
General-Purpose
Systolic Arrays

Kurtis T. Johnson and A.R. Hurson, Pennsylvania State University

Behrooz Shirazi, University of Texas, Arlington

Systolic arrays
effectively exploit

massive parallelism in
computationally

intensive applications.
With advances in VLSI,

WSI, and FPGA
technologies, they have
progressed from fixed-

function to general-
purpose architectures.

hen Sun Microsystems introduced its first workstation, the company
could not have imagined how quickly workstations would revolution-
ize computing. The idea of a community of engineers, scientists, o r

researchers time-sharing on a single mainframe computer could hardly have
become ancient any more quickly. The almost instant wide acceptance of worksta-
tions and desktop computers indicates that [hey were quickly recognized as giving
the best and most flexible performance for the dollar.

Desktop computers proliferated for three reasons. First, very large scale integra-
tion (VLSI) and wafer scale integration (WSI), despite some problems, increased
the gate density of chips while dramatically lowering their production cost.'
Moreover. increased gate density permits a more complicated processor, which in
turn promotes parallelism.

Second, desktop computers distribute processing power to the user in an easily
customized open architecture. Rcal-time applications that require intensive 110
and computation need not consume all the resources of a supercomputer. Also,
desktop computers support high-definition screens with color and motion far
exceeding those available with any multiple-user. shared-resource mainframe.

Third, economical. high-bandwidth networks allow desktop computers to share
data. thus retaining the most appealing aspect of centralized computing, resource
sharing. Moreover, networks allow the computers to share data with dissimilar
computing machines. That is perhaps the most important reason for the accep-
tance of desktop computers. since all the performance in the world is worth little
if the machine is isolated.

Today's workstations have redefined the way the computing community distrib-
utes processing resources, and tomorrow's machines will continue this trend with
higher bandwidth networks and higher computational performance. One way to
obtain higher computational performance is t o use special parallel coprocessors t o
perform functions such as motion and color support of high-definition screens.
Future computationally intensive applications suited for desktop computing ma-
chines include real-time text, speech, and image processing. These applications
require massive parallelism.'

I

Many computational tasks are by their
very nature sequential: for other tasks
the degree of parallelism varies. There-
fore. a massively parallel computation-
al architecture must maintain sufficient
application flexibility and computational
efficiency. It must be’

reconfigurable to exploit applica-
tion-dependent parallelisms,
high-level-language programmable
for task control and flexibility,
scalable for easy extension to many
applications. and
capable of supportingsingle-instruc-
tion stream, multiple-data stream
(SIMD) organizations for vector
operations and multiple-instruction
s t ream, mult iple-data s t ream
(MIMD) organizations to exploit
nonhomogeneous parallelism re-
quirements.

Systolic arrays are ideally qualified
for computationally intensive applica-
tions. Whether functioningas a dedicat-
ed fixed-function graphics processor or
a more complicated and flexible copro-
cessor shared across a network, asystol-
ic array effectively exploits massive par-
allelism. Falling into an area between
vector computers and massively paral-
lel computers. systolic arrays typically
combine intensive local communication
and computation with decentralized
parallelism in a compact package. They
capitalize on regular, modular, rhyth-
mic, synchronous. concurrent process-
es that require intensive, repetitive com-
putation. While systolic arrays originally
were used for fixed or special-purpose
architectures, the systolic concept has
be en ex tend e d t o genera 1 -purpose
SIMD and MIMD architectures.

Why systolic arrays?

Ever since Kung proposed the systol-
ic model..‘ its elegant solutions to de-
manding problems and its potential per-
formance have attracted great attention.
In physiology, the term sysfolicdescribes
the contraction (systole) of the heart,
which regularly sends blood to all cells
of the body through the arteries, veins,
and capillaries. Analogously. systolic
computer processes perform operations
in a rhythmic. incremental, cellular. and
repetitive manner. The systolic compu-
tational rate is restricted by the array’s
U0 operations. much as the heart con-

I I I

I I I

than processor arrays that execute sys-
tolic algorithms. Systolic arrays consist
of elements that take one of the follow-
ing forms:

a special-purpose cell with hardwired
functions,
a vector-computerlike cell with an
instruction decoding unit and a pro-
cessing unit, o r
a processor complete with a control
unit and a processing unit.

Figure 1. General systolic organization.

trols blood flow to the cells since it is the
source and destination for all blood.J

Although there is no widely accepted
standard definition of systolic arrays
and systolic cells. the following descrip-
tion serves as a working definition in
this article (also see “Systolic array
summary” below). Systolic arrays have
balanced. uniform, gridlike architectures
(Figure I) in which each line indicates a
communication path and each intersec-
tion represents a cell or a systolic ele-
ment. However, systolic arrays are more

In all cases, the systolic elements or
cells are customized for intensive local
communications and decentralized par-
allelism. Because an array consists of
cells of only one or, a t most, a few kinds,
it has regular and simple characteris-
tics. The array usually is extensible with
minimal difficulty.

Three factors have contributed to the
systolic array’s evolution into a leading
approach for handling computationally
intensive applications: technology ad-
vances, concurrency processing, and
demanding scientific applicationsP

Technology advances. Advances in

Systolic array summary

Systolic array: A gridlike structure of special processing elements that
processes data much like an n-dimensional pipeline. Unlike a pipeline, how-
ever, the input data as well as partial results flow through the array. In addi-
tion, data can flow in a systolic organization at multiple speeds in multiple di-
rections. Systolic arrays usually have a very high rate of I/O and are well
suited for intensive parallel operations.

Applications: Matrix arithmetic, signal processing, image processing, lan-
guage recognition, relational database operations, data structure manipula-
tion, and character string manipulation.

Special-purpose systolic array: An array of hardwired systolic process-
ing elements tailored for a specific application. Typically, many tens or hun-
dreds of cells fit on a single chip.

General-purpose systolic array: An array of systolic processing ele-
ments that can be adapted to a variety of applications via programming or
reconfiguration.

Programmable systolic array: An array of programmable systolic ele-
ments that operates either in SIMD or MIMD fashion. Either the arrays inter-
connect or each processing unit is programmable and a program controls
dataflow through the elements.

Reconfigurable systolic array: An array of systolic elements that can be
programmed at the lowest level. FPGA (field-programmable gate array) tech-
nology allows the array to emulate hardwired systolic elements at a very low
level for each unique application.

