable systolic architecture 
is a collection of interconnected, gener- 
al-purpose systolic cells, each of which 
is either programmable or reconfigu- 
rable. Programmable systolic cells are 
flexible processing elements specially 
designed to meet the computational and 
U0 requirements of systolic arrays. Pro- 
grammable systolic architectures can be 
classified according to  their cell inter- 
connection topologies: fixed or program- 
mable. 

Fixed cell interconnections limit a 
given topology to  some subset of all 
possible algorithms. That topology can 
emulate other topologies by means of 
the proper mapping transformation, but 
reduced performance is often a conse- 
quence. 

Programmable cell interconnection 
topologies typically consist of program- 
mable cells embedded in a switch lattice 
that allows the array to assume many 
different topologies. Programmable to- 
pologies are either static or dynamic. 
Static topologies can be altered between 

applications, and dynamic topologies 
can be altered within an application. 
Static programmable topologies can be 
implemented with much less complexi- 
ty than dynamic programmable topolo- 
gies. There has been little research in 
dynamic programmable topologies be- 
cause a highly complex interconnection 
network could undermine the regular 
and simple principles of systolic archi- 
tectures. 

Reconfigurable systolic architectures 
capitalize on FPGA technology, which 
allows the user to configure a low-level 
logic circuit for each cell. Reconfigu- 
rable arrays also have either fixed or 
reconfigurable cell interconnections. 
The user reconfigures an array’s topol- 
ogy by means of a switch lattice. Any 
general-purpose array that is not con- 
ventionally programmable is usually 
considered reconfigurable. All FPGA 
reconfiguring is static due to  technolo- 
gy limitations. 

A r r a y  dimensions.  We can further clas- 
sify general-purpose and special-pur- 
pose systolic architectures by their ar- 
ray dimensions. The two most common 
structures are the linear array and the 
two-dimensional array. Linear systolic 
arrays are by default statically reconfig- 
urable in one-dimensional space. Two- 
dimensional arrays allow more efficient 
execution of complicated algorithms. 
Due to  I/O limitations. general-purpose 
systolic arrays of dimensions greater 
than two are not common. 

Programmable array organization. 
Programmable systolic arrays are pro- 
grammable either at a high level or a 
low level. A t  either level, programma- 
ble arrays can be categorized as either 
SIMD or MIMD machines. They are 
typically back-end processors with an 
additional buffer memory to handle the 
high systolic U0 rates. High-level pro- 
grammable arrays usually a re  pro- 
grammed in high-level languages and 
are word oriented. Low-level arrays are 
programmed in assembly language and 
are bit oriented. 

SZMD. SIMD systolic machines (Fig- 
ure 4) operate similarly to  a vector pro- 
cessor. The  host workstation preloads a 
controller and a memory, which are ex- 
ternal to the array, with the instructions 
and data for the application. The systol- 
ic cells store no programs or instruc- 
tions. Each cell’s instruction-process- 
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ing functional unit serves as a large de- 
coder. Once the workstation enables 
execution, the  controller sequences 
through the external memory, thus de- 
livering instructions and data to the sys- 
tolic array. Within the array, instruc- 
tions are broadcast and all cells perform 
the same operation on different data. 
Adjacent cells may share memory, but 
generally no memory is shared by the 
entire array. After exiting the array, 
data is collected in the external buffer 
memory. SIMD-programmable systolic 
cells take less space on the VLSI wafer 
than their MIMD counterparts because 
they are simple instruction-processing 
elements requiring no program memo- 
ry. From tens to  hundreds of such cells 
fit on one integrated chip.' 

M I M D .  MIMD systolic machines 
(Figure 5) operate similarly to homoge- 
neous von Neumann multiprocessor 
machines. The workstation downloads 
a program to each MIMD systolic cell. 
Each cell may be loaded with a different 
program, or all the cells in the array may 
be loaded with the same program. Each 
cell's architecture is somewhat similar 
to the conventional von Neumann ar- 
chitecture: It contains a control unit, an 
ALU,  and local memory. MIMD systol- 
ic cells have more local memory than 
their SIMD counterparts to support 
the von Neumann-style organization. 
Some may have a small amount of glo- 
bal memory, but generally no memory 
is shared by all the cells. Whenever data 
is to be shared by processors. it must be 
passed to the next cell. Thus, data avail- 
ability becomes a very important issue. 
High-level MIMD systolic cells are very 
complicated. and usually only one fits 
on a single integrated chip. For exam- 
ple, the iWarp is a Warp cell without 
memory on a single chip. Local memory 
for each iWarp cell must be supplied by 
additional chips. 

