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Seeking Solutions 
in Configurable
Computing

C
onfigurable computing systems com-
bine programmable hardware with
programmable processors to capitalize
on the strengths of hardware and soft-
ware. Often these systems must also

address the difficulties of both hardware and software,
because they mix the technology. While the origins of
configurable computing go back at least 30 years, the
past eight years have brought about a significant
increase in research activity.

Since at least 1989,1 configurable computing sys-
tems2 have demonstrated the potential for achieving
high performance for a range of applications, includ-
ing image filtering, convolution, morphology, feature
extraction, and object tracking. Researchers have
developed prototype systems that achieve performance
an order of magnitude higher than more conventional
approaches for a number of applications. However,
realizing this potential outside of the laboratory has
proven difficult because these systems rely on manip-
ulating low-level abstractions—digital circuits, for
example—and thus require highly skilled developers.

CURRENT STATE OF AFFAIRS
The earliest configurable computing machine was

likely proposed, designed, and implemented by Gerald
Estrin at UCLA in the early 1960s.3 Estrin proposed the
“fixed plus variable structure computer,” which dedi-
cated hardware to both an (inflexible) abstraction of a
programmable processor and a (flexible) component
that implemented digital logic. This basic architecture,
which supports programmed hardware and software, is
at the core of all subsequent configurable computing
systems. Unfortunately, Estrin’s architectural concepts
were well ahead of the enabling technology, and he was
only able to prototype a crude approximation of his
vision. Many of the concepts that are now being dis-
covered by the configurable computing community lie
quietly unheeded in Estrin’s early publications.

The enabling technology behind the renewed inter-
est in configurable computing is the availability of
high-density VLSI devices that use programmable
switches to implement flexible hardware architectures.
These chips contain memory cells that hold both con-

figuration information for the programmable switches
and state information for active computations. Before
programming, the chips present a partial architecture,
which is then refined according to the configuration
information. The configured device provides an exe-
cution environment for a specific application.

The most common devices used for configurable
computing are field programmable gate arrays. FPGAs
present the abstraction of gate arrays, allowing devel-
opers to manipulate flip-flops, small amounts of mem-
ory, and logic gates.

Figure 1 illustrates the basic architectural compo-
nents of all configurable computers. This highly
abstracted model allows a wide range of design choices,
all of which revolve around three main decisions.

• Granularity of programmable hardware. Most
existing configurable computers use commercial
FPGAs. Consequently, application development
involves the use of traditional CAD tools, which
were developed for application-specific integrated
circuits (ASICs). Many application developers
find this low-level abstraction difficult to work
with, and the systems achieve poor circuit den-
sity for highly regular structures such as multi-
pliers. To raise the level of abstraction, several
configurable computing systems under develop-
ment limit the programmable hardware to the
interconnect, and in the place of gates and flip-
flops they use components such as arithmetic logic
units (ALUs) or multipliers.

• Proximity of the CPU to the programmable hard-
ware. First-generation systems typically used
peripheral buses like the Sparc SBus to provide a
coprocessor-like structure. Recently, some re-
searchers have argued that the programmable
hardware must be much closer to the processor,
perhaps even on the datapath, fed by processor
registers. This issue affects hardware design as
well as application development.

• Capacity. Different system designers have made
drastically different choices about fundamental
questions of system capacity. What is the best
ratio of programmable hardware to memory size
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and bandwidth? Or processor communication
bandwidth? How much programmable hardware
is required: an unlimited amount for applications
with unbounded parallelism or only so much?

Granularity of programmable hardware
The configurable computing community is divided

into two camps, according to the level of abstraction
provided by the programmable hardware. The major-
ity of current research efforts use commercial FPGAs
and manipulate digital circuits through logic gates and
flip-flops. We will refer to these devices as netlist com-
puters. As part of conventional CAD development of
ASICs, digital circuits are translated into netlists,
which are composed of logic gates and flip-flops.

In the second camp are the newer architectures,
which are based on “chunky” function units such as
complete ALUs and multipliers. These architectures
limit the programmable hardware to the interconnect
among the function units, but implement those units
in much less IC area.

Netlist computers. A typical netlist computing
device is an FPGA containing thousands of low-pow-
ered processing elements. For example, an FPGA cell
might consist of a single flip-flop and a function gen-
erator that implements a Boolean function of four
variables. FPGAs have a programmable interconnect
that is manipulated as individual wires. Because of
their fine granularity, netlist computers are the most
flexible configurable computers; their elements can
be used to implement state machines, datapaths, and
nearly any digital circuit. This flexibility is purchased
with additional silicon, and it results in lowered per-
formance on certain classes of problems, compared
to chunky architectures. The two best-known netlist
computers are Splash4 and DECPeRLe-1.1

Conceptually, Splash consists of a linear array of
processing elements. This topology makes Splash a
good candidate for linear-systolic applications, which
stress neighbor-to-neighbor communications. Because
of limited routing resources, Splash has not proven as
effective at implementing multichip applications that
are not linear systolic, though some progress has been
made. The DECPeRLe-1 is organized as a two-dimen-
sional mesh and consists of a 4 × 4 array of FPGAs.
Each FPGA has connections to its nearest neighbors
as well as to a column bus and a row bus.