November l Y Y 3 21

VLSI/WSI technology complement the
systolic array’s qualifications in the fol-
lowing ways:

Demanding scientific applications.
The technology growth of the last three
decades has produced computing envi-
ronments that make it feasible to attack
demanding scientific applications on a
larger scale. Large-matrix multiplica-
tion, feature extraction, cluster analy-
sis, and radar signal processing are only
afew examples.’As recent history shows,
when many computer users work on a
wide variety of applications, they devel-
op new applications requiringincreased

Cellgranularity.The level of cell gran-
ular i ty directly affects t h e array’s
throughput and flexibility and deter-
mines the set of algorithms that it can
efficiently execute. Each cell’s basic
operation can range from a logical or
bitwise operation. to a word-level mul-
tiplication or addition. to a complete
program. Granularity is subject to tech-
nology capabilities and limitations as
well as design goals. For example. inte-
gration-substrate families have differ-

Smaller and faster gatesallow a high-
er rate of on-chip communication be-
cause data has a shorter distance to
travel.

Higher gate densities permit more
complicated cells with higher individu-
al and group performance. Granularity
increases as word length increases, and
concurrency increases with more com-
plicated cells.

Economical design and fabrication
processes produce less expensive sys-
tolic chips, even in small quantities.
Better design tools allow arrays to be
designed more efficiently. A systoliccell
can be fully simulated before fabrica-
tion, reducing the chances that it will
fail t o work as designed. With advances
in simulation techniques, fully tested,
unique cells can now be quickly copied
and arranged in regular, modular ar-
rays. As VLSIiWSI designs become more
complicated. “systolicizing” them pro-
vides an efficient way t o ensure fault
tolerance: any fault tolerance precau-
tions built into one cell are extensible to
all cells.

computational performance. Examples
of these innovative applications include
interactive language recognition, rela-
tional database operations, text recog-
nition, and virtual reality.’ These appli-
cations require massive repetitive and
rhythmic parallel processing, as well as
intensive U0 operation. Hence, systolic
computing.

ent performance and density character-
istics. Packaging also introduces U0 pin
restrictions.

Extensibility. Because systolic arrays
are built of cellular building blocks, the
cell design should be sufficiently flexi-
ble for use in a wide variety of topolo-
gies implemented in a wide variety of
substrate technologies.

Implementation issues Clock synchronization. Clock lines of
different lengths within integrated chips,
as well as external to the chips, can
introduce skews. The risk of clock skew
is greater when dataflow in the systolic
array is bidirectional. Wavefront arrays‘
reduce the clock skew problem by in-
troducing more complicated, asynchro-

A number of implementation issues
determine a systolic array‘sperformance
efficiency. Designers should understand
the following performance trade-offs at
the design stage.

Relatively new field-programmable
gate array (FPGA) technology permits
a reconfigurable architecture, as op-
posed t o a reprogrammable architec-
ture.

Algorithms and mapping. Designers
must be intimately familiar with the
algorithms they are implementing on
systolic arrays. Designing a systolic ar-
ray heuristically from an algorithm is
slow and error-prone, requiring simula-
tion for verification and often produc-
ing aless-than-optimum algorithm. Thus,
automatic array synthesis is an impor-
tant research a r e a 6 At present. howev-

nous, intercellular communications.

Reliability. Asintegratedcircuits grow
larger. designers must build in greater
fault tolerance to maintain reliability,
and diagnostics to verify proper opera-
tion. Concurrency processing. Past efforts

to add concurrency to the conventional,
von Neumann computer architecture
have yielded coprocessors, multiple pro-

tiple homogeneous processors. Systolic ristics.
arrays combine features from all of these
architectures in a massively parallel ar-
chitecture that can be integrated into
existing platforms without a complete
redesign. A systolic array can act as a
coprocessor, can contain multiple pro-

Systolic array
cessing units. data pipelining. and mul- er , most array designs are based on heu- taxonomy

Integration into existing systems.
Generally, a systolic array is integrated
into an existing host as a back-end pro-
cessor. The array’s high U0 require-
ments often make system integration a

The term systolic array originally re-
ferred to special-purpose or fixed-func-
tion architectures designed as hardware
implementations of a given algorithm.
In mass quantities, the production of

cessing units andlor processors, and can
act as an n-dimensional pipeline. Al-
though data pipelining reduces IiO re-
quirements by allowing adjacent cells
to reuse the input data, the systolic ar-
ray’s real novelty is its incremental in-
struction processing or computational
pipelining.’ Each cell computes an in-
cremental result. and the computer de-
rives the complete result by interpret-
ing the incremental results from the
entire array in a prespecified algorith-
mic format.

significant problem. Because the exist-
ing IiO channel rarely satisfies the ar-
ray’s bandwidth requirement, a memo-
ry subsystem often must be added
between the host and the systolic array
to support data access and data multi-
plexing and demultiplexing. The mem-
ory subsystem can range from the com-
plicated support and cluster processors
in the Warp array to the simpler staging
memory in the Splash array. (These
systems will be discussed in greater
detail later.)

these arrays was manageable and eco-
nomical, and, thus, they were well suit-
ed for common applications. But these
designs were bound to the specific ap-
plication at hand and were not flexible
or versatile. Every time a systolic array
was to be used on a new application, the
manufacturer had to undertake the long,
costly, and potentially risky process of
designing. testing, and fabricating an
application-specific integrated chip.
Although the cost and risks of develop-
ing ASlCs have decreased in recent

COMPUTER 22

Table 1. Systolic array taxonomy.

Class

Type

General-purpose ‘ Special-purpose

Programmable Reconfigurable Hybrid Hardwired

Organization SIMD or MIMD VFIMD VFIMD

Fixed

Fixed

Topology

Interconnections

Dimensions I n-dimensional (n > 2 is rare due to complexity) n-dimensional

Programmable

Static Dynamic

SIMD: single-instruction stream, multiple-data stream: MIMD: multiple-instruction stream, multiple-data stream; VFTMD: very-few-
instruction stream, multiple-data stream

Fixed

years, budget constraints have motivat-
ed a trend away from unique hardware
development. Consequently. general-
purpose systolic architectures have be-
come a logical alternative. I n addition
to serving in a wide variety of applica-
tions. they also provide test beds for
developing, verifying, and debugging
new systolic algorithms. Table 1 shows
a taxonomy of general-purpose and spe-
cial-purpose systolic arrays.

Static Dynamic

Special-purpose architectures. Spe-
cial-purpose systolic architectures are
custom designed for each application.
Few problems resist attack from systol-
ic arrays, but some problems may re-
quire elegant algorithms. Generally
speaking, the systolic design requires a
performance algorithm that can be effi-
ciently implemented with today’s VLSI
technology.