Reconfigurable array organization. 
Recent gate-density advances in FPGA 
technology have produced a low-level, 
reconfigurable systolic array architec- 
ture that bridges the gap between spe- 
cial-purpose arrays and the more versa- 
tile, programmable. general-purpose 
arrays. The FPGA architecture is un- 
usual because a single hardware plat- 
form can be logically reconfigured as an 
exact duplicate of a special-purpose sys- 
tolic array. Figure 6 shows the general 
organization of a reconfigurable array. 

1 I 

I Data in , 
_ _ _ _ _  

Array 

-i Data out 

Figure 5. General organization of MIMD programmable linear systolic arrays. 

The designer logically draws cell archi- 
tectures on the workstation with a sche- 
matic editor (such as Mentor), converts 
the design to FPGA code with another 
utility, and then downloads the code in 
a few seconds to configure the FPGA 
architecture.x 

Reconfigurable systolic arrays do  not 
fall into the SIMD or MIMD categories 
for the same reason that special-pur- 
pose systolic arrays do  not. Reconfigu- 
rable arrays, like special-purpose ar- 
rays, are generally limited to VFIMD 
(very-few-instruction streams. multiple- 
data streams) organization due to FPGA 
gate density. Instructions are implicit in 
the configuration of each cell; there- 
fore, there is no need to download them 

from the workstation. Since special-pur- 
pose systolic architectures consist of a 
very few unique cells repeated through- 
out the array, the entire array also tends 
to be VFIMD. Purely reconfigurable 
architectures are fine-grain, low-level 
devices best suited for logical or bit 
manipulations. They typically lack the 
gate density to support high-level func- 
tions such as multiplication. 

Tables 2, 3, and 4 list most of the 
recent programmable and reconfigu- 
rable, general-purpose systolic arrays 
reported in the literature. When infor- 
mation is unclear in the literature, the 
corresponding space in the table is left 
blank. The  tables indicate three stages 
of product development: 

1 
Figure 6. General 
organization of 
reconfigurable 
arrays. 
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Table 2. SIMD-organized programmable systolic architectures. 

System name, Development 
developer stage Topology Key features 

Brown Systolic Array’ 
Brown University 

Prototype 

Micmacs* 
IRISA, Campus de Beadier .  
France Prototype 

Geometric Arithmetic Parallel Processor” Commercial 
NCR 

Saxpy-1M4 
Computer Corp. 

Commercial 

Systolic/Cellular Architecture5 Prototype 
Hughes Research Laboratories 

Cylindrical Banyan Multicomputerh Research 
University of Texas at Austin 

Programmable Systolic Device’ 
Australian National University 

Research 

Linear 
470 cells 

Linear 
18 cells 

48 x 48 array 
2,304 cells 

Linear 
32 cells 

16 x 16 array 
256 cells 

Very small VLSI footprint; 100s of cells 
per chip; ISA, SSR architectures; 8-bit 
ALU only; 157 MOPS 

16-bit fixed-point math; broadcast data; 
90 MOPS 

Bit-slice cellular architecture; global data; 
900 MOPS 

32-bit floating-point capability; broadcast 
and Saxpy global data with block 
processing 1,000 MFLOPS 

32-bit fixed-function units 

Packet-switched programmable topology 
with programmable cells 

Instruction decoding occurs once per chip; 
each chip has many cells 

1. R. Hughey and D. Lopresti. “Architecture of a Programmable Systolic Array,” Proc. Inr’l Con,f. Sysfolic Arruys. IEEE CS Press. LOS 

2. P. Frison et al., “Micmacs: A VLSI Programmable Systolic Architecture.” Systolic Array Processors, Prentice-Hall. Englewood Cliffs, 