The designers of Splash and the DECPeRLe-1 con-
structed them as attached accelerators alongside work-
stations. Neither Splash nor DECPerRLe-1 provide
general-purpose routing networks between FPGAs.
Instead they require the designer to manually partition
the circuit during the design phase, ensuring that the
available interconnect is used as efficiently as possible.

The netlist computer presents a number of serious
challenges to application development. The developers

must be concerned with the size and usage of the FPGA
devices, the size and usage of the memories, and finally
the overall interconnection of all devices on the plat-
form during all phases of the design process. The
design process is therefore more difficult and time-
consuming. Furthermore, modifications can require a
significant amount of CAD compilation time.

The challenge to the designers of netlist computers
is to show that the increased flexibility presented by
a low-level abstraction is essential to enable an impor-
tant class of applications, thus compensating for the
increased design difficulty. While a small number of
netlist computing systems are available,5 they have
achieved little commercial success thus far.

Chunky function unit architectures. General-pur-
pose processors (including digital signal processors)
use optimized function units that operate in bit-par-
allel fashion on long data words. Compared with
GPPs, FPGAs are inefficient for performing ordinary
arithmetic and logic operations. Netlist computing
has the advantage when it comes to nonstandard bit-
oriented computations such as count-ones, find-first-
one, or complicated masking and filtering.

At the same time, much of the research in config-
urable computing has focused on parallel DSP applica-
tions. Examples include image morphology, sensor
beam forming, and object recognition. These tasks usu-
ally process sensor data that is 8-12 bits wide. Some fil-
tering might also be necessary, which typically requires

December 1997 39

Memory

Memory

Memory

Programmable
hardware: Gates

and/or interconnect

Microprocessor

Memory

Operation
specified in
high-level
language,

like C,
Fortran,

Pascal, or Java

Operation specified with
explicit concurrency, such 
as loops extracted from

C or Fortran,
VHDL, Verilog, or

schematic diagrams
of digital circuits

Figure 1.
Architectural 
components of a 
configurable
computer.



40 Computer

multipliers. Although FPGAs are capable of imple-
menting these regular hardware structures, they are gen-
erally poor targets even when handcrafted libraries are
used. FPGAs do provide a distinct opportunity for hard-
ware specialization. For example, it is now a standard
practice to use customized hardware when multiplying
by a value that is constant over a long period of time.

Chunky function unit architectures address this prob-
lem of poor hardware efficiency by mixing highly opti-
mized parallel function units—the sort found in
programmable processors—with a programmable inter-
connect. For example, a collection of multipliers might
be available along with a crossbar interconnect to effi-
ciently support a wide range of infinite-impulse response
(IIR) filters. This basic approach has been pursued by a
number of recent research projects, including rDPA at
Kaiserslautern,6 Rapid at the University of Washington,7

and Matrix at MIT.8

These architectures each present an abstraction that
is much higher than logic gates and flip-flops.
Consequently, highly regular applications that map
well to a specific implementation will likely achieve
high performance with low silicon cost. Many other
regular applications can probably be mapped onto the
same implementation, either by breaking wide-word
operations into a composition of the narrower, native
hardware function units or by simply wasting the
upper bits of the fixed datapath to handle narrow-
word operations. However, highly irregular computa-
tions will likely be a poor match for these architectures.

The primary challenge for the proponents of
chunky architectures is to identify the essential set of
features for the function units, the datapath width,
and the necessary interconnect structure. Each of these
issues presents a compromise between functional den-
sity and speed on the one hand and applicability on
the other. Thus far, results for chunky function unit
architectures have been limited to design evaluation
and performance estimates. The immediate challenge
is to demonstrate performance on a set of interesting
applications in the laboratory.

Ultimately, frustration in both industry and research
centers on the lack of a single unifying model that
combines the netlist and chunky approaches. While
the models are united by the use of programmable
hardware and processors for executing applications,
there currently is no effective unifying architecture
either within or between the camps. Although it would
be intellectually satisfying to have a single effective tax-
onomy, it is unlikely that one will emerge until a num-
ber of configurable computing architectures deliver
real, commercially relevant applications to the market.