One area that easily utilizes systolic
algorithms is matrix operations. Figure
2 illustrates the algorithm for the sum of
a scalar product, computed in a single
systolic element. After the cell is initial-
ized. the a’s and the b’s are synchro-
nously shifted through the processing
element. The accumulator stores the
sum of the a,b products. All the a and b
data synchronously exits the processing
element unmodified to be available for
the next element. At the end ofprocess-
ing, the sum of the products is shifted
out of the accumulator. This principle
easily extends to a matrix product. as
shown in Figure 3. The only difference
between single-element processing and
array processing is that the latter delays
each additional column and row by one
cycle so that the columns and rows line
up for a matrix multiply. The product
matrix is shifted out after completion of
processing.

An obvious problem with this ap-
proach is that matrix products involving
a matrix larger than the systolic array
must be divided into a set of smaller
matrix products. This resource and im-
plementation problem affects all systol-

icarrays. Proper algorithm development
compensates for the problem, but per-
formance decreases nevertheless.

The matrix product example also dem-
onstrates another problem with special-
purpose systolic arrays and hardware in

ib-type data exits

~ ~ ~

Figure 2. A systolic processing element that computes the sum of a scalar
product.

a13 a12 al l

a23 ‘22 *

a33 a32 a31 * .

b-type data exits array
Figure 3. The sys-
tolic product of
two 3 x 3 matrices.

November I993 23

Host

Data in I - - - _ _

Array

Data out :
I I

Figure 4. General organization of SIMD programmable linear systolic arrays.

general. The more specialized the hard-
ware, the higher the performance: but
cost per application also rises and flex-
ibility decreases. Therein lies the at-
tractiveness of general-purpose systolic
architectures.

General-purpose architectures. The
two basic types of general-purpose sys-
tolic arrays are the programmable mod-
el and the reconfigurable model. Re-
cently. hybrid models have also been
proposed.

In the programmable model, cell ar-
chitectures and array architectures re-
main the same from application to ap-
plication. However, a program controls
data operations in the cells and data
routing through the array. All commu-
nication paths and functional units are
fixed, and the program determines when
and which paths are utilized. One of the
first programmable architectures was
Carnegie Mellon’s programmable sys-
tolic chip.

In the reconfigurable model, cell ar-
chitectures as well as array architec-
tures change from one application to
another. The architecture for each ap-
plication appears as a special-purpose
array. The primary means of implement-
ing the reconfigurable model is FPGA
technology. Splash was one of the early
FPGA-based reconfigurable systolic
arrays.

Hybridmodelsmake use of both VLSI

24

and FPGA technology. They usually
consist of VLSI circuits embedded in an
FPGA-reconfigurable interconnection
network.

Systolic topologies. Array topologies
can be either programmable o r re-
configurable. Likewise, array cells are
either programmable o r reconfigur-
able.

A programmable systolic architecture
is a collection of interconnected, gener-
al-purpose systolic cells, each of which
is either programmable or reconfigu-
rable. Programmable systolic cells are
flexible processing elements specially
designed to meet the computational and
U0 requirements of systolic arrays. Pro-
grammable systolic architectures can be
classified according to their cell inter-
connection topologies: fixed or program-
mable.

Fixed cell interconnections limit a
given topology to some subset of all
possible algorithms. That topology can
emulate other topologies by means of
the proper mapping transformation, but
reduced performance is often a conse-
quence.

Programmable cell interconnection
topologies typically consist of program-
mable cells embedded in a switch lattice
that allows the array to assume many
different topologies. Programmable to-
pologies are either static or dynamic.
Static topologies can be altered between

applications, and dynamic topologies
can be altered within an application.
Static programmable topologies can be
implemented with much less complexi-
ty than dynamic programmable topolo-
gies. There has been little research in
dynamic programmable topologies be-
cause a highly complex interconnection
network could undermine the regular
and simple principles of systolic archi-
tectures.

Reconfigurable systolic architectures
capitalize on FPGA technology, which
allows the user to configure a low-level
logic circuit for each cell. Reconfigu-
rable arrays also have either fixed or
reconfigurable cell interconnections.
The user reconfigures an array’s topol-
ogy by means of a switch lattice. Any
general-purpose array that is not con-
ventionally programmable is usually
considered reconfigurable. All FPGA
reconfiguring is static due to technolo-
gy limitations.

A r r a y dimensions. We can further clas-
sify general-purpose and special-pur-
pose systolic architectures by their ar-
ray dimensions. The two most common
structures are the linear array and the
two-dimensional array. Linear systolic
arrays are by default statically reconfig-
urable in one-dimensional space. Two-
dimensional arrays allow more efficient
execution of complicated algorithms.
Due to I/O limitations. general-purpose
systolic arrays of dimensions greater
than two are not common.

Programmable array organization.
Programmable systolic arrays are pro-
grammable either at a high level or a
low level. A t either level, programma-
ble arrays can be categorized as either
SIMD or MIMD machines. They are
typically back-end processors with an
additional buffer memory to handle the
high systolic U0 rates. High-level pro-
grammable arrays usually a re pro-
grammed in high-level languages and
are word oriented. Low-level arrays are
programmed in assembly language and
are bit oriented.

SZMD. SIMD systolic machines (Fig-
ure 4) operate similarly to a vector pro-
cessor. The host workstation preloads a
controller and a memory, which are ex-
ternal to the array, with the instructions
and data for the application. The systol-
ic cells store no programs or instruc-
tions. Each cell’s instruction-process-

COMPUTER

ing functional unit serves as a large de-
coder. Once the workstation enables
execution, the controller sequences
through the external memory, thus de-
livering instructions and data to the sys-
tolic array. Within the array, instruc-
tions are broadcast and all cells perform
the same operation on different data.
Adjacent cells may share memory, but
generally no memory is shared by the
entire array. After exiting the array,
data is collected in the external buffer
memory. SIMD-programmable systolic
cells take less space on the VLSI wafer
than their MIMD counterparts because
they are simple instruction-processing
elements requiring no program memo-
ry. From tens to hundreds of such cells
fit on one integrated chip.'

M I M D . MIMD systolic machines
(Figure 5) operate similarly to homoge-
neous von Neumann multiprocessor
machines. The workstation downloads
a program to each MIMD systolic cell.
Each cell may be loaded with a different
program, or all the cells in the array may
be loaded with the same program. Each
cell's architecture is somewhat similar
to the conventional von Neumann ar-
chitecture: It contains a control unit, an
ALU, and local memory. MIMD systol-
ic cells have more local memory than
their SIMD counterparts to support
the von Neumann-style organization.
Some may have a small amount of glo-
bal memory, but generally no memory
is shared by all the cells. Whenever data
is to be shared by processors. it must be
passed to the next cell. Thus, data avail-
ability becomes a very important issue.
High-level MIMD systolic cells are very
complicated. and usually only one fits
on a single integrated chip. For exam-
ple, the iWarp is a Warp cell without
memory on a single chip. Local memory
for each iWarp cell must be supplied by
additional chips.