3. P. Greussay, “Programmation des Mega-Processeurs: du GAPP a la Connection Machinc Course Notes DEA Artificial Intelligence,” 

4. D. Foulser and R. Scheiber, “The Saxpy Matrix-1: A General-Purpose Systolic Computer.” Computer. Vol. 20. No. 7, July 1987. pp. 35-43. 
5.  K.W. Przytula and J.B. Nash, “lmplementation of Synthetic Aperture Radar Algorithms on a SystoliciCellular Architecture,” Proc. In[’ /  

6. M. Malek and E. Opper. “The Cylindrical Banyan Multicomputer: A Reconfigurable Systolic Architecture.“ Parallel Computing, Vol. 

7 .  P. Lenders and H. Schroder, “A ProRrammable Systolic Device for Image Processing Based on Morphology.” Purullel Conzputing. Vol. 

Alamitos, Calif., Order No. 860, 1988, pp. 41-49. 

N.J.: 1989, pp. 145-155. 

Paris Univ.. VIII, Vincennes, 1985. 

Conf Systolic Arrays, IEEE CS Press, Los Alamitos, Calif., Order No. 860, 1988, pp. 21-27. 

10, No. 3. May 1989. pp. 319-326. 

13, No. 3 ,  Mar. 1990. pp. 337-344 

Research: A functional system that 
has not yet been implemented. 

*Prototype: At least a partial system 
has been implemented. 
Commercial: The system has been 
implemented. and an integrated chip 
with multiple cells, a complete sys- 
tem, or both are available for pur- 
chase. 

Architectural issues of 
programmable systolic 
arrays 

To be effective. a programmable sys- 
tolic architecture must adhere to the 
general principles of systolic arrays: reg- 
ularity, simplicity, concurrency, and 
rhythmic communications. In addition. 

the introduction of aprogrammable sys- 
tolic cell with significant local memory 
has resulted in a new mode of opera- 
tions: block processing. Block process- 
ing combines periods of intensive sys- 
tolic IiO and periods of sequential von 
Neumann-style processing to form what 
is known as a pseudosystolic model. 

Replicating and interconnecting a 
basic programmable systolic cell t o  form 
an array carries out the regularity and 
simplicity principles, provided an ap- 
propriate algorithm and program are 
uti l ized. However .  p rogrammable-  
cell-based architectures must intro- 
duce special features to address the sys- 
tolic properties of concurrency, rhyth- 
mic communications, and block pro- 
cessing. 

Concurrency. Two levels of concur- 

rency are possible in a programmable 
systolic architecture: concurrency across 
cells and concurrency within cells, both 
implicit to hardwired designs. To make 
concurrency feasible in programmable 
systolic architectures, the designer must 
add special mechanisms that facilitate 
processing control. 

Intercell concurrency.  Coordination 
of concurrency control has always been 
inherent in a hardwired systolic design 
because it has been addressed at the 
algorithm development stage. The ad- 
vent of the programmable systolic array 
required that innovative features be in- 
corporated into designs to satisfy a pro- 
grammable coordination requirement. 
Methods of program loading. memory 
initialization, program switching. and 
local memory access at the cell level had 
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Table 3. MIMD-organized programmable systolic architectures. 

System name, 
developer 

Development 
stage Topology Key features 

Warp’ 
Carnegie Mellon University 

Architecture‘ Prot 

Commercial Linear 32-bit floating-point multiplication: 
block processing; IiO queuing. 100 
MFLOPS 

10 cells 

iWarp3 
Carnegie Mellon University 

Computer for Experimental 
Synthetic Aperture Radar4 
Norwegian Defense Res. Estab. 