Reconfigurable array organization.
Recent gate-density advances in FPGA
technology have produced a low-level,
reconfigurable systolic array architec-
ture that bridges the gap between spe-
cial-purpose arrays and the more versa-
tile, programmable. general-purpose
arrays. The FPGA architecture is un-
usual because a single hardware plat-
form can be logically reconfigured as an
exact duplicate of a special-purpose sys-
tolic array. Figure 6 shows the general
organization of a reconfigurable array.

1 I

I Data in ,
_ _ _ _ _

Array

-i Data out

Figure 5. General organization of MIMD programmable linear systolic arrays.

The designer logically draws cell archi-
tectures on the workstation with a sche-
matic editor (such as Mentor), converts
the design to FPGA code with another
utility, and then downloads the code in
a few seconds to configure the FPGA
architecture.x

Reconfigurable systolic arrays do not
fall into the SIMD or MIMD categories
for the same reason that special-pur-
pose systolic arrays do not. Reconfigu-
rable arrays, like special-purpose ar-
rays, are generally limited to VFIMD
(very-few-instruction streams. multiple-
data streams) organization due to FPGA
gate density. Instructions are implicit in
the configuration of each cell; there-
fore, there is no need to download them

from the workstation. Since special-pur-
pose systolic architectures consist of a
very few unique cells repeated through-
out the array, the entire array also tends
to be VFIMD. Purely reconfigurable
architectures are fine-grain, low-level
devices best suited for logical or bit
manipulations. They typically lack the
gate density to support high-level func-
tions such as multiplication.

Tables 2, 3, and 4 list most of the
recent programmable and reconfigu-
rable, general-purpose systolic arrays
reported in the literature. When infor-
mation is unclear in the literature, the
corresponding space in the table is left
blank. The tables indicate three stages
of product development:

1
Figure 6. General
organization of
reconfigurable
arrays.

November 1993 25

Table 2. SIMD-organized programmable systolic architectures.

System name, Development
developer stage Topology Key features

Brown Systolic Array’
Brown University

Prototype

Micmacs*
IRISA, Campus de Beadier .
France Prototype

Geometric Arithmetic Parallel Processor” Commercial
NCR

Saxpy-1M4
Computer Corp.

Commercial

Systolic/Cellular Architecture5 Prototype
Hughes Research Laboratories

Cylindrical Banyan Multicomputerh Research
University of Texas at Austin

Programmable Systolic Device’
Australian National University

Research

Linear
470 cells

Linear
18 cells

48 x 48 array
2,304 cells

Linear
32 cells

16 x 16 array
256 cells

Very small VLSI footprint; 100s of cells
per chip; ISA, SSR architectures; 8-bit
ALU only; 157 MOPS

16-bit fixed-point math; broadcast data;
90 MOPS

Bit-slice cellular architecture; global data;
900 MOPS

32-bit floating-point capability; broadcast
and Saxpy global data with block
processing 1,000 MFLOPS

32-bit fixed-function units

Packet-switched programmable topology
with programmable cells

Instruction decoding occurs once per chip;
each chip has many cells

1. R. Hughey and D. Lopresti. “Architecture of a Programmable Systolic Array,” Proc. Inr’l Con,f. Sysfolic Arruys. IEEE CS Press. LOS

2. P. Frison et al., “Micmacs: A VLSI Programmable Systolic Architecture.” Systolic Array Processors, Prentice-Hall. Englewood Cliffs,

3. P. Greussay, “Programmation des Mega-Processeurs: du GAPP a la Connection Machinc Course Notes DEA Artificial Intelligence,”

4. D. Foulser and R. Scheiber, “The Saxpy Matrix-1: A General-Purpose Systolic Computer.” Computer. Vol. 20. No. 7, July 1987. pp. 35-43.
5. K.W. Przytula and J.B. Nash, “lmplementation of Synthetic Aperture Radar Algorithms on a SystoliciCellular Architecture,” Proc. In[’ /

6. M. Malek and E. Opper. “The Cylindrical Banyan Multicomputer: A Reconfigurable Systolic Architecture.“ Parallel Computing, Vol.

7 . P. Lenders and H. Schroder, “A ProRrammable Systolic Device for Image Processing Based on Morphology.” Purullel Conzputing. Vol.

Alamitos, Calif., Order No. 860, 1988, pp. 41-49.

N.J.: 1989, pp. 145-155.

Paris Univ.. VIII, Vincennes, 1985.

Conf Systolic Arrays, IEEE CS Press, Los Alamitos, Calif., Order No. 860, 1988, pp. 21-27.

10, No. 3. May 1989. pp. 319-326.

13, No. 3 , Mar. 1990. pp. 337-344

Research: A functional system that
has not yet been implemented.

*Prototype: At least a partial system
has been implemented.
Commercial: The system has been
implemented. and an integrated chip
with multiple cells, a complete sys-
tem, or both are available for pur-
chase.

Architectural issues of
programmable systolic
arrays

To be effective. a programmable sys-
tolic architecture must adhere to the
general principles of systolic arrays: reg-
ularity, simplicity, concurrency, and
rhythmic communications. In addition.

the introduction of aprogrammable sys-
tolic cell with significant local memory
has resulted in a new mode of opera-
tions: block processing. Block process-
ing combines periods of intensive sys-
tolic IiO and periods of sequential von
Neumann-style processing to form what
is known as a pseudosystolic model.

Replicating and interconnecting a
basic programmable systolic cell t o form
an array carries out the regularity and
simplicity principles, provided an ap-
propriate algorithm and program are
uti l ized. However . p rogrammable-
cell-based architectures must intro-
duce special features to address the sys-
tolic properties of concurrency, rhyth-
mic communications, and block pro-
cessing.

Concurrency. Two levels of concur-

rency are possible in a programmable
systolic architecture: concurrency across
cells and concurrency within cells, both
implicit to hardwired designs. To make
concurrency feasible in programmable
systolic architectures, the designer must
add special mechanisms that facilitate
processing control.

Intercell concurrency. Coordination
of concurrency control has always been
inherent in a hardwired systolic design
because it has been addressed at the
algorithm development stage. The ad-
vent of the programmable systolic array
required that innovative features be in-
corporated into designs to satisfy a pro-
grammable coordination requirement.
Methods of program loading. memory
initialization, program switching. and
local memory access at the cell level had

26 COMPUTER

I

Table 3. MIMD-organized programmable systolic architectures.

System name,
developer

Development
stage Topology Key features

Warp’
Carnegie Mellon University

Architecture‘ Prot

Commercial Linear 32-bit floating-point multiplication:
block processing; IiO queuing. 100
MFLOPS

10 cells

iWarp3
Carnegie Mellon University

Computer for Experimental
Synthetic Aperture Radar4
Norwegian Defense Res. Estab.

Cellular Array Processor5
Fujitsu Laboratories, Japan

Configurable Highly Parallel Computerh
Purdue University

Associative String Processor’
Brunel University, U K

PICAP3’
University of Paris

PSDP9
Univ. of South Florida,
Honeywell

Prototype Four 8 x 16 Bit-serial cellular IiO; 32-bit floating-
arrays
512 cells 320 MFLOPS

point multipliers in each cell;

Commer

Research Programmable cells embedded in switch
lattice for programmable topology

Research at hi

Prototype 8 x 8 array 16-bit word length; image oriented
64 cells

Research 4-bit word length; wafer-scale design

1. A.L. Fisher. K. Sarocky. and H.T. Kung. “Experience with the CMU Programmable Systolic Chip,” Proc. Soc. of Phoro-Oprical

2. M. Annaratone et al.. “Architecture of Warp,” Proc. Compcon, IEEE CS Press, Los Alamitos, Calif.. Order No. 764, Feb. 1987, pp.

3 . S. Borkar et al.. “iWarp: An Integrated Solution to High-speed Parallel Computing.” Proc. Superconzpuring. IEEE CS Press. Los

4. M. Toverud and V. Anderson. “CESAR: A Programmable High-Performance Systolic Array Proccssor,” Proc. I n / ’ [Con$ Conipufer

5 . M. Ishii et al., “Cellular Array Proccssor CAP and Application,” Proc. Int‘l Conf. Systolic Arrays, IEEE CS Press. Los Alamitos. Calif.,

6. L. Snyder. “Introduction to the Configurable Highly Parallel Computer.” Conzputer. Vol. 15, No. 1. Jan. 1982. pp. 47-56.
7. R.M. Lea, “The ASP. a Fault-Tolerant VLSI/ULSI/WSI Associative String Processor for Cost-Effective Processing,” Proc. Inr’l Conf:

8. B. Lindscog and P.E. Danielsson. “PICAP3: A Parallel Processor Tuned for 3D Image Operations.“ Proc. Eighth Int’l Conf: Patrern

9. D. Landis et al.. “A Wafer-Scale Programmable Systolic Data Processor,” Proc. Ninth Biennial Univ./Gov’f/lnd. Microrlec/ronics Synp . ,

1n.strunzenfufion Engineers, Red-Time Signal Processing VII , Spie. San Diego. Calif., 1984. p. 495.

264-267.

Alamitos, Calif., Order No. 882, 1988, pp. 330.339.

Design, IEEE CS Press, Los Alamitos. Calif., Order No. 872 (microfiche only), 1988, pp. 414-417.

Order No. 860. 1988. pp. 535-544.

Sysrolic Arrays. pp. 515.524.

Recognilion, IEEE CS Press, Order No. 742 (microfiche only), 1986, pp. 1248-1250.

IEEE, Piscataway, N.I., 1991, pp. 252-256.

to be incorporated into a systolic envi-
ronment. The following mechanisms
facilitate programmable concurrency
throughout the array:

Broadcast data permits all cells of
an array to be reset simultaneously
with initial conditions and constants
at the start of a processing block
during nonsystolic modes of opera-
tion. The larger the array, the more

efficiency it will gain from a broad-
cast data capability.
Broadcast instructions permit oper-
ations similar to those of a vector
computer by making each systolic
cell analogous t o the vector com-
puter’s processing unit. However,
unlike most vector computers, sys-
tolic cells can support a high-band-
width communication channel with
adjacent cells.

Broadcast instruction addresses al-
low fast and efficient switching
among programs in an MIMD cell’s
program memory. When all MIMD
cells have programs stored in the
same places in the i r p rogram
memories, a jump to the broadcast
instruction address carries out si-
mul taneous program switching
throughout the array. If the pro-
grams in all the MIMD cells happen

November 1993 27

Table 4. VFIMD-organized programmable systolic architectures.