Cellular Array Processor5 
Fujitsu Laboratories, Japan 

Configurable Highly Parallel Computerh 
Purdue University 

Associative String Processor’ 
Brunel University, U K  

PICAP3’ 
University of Paris 

PSDP9 
Univ. of South Florida, 
Honeywell 

Prototype Four 8 x 16 Bit-serial cellular IiO; 32-bit floating- 
arrays 
512 cells 320 MFLOPS 

point multipliers in each cell; 

Commer 

Research Programmable cells embedded in switch 
lattice for programmable topology 

Research at  hi 

Prototype 8 x 8 array 16-bit word length; image oriented 
64 cells 

Research 4-bit word length; wafer-scale design 

1. A.L. Fisher. K.  Sarocky. and H.T. Kung. “Experience with the CMU Programmable Systolic Chip,” Proc. Soc. of Phoro-Oprical 

2. M.  Annaratone et al.. “Architecture of Warp,” Proc. Compcon, IEEE CS Press, Los  Alamitos, Calif.. Order No. 764, Feb. 1987, pp. 

3 .  S. Borkar et al.. “iWarp: An Integrated Solution to High-speed Parallel Computing.” Proc. Superconzpuring. IEEE CS Press. Los 

4. M. Toverud and V. Anderson. “CESAR: A Programmable High-Performance Systolic Array Proccssor,” Proc. I n / ’ [  Con$ Conipufer 

5 .  M. Ishii et al., “Cellular Array Proccssor CAP and Application,” Proc. Int‘l Conf. Systolic Arrays, IEEE CS Press. Los Alamitos. Calif., 

6. L. Snyder. “Introduction to the Configurable Highly Parallel Computer.” Conzputer. Vol. 15, No. 1. Jan. 1982. pp. 47-56. 
7. R.M. Lea, “The ASP. a Fault-Tolerant VLSI/ULSI/WSI Associative String Processor for Cost-Effective Processing,” Proc. Inr’l Conf: 

8. B. Lindscog and P.E. Danielsson. “PICAP3: A Parallel Processor Tuned for 3D Image Operations.“ Proc. Eighth Int’l Conf: Patrern 

9. D. Landis et al.. “A Wafer-Scale Programmable Systolic Data Processor,” Proc. Ninth Biennial Univ./Gov’f/lnd. Microrlec/ronics Synp . ,  

1n.strunzenfufion Engineers, Red-Time Signal Processing VII ,  Spie. San Diego. Calif., 1984. p. 495. 

264-267. 

Alamitos, Calif., Order No. 882, 1988, pp. 330.339. 

Design, IEEE CS Press, Los Alamitos. Calif., Order No. 872 (microfiche only), 1988, pp. 414-417. 

Order No. 860. 1988. pp. 535-544. 

Sysrolic Arrays.  pp. 515.524. 

Recognilion, IEEE CS Press, Order No. 742 (microfiche only), 1986, pp. 1248-1250. 

IEEE, Piscataway, N.I., 1991, pp. 252-256. 

to  be  incorporated into a systolic envi- 
ronment. The  following mechanisms 
facilitate programmable concurrency 
throughout the array: 

Broadcast data permits all cells of 
an array to  be reset simultaneously 
with initial conditions and constants 
at the start of a processing block 
during nonsystolic modes of opera- 
tion. The larger the array, the more 

efficiency it will gain from a broad- 
cast data capability. 
Broadcast instructions permit oper- 
ations similar to those of a vector 
computer by making each systolic 
cell analogous t o  the vector com- 
puter’s processing unit. However, 
unlike most vector computers, sys- 
tolic cells can support a high-band- 
width communication channel with 
adjacent cells. 

Broadcast instruction addresses al- 
low fast and efficient switching 
among programs in an MIMD cell’s 
program memory. When all MIMD 
cells have programs stored in the 
same places  in the i r  p rogram 
memories, a jump to the broadcast 
instruction address carries out  si- 
mul taneous  program switching 
throughout the array. If the pro- 
grams in all the MIMD cells happen 
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Table 4. VFIMD-organized programmable systolic architectures. 