System name,
developer

Development
stage Topology Key features

~~~ ~ ~~~~~~~ 

Splash Systolic Engine' 
Super Computing Linear based on 
Research Center Prototype 32 cells 

Cellular Array Logic' 
Edinburgh University, UK Prototype 256 cells custom chip 

16 x 16 array FPGA-reconfigurable cell architecture based on 

Hybrid Architecture3 
University of Illinois Research 

Reconfigurable cell architecture integrating FPGA 
capability and 32-bit floating-point multiplication 

Programmable Adaptive 
Computing Engine.' 
University of Wales, Bangor, UK Prototype Programmable programmable topology 

Configurable Functional Array5 
Tsinghua University, Beijing Research Configurable array topology and cell architecture 

Functional units embedded in each cell: 
reconfigurable connections in cell as well as 

1. M. Gokhale et al.. "Splash: A Reconfigurable Linear Logic Array," P m c .  Ini'l Conf: Parril lel Processing, IEEE CS Press. Los Alamitos, 

2. T. Kcan and J .  Gray, "Configurable Hardware: Two Case Studies of Micrograin Computation." in Sysrolic Ar ray  Processorh, Prentice- 

3. R. Smith and G. Sobelman, "Simulation-Based Design of Programmablc Systolic Arrays." Coniprrier-Aided Design. Vol. 2.3. No. IO. Dec. 

4. S. Jones. A. Spray, and A. Ling. "A Flexiblc Building Block for the  Construction of Processor Arrays." in Sys/o/ic Arrnv Procrssors, 

5 .  C. Wenyang, L. Yanda. and J. Yuc, "Systolic Realization for 2D Convolution Using Conrigurable Functional Method in VLSI Parallel 

Calif., Order No.  2101. 1990. pp. 1526-1531. 

Hall, Englcwood Cliffs, N.J., 1989. pp. 310-319. 

1901, pp. 669-675. 

Prcntice-Hall, Englewood Cliffs. N.J., 19S9, pp. 459-466. 

Array Dcsigns." Proc. IEEE,  Compurrrs und Digirtrl Te~hnology~ Vol. 138, No.  S .  Sept. 1991. pp. 361-370. 

to  be identical. the array is perform- 
ing SIMD operations. 
Instruct ion systolic urriiys" provide 
a precise low-level method of coor- 
dinating processing from cell to cell. 
In an ISA. instructions travel through 
the array with the data. The pro- 
cessed data passes with the original 
instruction from each cell to  the next. 
An appropriately wide ISA instruc- 
tion also has built-in microcodable 
parallelism. ISA algorithms can be 
lengthy and more difficult to  devel- 
o p  than algorithms for other SIMD 
and MIMD arrays. But they provide 
a way to uniquely specify concur- 
rency across cells without an overly 
complicated circuit. 
Direct local memory access o r  g lo-  
bal rneniory. Status flags can be 
stored either in each cell's local 
memory or in a global memory. In 
the case of local memory, the con- 
troller must be  able to directly ac- 
cess each cell's local memory t o  de- 
termine flag status; otherwise, the 
controller must issue a request and 
wait for it to  propagate through the 
array. When global memory is avail- 
able. the controller obtains status 
information much more easily. Di- 

rect local memory access or  global 
memory also facilitates initialization 
within a cell. The Saxpy-1M is one 
of the first systolic arrays with glo- 
bal memory. 

Itifrace11 concurrency.  Programmable 
cells require the ability to  perform mul- 
tiple similar or  dissimilar operations si- 
multaneously. Mechanisms incorporat- 
ed into programmable systolic cells to 
support concurrency are all proven tech- 
niques that originated in conventional 
von Neumann processors: microcodable 
processing elements. duplication offunc- 
tional units, multiple data paths, suffi- 
cientlywide instruction words. and pipe- 
lining of functional units. 

Rhythmic communications. The prin- 
ciple of rhythmiccommunications clearly 
separates systolic arrays from other ar- 
chitectures. Programmability creates a 
more flexible systolic architecture. but 
the penalties are  complexity and possi- 
ble slowing of operations. When systol- 
ic cells are  programmable, the issue of 
data availability arises. To minimize the 
performance degradation of program- 
mable systolic designs, each cell's pro- 
cessing element must have data avail- 

able when it is required. high-speed arith- 
metic capabilities, and the ability to 
transfer or  store the processed data. 
Thus, each cell must have sufficient 
memory for data storage as well as pro- 
gram storage to facilitate intercell com- 
munications. 

The following architectural features 
support rhythmic communications: 

QueiLed / /O streamlines cellular 
communi ca t i on s by a I lowing the 
source cell to  send data t o  the desti- 
nation cell when the data is avail- 
able. not when the destination cell is 
ready to accept it. Data exits the 
queue on a FIFO (first in. first out) 
basis that allows program computa- 
tion to  proceed irrespective of com- 
munications status. Queued IiO 
helps considerablywhen all cells are 
computing a single program that is 
skewed in time across the cells. A 
disadvantage is that this mechanism 
uses memory space that is expen- 
sive on VLSI wafers. 
Serial I/O reduces the bandwidth 
requirement on the systolic array's 
workstation machine, at the same 
time promoting rhythmic cellular 
communication. The resulting pro- 

28 COMPUTER 



grammable systolic array has bit- 
serial cellular communications and 
word-wide operations in each cell. 
Each cell stores partial words until 
it receives the full word and then 
performs functional operat ions.  
Using more cells can partially offset 
t h e  d isadvantage  of reduced  
throughput. 
Multiple datu p a t h s  provide the cell 
with fast, parallel internal and ex- 
ternal communications. One or more 
data paths are dedicated to  compu- 
tational needs. another to cellular 
input operations, and yet another to  
cellular output operations. 
Systolicshared registers provide sev- 
eral benefits specifically for pro- 
grammable systolic architectures. 
SSR architectures (Figure 7) pro- 
vide a program-implicit means of 
streamlined dataflow. Each two ad- 
jacent processing elements share a 
small register memory. Data flows 
concurrently with computation as 
each processing element receives 
new data from the register memory 
upstream, operates on it, and di- 
rects it to  the next register memory 
downstream. This architecture elim- 
inates the requirement that data 
movement be explicitly specified, 
and dataflow through the array be- 
comes a result of processing. The 
input register and the output regis- 
ter  are specified by the instruction 
word. Therefore. bidirectional data- 
flow is a natural result. An SSR 
architecture is advantageous over 
queued 110 because communications 
do  not occur on a FIFO basis. A 
disadvantage is that the register bank 
must be kept small to  minimize ac- 
cess time and thus maximize systol- 
ic bandwidth. The  small register 
makes programming difficult for 
some of the more complicated algo- 
rithms. 
Broudcast &ita eases systolic IiO 
requirements in certain instances by 
allowing all functional units and 
local memory of a cell to be initial- 
ized or  set to a common variable a t  
once. 

*Global datu eases systolic IiO re- 
quirements and the cell's storage 
requirements by keeping only one 
copy of the same data and allowing 
all cells t o  share it. With proper 
global memory coherency. any mod- 
ifications to global data are  instant- 
ly available to  other cells. 

I I 

I I 

Figure 7. An SIMD systolic shared-register architecture. 

Bidirectional und wrapuroutzd data- 
,flow must be explicitly specified in 
the program, whereas in hardwired 
designs dataflow is implicit. Bi- 
directional and wraparound data- 
f low can reduce the I/O bandwidth 
requirements of the external buffer 
memory by recirculating data with- 
in the array. More flexible dataflow 
also allows arrays to  execute a wide 
variety of algorithms more effi- 
ciently. 

Block processing, If each program- 
mable systolic cell has significant local 
memory. block processing is possible in 
the systolic environment. During block 
processing, very little systolic I/O oc- 
curs, and each cell executes a series of 
instructions on local data. Once the cells 
generate an intermediate result, pro- 
cessing pauses while systolic IiO takes 
place, and new data is written to each 
cell's local memory. 

Block processing on programmable 
systolic architectures can result in a more 
efficient. pseudosystolic operation in 
some applications for two reasons. First, 
the  merger of von Neumann program- 
mable cell architectures into a systolic 
array environment causes many of the 
same problems found in homogeneous 
multiprocessor systems. The serial na- 
ture of \'on Neumann machines inter- 
feres with the rhythmic systolic I/O of 
the  array,  causing an unacceptable 
amount of time wasted in waiting for 
data to become available. Block pro- 
cessing minimizes this wasted time in 
applications that can be  divided into 
equal segments. Applications are divid- 
ed  into parallel tasks that utilize local 
data. 

Second, for any systolic array, the 
bandwidth and size of the external mem- 
ory are always the limiting factors on 
throughput and performance. Block 
processing reduces the array's systolic 
110 requi rements  by reducing t h e  
amount of cellular IiO. 

Important work has been done on 
characterizing block processing in a gen- 
eral-purpose systolic array.'" Block pro- 
cessing can be  performed on either 
SIMD or  MIMD programmable systol- 
ic machines. Requirements for efficient 
block processing include an appropri- 
ate algorithm and significant local mem- 
ory in each cell. Other  types of array 
communication such as broadcast data 
and global data are  also desirable. 

Architectural issues of 
reconfigurable systolic 
arrays 

The primary architectural issues in 
designing a reconfigurable systolic 
array a re  the hardware platform of 
FPGAs and the class of algorithms t o  be  
targeted to  that platform. The number 
of FPGAs, their topology, and their gate 
density will determine the set of systolic 
architectures that can be synthesized 
and the set of systolic algorithms that 
can be  implemented on that hardware 
platform. Reconfigurable systolic archi- 
tectures are  very interesting because 
the cell's architecture is actually pro- 
grammed. Consequently, the architec- 
ture programmer has complete control 
over what architectural features are  in- 
corporated in each FPGA. Determin- 
ing the cell architecture can be  an iter- 
ative process that continuously refines 
the architecture until it satisfies appli- 
cation requirements. 

FPGA architecture programming dif- 
fers from conventional programming in 
that one programs the circuit's logical 
function, instead of programming a 
model of operations in a high-level lan- 
guage. Reconfiguring an F P G A  is the 
same as logically drawing a new circuit. 
Therefore, an F P G A  platform can as- 
sume any architecture that FPGA gate 
density and package pinout permit. 

Communicat ion and  concurrency 

Novcmber 1993 29 



Broadcast instructions 

C I I I 

Figure 8. A hybrid SlMD programmable systolic architecture. 

must be  evaluated on a case-by-case 
basis a t  the time of configuration. Cur- 
rent gate-density technology does not 
make MIMD arrays feasible due t o  cell 
memory and control requirements, but 
FPGA platforms are well suited for log- 
ical o r  bit-level applications. Splash, for 
example, is a linear reconfigurable ar- 
ray appropriate for bit-level applica- 
tions. 

An FPGA chip can be configured for 
one medium-size systolic element or for 
several simple systolic cells. In either 
case, current technology limits the cir- 
cuit size to  an order of magnitude ap- 
proaching 25,000 gates. Packaging and 
110 pins also influence the design. Cur- 
rent technology limits I/O to approxi- 
mately 200 pins. 

Reconfigurable architectures are also 
highly qualified for fault-tolerant com- 
puting. Reconfiguration can simply elim- 
inate a bad cell from the array. Cell 
architectures can be configured around 
VLSI defects. 

Architectural issues of 
hybrid arrays 

High-level programmable arrays re- 
quire extensive efforts tomap algorithms 
to  high-level languages after algorithm 
development. When mapping is com- 
pleted, the resulting system often is not 
as efficient as a system implemented in 
a fixed-function ASIC. On the other 
hand. low FPGA gate density makes it 
unlikely that large-grain tasks will ever 
be completely implemented in FPGAs 
or  that reconfigurable arrays will re- 
place conventional SlMD and MIMD 

architectures in the near future. Conse- 
quently, a natural step is to merge the 
two approaches, keeping their desir- 
able aspects and discarding their unde- 
sirable aspects. 

The hybrid S lMD architecture" (Fig- 
ure 8) is best utilized for intensive float- 
ing-point computational applications but 
does not degrade in performance as 
much as high-level programmable ar- 
rays when significant logical o r  control 
operations are  included. The hybrid 
design combines a commercial floating- 
point multiplier chip and an FPGA con- 
troller t o  form a systolic cell. The com- 
mercial mult ipl ier  is used for  its 
economy. speed, and package density: 
the FPGA closely binds the cell t o  a 
specific application. Another project is 
attempting to  integrate a hybrid gener- 
al-purpose systolic array cell on a single 
chip.': 

A recently developed simulator al- 
lows simulation and testing of the cell 
and the array design for a hybrid archi- 
tecture." Unlike most commercially 
available computer-aided design utili- 
ties, which verify designs at  the chip 
level, it verifies the performance of al- 
gorithms and architectures through sim- 
ulation of the complete array. The sim- 
ulator maintains the iterative nature of 
purely reconfigurable array design by 
facilitating tailoring of hybrid designs 
for specific applications. 

Existing architectures 

A review of projects initiated during 
the last decade shows that the trend was 
to  develop large systolic array proces- 
sors that require elaborate. customized 

host support. Warp. the Computer for 
Experimental Synthetic Aperture Ra- 
dar ,  the Cellular Array Processor, and 
Saxpy-1M all require expensive and 
complicated I/O support - for the in- 
tensive instruction I/O as well as the 
data  1/0. These machines are  high- 
per formance  supercomputers  (200 
MFLOPS,  320 MFLOPS,  and 1,000 
MFLOPS. respectively) with central- 
ized concurrency, constructed to  fill an 
existing performance gap. 

The introduction of workstations into 
the workplace has changed the way a 
significant portion of the computing 
community views computers. Users de- 
mand improved desktop computing 
performance as applications continue 
to  increase in size and complexity. 