System name, 
developer 

Development 
stage Topology Key features 

~~~ ~ ~~~~~~~ 

Splash Systolic Engine' 
Super Computing Linear based on 
Research Center Prototype 32 cells 

Cellular Array Logic' 
Edinburgh University, UK Prototype 256 cells custom chip 

16 x 16 array FPGA-reconfigurable cell architecture based on 

Hybrid Architecture3 
University of Illinois Research 

Reconfigurable cell architecture integrating FPGA 
capability and 32-bit floating-point multiplication 

Programmable Adaptive 
Computing Engine.' 
University of Wales, Bangor, UK Prototype Programmable programmable topology 

Configurable Functional Array5 
Tsinghua University, Beijing Research Configurable array topology and cell architecture 

Functional units embedded in each cell: 
reconfigurable connections in cell as well as 

1. M. Gokhale et al.. "Splash: A Reconfigurable Linear Logic Array," P m c .  Ini'l Conf: Parril lel Processing, IEEE CS Press. Los Alamitos, 

2. T. Kcan and J .  Gray, "Configurable Hardware: Two Case Studies of Micrograin Computation." in Sysrolic Ar ray  Processorh, Prentice- 

3. R. Smith and G. Sobelman, "Simulation-Based Design of Programmablc Systolic Arrays." Coniprrier-Aided Design. Vol. 2.3. No. IO. Dec. 

4. S. Jones. A. Spray, and A. Ling. "A Flexiblc Building Block for the  Construction of Processor Arrays." in Sys/o/ic Arrnv Procrssors, 

5 .  C. Wenyang, L. Yanda. and J. Yuc, "Systolic Realization for 2D Convolution Using Conrigurable Functional Method in VLSI Parallel 

Calif., Order No.  2101. 1990. pp. 1526-1531. 

Hall, Englcwood Cliffs, N.J., 1989. pp. 310-319. 

1901, pp. 669-675. 

Prcntice-Hall, Englewood Cliffs. N.J., 19S9, pp. 459-466. 

Array Dcsigns." Proc. IEEE,  Compurrrs und Digirtrl Te~hnology~ Vol. 138, No.  S .  Sept. 1991. pp. 361-370. 

to  be identical. the array is perform- 
ing SIMD operations. 
Instruct ion systolic urriiys" provide 
a precise low-level method of coor- 
dinating processing from cell to cell. 
In an ISA. instructions travel through 
the array with the data. The pro- 
cessed data passes with the original 
instruction from each cell to  the next. 
An appropriately wide ISA instruc- 
tion also has built-in microcodable 
parallelism. ISA algorithms can be 
lengthy and more difficult to  devel- 
o p  than algorithms for other SIMD 
and MIMD arrays. But they provide 
a way to uniquely specify concur- 
rency across cells without an overly 
complicated circuit. 
Direct local memory access o r  g lo-  
bal rneniory. Status flags can be 
stored either in each cell's local 
memory or in a global memory. In 
the case of local memory, the con- 
troller must be  able to directly ac- 
cess each cell's local memory t o  de- 
termine flag status; otherwise, the 
controller must issue a request and 
wait for it to  propagate through the 
array. When global memory is avail- 
able. the controller obtains status 
information much more easily. Di- 

rect local memory access or  global 
memory also facilitates initialization 
within a cell. The Saxpy-1M is one 
of the first systolic arrays with glo- 
bal memory. 

Itifrace11 concurrency.  Programmable 
cells require the ability to  perform mul- 
tiple similar or  dissimilar operations si- 
multaneously. Mechanisms incorporat- 
ed into programmable systolic cells to 
support concurrency are all proven tech- 
niques that originated in conventional 
von Neumann processors: microcodable 
processing elements. duplication offunc- 
tional units, multiple data paths, suffi- 
cientlywide instruction words. and pipe- 
lining of functional units. 

Rhythmic communications. The prin- 
ciple of rhythmiccommunications clearly 
separates systolic arrays from other ar- 
chitectures. Programmability creates a 
more flexible systolic architecture. but 
the penalties are  complexity and possi- 
ble slowing of operations. When systol- 
ic cells are  programmable, the issue of 
data availability arises. To minimize the 
performance degradation of program- 
mable systolic designs, each cell's pro- 
cessing element must have data avail- 

able when it is required. high-speed arith- 
metic capabilities, and the ability to 
transfer or  store the processed data. 
Thus, each cell must have sufficient 
memory for data storage as well as pro- 
gram storage to facilitate intercell com- 
munications. 

The following architectural features 
support rhythmic communications: 

QueiLed / /O streamlines cellular 
communi ca t i on s by a I lowing the 
source cell to  send data t o  the desti- 
nation cell when the data is avail- 
able. not when the destination cell is 
ready to accept it. Data exits the 
queue on a FIFO (first in. first out) 
basis that allows program computa- 
tion to  proceed irrespective of com- 
munications status. Queued IiO 
helps considerablywhen all cells are 
computing a single program that is 
skewed in time across the cells. A 
disadvantage is that this mechanism 
uses memory space that is expen- 
sive on VLSI wafers. 
Serial I/O reduces the bandwidth 
requirement on the systolic array's 
workstation machine, at the same 
time promoting rhythmic cellular 
communication. The resulting pro- 
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grammable systolic array has bit- 
serial cellular communications and 
word-wide operations in each cell. 
Each cell stores partial words until 
it receives the full word and then 
performs functional operat ions.  
Using more cells can partially offset 
t h e  d isadvantage  of reduced  
throughput. 
Multiple datu p a t h s  provide the cell 
with fast, parallel internal and ex- 
ternal communications. One or more 
data paths are dedicated to  compu- 
tational needs. another to cellular 
input operations, and yet another to  
cellular output operations. 
Systolicshared registers provide sev- 
eral benefits specifically for pro- 
grammable systolic architectures. 
SSR architectures (Figure 7) pro- 
vide a program-implicit means of 
streamlined dataflow. Each two ad- 
jacent processing elements share a 
small register memory. Data flows 
concurrently with computation as 
each processing element receives 
new data from the register memory 
upstream, operates on it, and di- 
rects it to  the next register memory 
downstream. This architecture elim- 
inates the requirement that data 
movement be explicitly specified, 
and dataflow through the array be- 
comes a result of processing. The 
input register and the output regis- 
ter  are specified by the instruction 
word. Therefore. bidirectional data- 
flow is a natural result. An SSR 
architecture is advantageous over 
queued 110 because communications 
do  not occur on a FIFO basis. A 
disadvantage is that the register bank 
must be kept small to  minimize ac- 
cess time and thus maximize systol- 
ic bandwidth. The  small register 
makes programming difficult for 
some of the more complicated algo- 
rithms. 
Broudcast &ita eases systolic IiO 
requirements in certain instances by 
allowing all functional units and 
local memory of a cell to be initial- 
ized or  set to a common variable a t  
once. 

*Global datu eases systolic IiO re- 
quirements and the cell's storage 
requirements by keeping only one 
copy of the same data and allowing 
all cells t o  share it. With proper 
global memory coherency. any mod- 
ifications to global data are  instant- 
ly available to  other cells. 

I I 

I I 

Figure 7. An SIMD systolic shared-register architecture. 

Bidirectional und wrapuroutzd data- 
,flow must be explicitly specified in 
the program, whereas in hardwired 
designs dataflow is implicit. Bi- 
directional and wraparound data- 
f low can reduce the I/O bandwidth 
requirements of the external buffer 
memory by recirculating data with- 
in the array. More flexible dataflow 
also allows arrays to  execute a wide 
variety of algorithms more effi- 
ciently. 

Block processing, If each program- 
mable systolic cell has significant local 
memory. block processing is possible in 
the systolic environment. During block 
processing, very little systolic I/O oc- 
curs, and each cell executes a series of 
instructions on local data. Once the cells 
generate an intermediate result, pro- 
cessing pauses while systolic IiO takes 
place, and new data is written to each 
cell's local memory. 

Block processing on programmable 
systolic architectures can result in a more 
efficient. pseudosystolic operation in 
some applications for two reasons. First, 
the  merger of von Neumann program- 
mable cell architectures into a systolic 
array environment causes many of the 
same problems found in homogeneous 
multiprocessor systems. The serial na- 
ture of \'on Neumann machines inter- 
feres with the rhythmic systolic I/O of 
the  array,  causing an unacceptable 
amount of time wasted in waiting for 
data to become available. Block pro- 
cessing minimizes this wasted time in 
applications that can be  divided into 
equal segments. Applications are divid- 
ed  into parallel tasks that utilize local 
data. 

Second, for any systolic array, the 