Workstation architecture can always be 
improved. especially for emerging ap- 
plications such as text and speech pro- 
cessing and gene matching. The more 
recent general-purpose systolic array 
projects (Brown,  Micmacs, Splash) 
show that back-end systolic processors 
are effective in boosting a workstation's 
performance for these applications. 
These arrays are small enough that the 
host's open architecture with limited 
U0 bandwidth does not severely im- 
pact the array's performance for low- 
to  moderate-level granularity. Small 
back-end systolic processors are also 
economically sound.  For  example.  
Splash consists of a two-board add-on 
set for a Sun workstation. One  board 
supports the linear array. and the oth- 
e r  supports a buffer memory. The  set 
costs from $13,000 t o  $35,000.' 

Almost without exception, current 
research emphasizes reconfigurable 
cells, reconfigurable arrays, and hybrids 
of functional units embedded in recon- 
figurable FPGA arrays. Reconfigurable 
designs have proven to  be unmatched 
for low- to moderate-granularity require- 
ments but are  not yet mature enough 
for  high-granularity applications. In  
addition, as we have said. reconfigu- 
rable topologies and cells are  highly 
fault-tolerant. Their fault tolerance is a 
configuration issue. not a design and 
fabrication issue. 

Until FPGA chip density progresses 
to  the point where a very large FPGA 
can achieve high-level granularity, hy- 
brid architectures present perhaps the 
most practical means to  a reconfigu- 
rable high-level systolic array. Hybrids 
make use of the most attractive features 
of programmable and reconfigurable 

30 COMPUTER 

I 



methods while adding greater flexibili- 
ty than either method. 

No discussion of general-purpose 
systolic arrays is complete without ad- 
dressing the issues of programming and 
configuration. High-level-language pro- 
gramming is desirable for promoting 
widespread use of programmable sys- 
tolic back-end processors. Of the projects 
we surveyed. only the larger systems 
had mature programming environments. 
Currently, the smaller programmable 
arrays have implemented only assem- 
bly programming. As mentioned ear- 
lier, FPGA-configurable  arrays a re  
configured with the use of a schematic 
editor. One  drawback of this approach 
is that it typically takes more effort than 
programming a programmable cell.’ 

T he systolic array is a formidable 
approach to exploiting concur- 
rencies in a computationally 

rhythmic and intensive environment. 
General-purpose systolic arrays provide 
an economical way to enhance compu- 
tational performance by emphasizing 
concurrency and parallelism. Arrays 
ranging from low-level to high-level 
granularity have been applied to  prob- 
lems from bit-oriented pixel mapping 
t o  32-bit floating-point-based scientific 
computing. Systolic arrays hold great 
promise to be a pervasive form of con- 
currency processing. As a solution to  
the intensive computational perfor- 
mance requirements of tomorrow’s ap- 
plications, general-purpose systolic ar- 
rays cannot be overlooked. m 

References 
1. W.K. Fuchs and E.E. Swartzlander Jr., 

“ Wafer-Scale Integration: Architectures 
and Algorithms.” Computer. Vol. 25. No. 
4, Apr. 1092, pp. 6-8. 

2. P. Quinton and Y. Robert, Sjstolic Algo- 
rifhni.c d Architectures, Prentice-Hall. 
Englewood Cliffs, N.J., 1991. 

3. A. Krikelis and R.M. Lea. “Architectur- 
al Constructs for Cost-Effective Parallel 
Computers.” in Systolic Array Proces- 
sors. Prentice-Hall, Englewood Cliffs. 
N.J.. 1989, pp. 287-300. 

4. H.T. Kung. “Why Systolic Architec- 
tures?” Cotnpurer, Vol. 15. No. 1 .  Jan. 
1982, pp. 37-46. 

November 1993 

5. 

6. 

7. 

8. 

9. 

10 

11 

12 

J.A.B. Fortes and B.W. Wah, “Systolic 
Arrays: From Concept to Implementa- 
tion.” Computer (special issue on sys- 
tolic arrays). Vol. 20, No. 7, July 1987, pp. 
12-17. 

C.K. KO and 0. Wing. “Mapping Strate- 
gy for Automated Design of Systolic 
Arrays.” Proc. Inr’l Conf. Systolic Ar -  
rays. IEEE CS Press, Los Alamitos. Ca- 
l i f . .  Order No. 860, 1988. pp. 285-294. 

R. Hughey and D. Loprcsti. “B-SYS: A 
470-Processor Programmable Systolic 
Array.” Proc Int’l Conf. Parallel Pro- 
cersing. IEEE CS Press. Los Alamitos, 
Calif., Order No 2355-22,1991 .pp. 1580- 
1583. 

M. Gokhale et al., “Building and Using a 
Highly Parallel Programmable Logic 
Array.” Computer. Vol. 24. Jan. 1991. pp. 
81 -89. 

H. Schroder and P. Strardins. “Program 
Compression on the ISA,” Parallel Coni- 
piiting, Vol. 17, No. 2-3, June 1991, pp. 
207-2 15. 

B. Friedlander. “Block Processing on a 
Programmable Systolic Array,” Proc. Int’l 
Conf Parallel Processing. IEEE CS Press. 
Los Alamitos, Calif.. Order No. 889.1987. 
pp. 184-187. 

R. Smith and G.  Sobelman, “Simulation- 
Based Design of Programmable Systolic 
Arrays.” Computer-Aided Design. Vol. 
2-3. No. 10, Dec. 7991. pp. 669-675. 

S. Jones, A. Spray, and A. Ling, “A Flex- 
ible Building Block for the Construction 
of Processor Arrays,” in Systolic Array 
ProcrsJors, Prentice-Hall. Englewood 
Cliffs, N.J., 1989. pp. 459-466. 

Kurtis T. Johnson is an advanccd engineer at 
HRB Systems, an E-Systems subsidiary. His 
intcrests include parallel computer architec- 
tures, parallel algorithms, and digital signal 
processing. He received his BS in 1986 and 
his MS in 1992, both in electrical engineer- 
ing, from Pennsylvania State University. 

A.R. Hurson is an associate professor of 
computer engineering at Pennsylvania State 
University. His research is directed toward 
the design and analysis of general-purpose 
and special-purpose computer architectures. 
He has published more than 110 papers on 
topics including computer architecture, par- 
allel processing. database systems and ma- 
chines, dataflow architectures. and VLSI al- 
gorithms. He coauthored the IEEE tutorial 
hooks, Parallel Architectures for Database 
Systenis and Multidatabase Systems: An Ad-  
vanced Solution for Globallnfornzatioti Shar- 
ing Process. He cofounded the IEEE Sym- 
posium on Parallel and Distributed 
Processing. Hurson is a member of the IEEE 
Computer Society Press Editorial Board and 
a member of the IEEE Distinguished Visi- 
tors Program. 

Behrooz Shirazi is an associate professor of 
computer science engineering at the Univer- 
sity of Texas at Arlington. Previously, he was 
an assistant professor at Southern Methodist 
University. His research interests include 
task scheduling, heterogeneous computing, 
dataflow computation, and parallel and dis- 
tributed processing. He has published wide- 
ly on these topics. He is a cofounder of the 
IEEE Symposium on Parallel and Distribut- 
ed Processing. Hc has served as chair of the 
Computer Society section in the Dallas chap- 
ter oC the IEEE and as chair of the IEEE 
Region V Area Activities Board. Shirazi re- 
ceived his MS and PhD degrees in computer 
science from the University of Oklahoma. in 
1980 and 1Y85. respectively. 

Send correspondence about this article to 
A.R. Hurson. Dept. of Computer Science 
and Engineering. Pennsylvania State Uni- 
versity, University Park, PA 16802: or 
A2H@ecl.psu.edu. 

Laxmi Bhuyan, Conzputer’s system archi- 
tecture area editor, coordinated and recom- 
mended this article for publication. His c- 
mail address is hhuyan@cs.tamu.edu. 

31 

mailto:A2H@ecl.psu.edu
mailto:hhuyan@cs.tamu.edu