bandwidth and size of the external mem- 
ory are always the limiting factors on 
throughput and performance. Block 
processing reduces the array's systolic 
110 requi rements  by reducing t h e  
amount of cellular IiO. 

Important work has been done on 
characterizing block processing in a gen- 
eral-purpose systolic array.'" Block pro- 
cessing can be  performed on either 
SIMD or  MIMD programmable systol- 
ic machines. Requirements for efficient 
block processing include an appropri- 
ate algorithm and significant local mem- 
ory in each cell. Other  types of array 
communication such as broadcast data 
and global data are  also desirable. 

Architectural issues of 
reconfigurable systolic 
arrays 

The primary architectural issues in 
designing a reconfigurable systolic 
array a re  the hardware platform of 
FPGAs and the class of algorithms t o  be  
targeted to  that platform. The number 
of FPGAs, their topology, and their gate 
density will determine the set of systolic 
architectures that can be synthesized 
and the set of systolic algorithms that 
can be  implemented on that hardware 
platform. Reconfigurable systolic archi- 
tectures are  very interesting because 
the cell's architecture is actually pro- 
grammed. Consequently, the architec- 
ture programmer has complete control 
over what architectural features are  in- 
corporated in each FPGA. Determin- 
ing the cell architecture can be  an iter- 
ative process that continuously refines 
the architecture until it satisfies appli- 
cation requirements. 

FPGA architecture programming dif- 
fers from conventional programming in 
that one programs the circuit's logical 
function, instead of programming a 
model of operations in a high-level lan- 
guage. Reconfiguring an F P G A  is the 
same as logically drawing a new circuit. 
Therefore, an F P G A  platform can as- 
sume any architecture that FPGA gate 
density and package pinout permit. 

Communicat ion and  concurrency 
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Broadcast instructions 

C I I I 

Figure 8. A hybrid SlMD programmable systolic architecture. 

must be  evaluated on a case-by-case 
basis a t  the time of configuration. Cur- 
rent gate-density technology does not 
make MIMD arrays feasible due t o  cell 
memory and control requirements, but 
FPGA platforms are well suited for log- 
ical o r  bit-level applications. Splash, for 
example, is a linear reconfigurable ar- 
ray appropriate for bit-level applica- 
tions. 

An FPGA chip can be configured for 
one medium-size systolic element or for 
several simple systolic cells. In either 
case, current technology limits the cir- 
cuit size to  an order of magnitude ap- 
proaching 25,000 gates. Packaging and 
110 pins also influence the design. Cur- 
rent technology limits I/O to approxi- 
mately 200 pins. 

Reconfigurable architectures are also 
highly qualified for fault-tolerant com- 
puting. Reconfiguration can simply elim- 
inate a bad cell from the array. Cell 
architectures can be configured around 
VLSI defects. 

Architectural issues of 
hybrid arrays 

High-level programmable arrays re- 
quire extensive efforts tomap algorithms 
to  high-level languages after algorithm 
development. When mapping is com- 
pleted, the resulting system often is not 
as efficient as a system implemented in 
a fixed-function ASIC. On the other 
hand. low FPGA gate density makes it 
unlikely that large-grain tasks will ever 
be completely implemented in FPGAs 
or  that reconfigurable arrays will re- 
place conventional SlMD and MIMD 

architectures in the near future. Conse- 
quently, a natural step is to merge the 
two approaches, keeping their desir- 
able aspects and discarding their unde- 
sirable aspects. 

The hybrid S lMD architecture" (Fig- 
ure 8) is best utilized for intensive float- 
ing-point computational applications but 
does not degrade in performance as 
much as high-level programmable ar- 
rays when significant logical o r  control 
operations are  included. The hybrid 
design combines a commercial floating- 
point multiplier chip and an FPGA con- 
troller t o  form a systolic cell. The com- 
mercial mult ipl ier  is used for  its 
economy. speed, and package density: 
the FPGA closely binds the cell t o  a 
specific application. Another project is 
attempting to  integrate a hybrid gener- 
al-purpose systolic array cell on a single 
chip.': 

A recently developed simulator al- 
lows simulation and testing of the cell 
and the array design for a hybrid archi- 
tecture." Unlike most commercially 
available computer-aided design utili- 
ties, which verify designs at  the chip 
level, it verifies the performance of al- 
gorithms and architectures through sim- 
ulation of the complete array. The sim- 
ulator maintains the iterative nature of 
purely reconfigurable array design by 
facilitating tailoring of hybrid designs 
for specific applications. 

Existing architectures 

A review of projects initiated during 
the last decade shows that the trend was 
to  develop large systolic array proces- 
sors that require elaborate. customized 

host support. Warp. the Computer for 
Experimental Synthetic Aperture Ra- 
dar ,  the Cellular Array Processor, and 
Saxpy-1M all require expensive and 
complicated I/O support - for the in- 
tensive instruction I/O as well as the 
data  1/0. These machines are  high- 
per formance  supercomputers  (200 
MFLOPS,  320 MFLOPS,  and 1,000 
MFLOPS. respectively) with central- 
ized concurrency, constructed to  fill an 
existing performance gap. 

The introduction of workstations into 
the workplace has changed the way a 
significant portion of the computing 
community views computers. Users de- 
mand improved desktop computing 
performance as applications continue 
to  increase in size and complexity. 
Workstation architecture can always be 
improved. especially for emerging ap- 
plications such as text and speech pro- 
cessing and gene matching. The more 
recent general-purpose systolic array 
projects (Brown,  Micmacs, Splash) 
show that back-end systolic processors 
are effective in boosting a workstation's 
performance for these applications. 
These arrays are small enough that the 
host's open architecture with limited 
U0 bandwidth does not severely im- 
pact the array's performance for low- 
to  moderate-level granularity. Small 
back-end systolic processors are also 
economically sound.  For  example.  
Splash consists of a two-board add-on 
set for a Sun workstation. One  board 
supports the linear array. and the oth- 
e r  supports a buffer memory. The  set 
costs from $13,000 t o  $35,000.' 

Almost without exception, current 
research emphasizes reconfigurable 
cells, reconfigurable arrays, and hybrids 
of functional units embedded in recon- 
figurable FPGA arrays. Reconfigurable 
designs have proven to  be unmatched 
for low- to moderate-granularity require- 
ments but are  not yet mature enough 
for  high-granularity applications. In  
addition, as we have said. reconfigu- 
rable topologies and cells are  highly 
fault-tolerant. Their fault tolerance is a 
configuration issue. not a design and 
fabrication issue. 

Until FPGA chip density progresses 
to  the point where a very large FPGA 
can achieve high-level granularity, hy- 
brid architectures present perhaps the 
most practical means to  a reconfigu- 
rable high-level systolic array. Hybrids 
make use of the most attractive features 
of programmable and reconfigurable 
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methods while adding greater flexibili- 
ty than either method. 

No discussion of general-purpose 
systolic arrays is complete without ad- 
dressing the issues of programming and 
configuration. High-level-language pro- 
gramming is desirable for promoting 
widespread use of programmable sys- 
tolic back-end processors. Of the projects 
we surveyed. only the larger systems 
had mature programming environments. 
Currently, the smaller programmable 
arrays have implemented only assem- 
bly programming. As mentioned ear- 
lier, FPGA-configurable  arrays a re  
configured with the use of a schematic 
editor. One  drawback of this approach 
is that it typically takes more effort than 
programming a programmable cell.’ 

T he systolic array is a formidable 
approach to exploiting concur- 
rencies in a computationally 

rhythmic and intensive environment. 
General-purpose systolic arrays provide 
an economical way to enhance compu- 
tational performance by emphasizing 
concurrency and parallelism. Arrays 
ranging from low-level to high-level 
granularity have been applied to  prob- 
lems from bit-oriented pixel mapping 
t o  32-bit floating-point-based scientific 
computing. Systolic arrays hold great 
promise to be a pervasive form of con- 
currency processing. As a solution to  
the intensive computational perfor- 
mance requirements of tomorrow’s ap- 
plications, general-purpose systolic ar- 
rays cannot be overlooked. m 
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