CONFIGURABLE COMPUTING MODELS
One way to characterize the differences among how

configurable computing might be applied is to con-

sider the rate of configuration. We are not concerned
here with the abstractions that are configured, but
rather with the abstraction of the configuration. The
essential characteristic of all the computing models is
that some amount of state is semistatic; that is, it
changes frequently enough to take advantage of pro-
grammability but slowly enough to mask the hard-
ware configuration time.

Static configuration involves hardware changes at a
relatively slow rate: hours, days, or weeks. This clas-
sification trivially subsumes the case of a bug fix. Static
configuration has been used to accelerate a number of
applications, including automatic target recognition.2

Time-sharing is another approach. If an application
can be pipelined, it might be possible to implement each
phase in sequence on the programmable hardware. The
DISC project at Brigham Young University involved
compiling C code fragments to assembly language for
a custom FPGA-based processor as well as configura-
tion components for an FPGA accelerator.9 The FPGA
caches configuration components and executes a
demand-driven fetch and reload in response to a fault.
Time-sharing also has been used to improve perfor-
mance for a number of applications, including a video
communications system and image recognition.2

The most ambitious form of configuration sug-
gested thus far involves dynamic generation of FPGA
circuits. This technique has been proposed for both
evolutionary systems that exhibit emergent behavior
as well as more traditional applications through para-
meterized macro libraries and dynamic placement.
However, it has not yet been shown how broadly this
approach can be applied.

The challenge to the configurable computing
research community is to refine these computing mod-
els into reusable frameworks. Thus far, the abstrac-
tions generally exist in the developer’s mind and are
implemented through ad hoc mechanisms based on
available technology and local experience. The com-
munity must develop a set of application-programming
interfaces (APIs) to support common interactions with
any programmable hardware. Examples include hard-
ware configuration, controlling programmable clocks,
and debugging. At a higher level of abstraction, effi-
cient application development frameworks must be
created that understand these common modes of con-
figuration and allow the developer to quickly and
clearly express the desired structure. Any effective
framework would need to leverage state-of-the-art
research from the compiler and CAD worlds.

CAD and compilation tools
The issues of development models and tools are

inextricably linked. The underlying device hardware
presents an architecture that the tools manipulate and
refine. The tools then make this refined architecture
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available to the system developer. Because the space
between netlist and chunky architectures is large, cur-
rent configurable computing systems leverage a wide
range of development models. However, a number of
consistent problems exist in all current tool sets, and
so we address the problems here as a whole.

Tools for configurable computing systems must
manage resources through time as well as space. Some
of these same scheduling problems occur in VLSI CAD
design systems, where independent hardware blocks
are active concurrently and physical placement can
have a dominant effect on performance. Configurable
computing systems open up the opportunity to
migrate functionality from one time segment to
another, or possibly into multiple time segments in dif-
ferent physical locations. This opportunity presents a
new challenge, as CAD software often introduces
intolerable inefficiencies even when dealing with the
subset of issues that arise during ASIC design.

FPGAs are the most commonly available component
for configurable computing systems. This choice
encourages the designer to use the existing FPGA devel-
opment tools. Thus, applications are specified and
designed by manipulating digital logic components,
usually through schematic capture or synthesis.
Unfortunately, digital circuits are not abstract enough
to enable most programmers to effectively use the tech-
nology. At the same time, the highest level abstractions
available—Verilog and VHSIC Hardware Description
Language—often result in low performance. It is clear
that a development model that manipulates higher level
abstractions, and yet lends itself to highly efficient CAD
tools, will be required before configurable computing
becomes accessible to a large body of developers.

A few efforts have been made to produce a unified
development environment for configurable comput-
ing systems.10,11 Thus far, these efforts have focused
on providing a single language that can be effectively
mapped to either software or hardware. This struc-
ture could then be used in conjunction with an auto-
matic partitioning tool that would guide the
compilation process toward the most appropriate tar-
get for each code block. Furthermore, the model of
computation is processor and ASIC, which happens
to be implemented in reprogrammable logic. Few of
the current experimental development systems incor-
porate any models of dynamic configuration.

One promising avenue of research derives from
existing work on high-performance compilation for
very long instruction word (VLIW) processor archi-
tectures.12 VLIW architectures provide a number of
parallel function units, which are often connected
through flexible but restricted networks. Most exist-
ing compilers are parameterized to study the benefit of
various function unit combinations and interconnect
structures. This computing model is a degenerate case

of the chunky architecture, in which a linear array of
function units is supported by a rich network. It seems
likely that this compiler technology base could be
adapted to support chunky configurable computing
architectures.

The challenge to tool developers for configurable
computing systems is to produce high-performance
development systems that capture the complete appli-
cation specification (hardware and software) and allow
the developer to express how the system adapts through
time. This challenge is particularly daunting in that it
requires leveraging existing tools for ASIC develop-
ment, compilation, and hardware-software codesign
along with capturing those aspects of application spec-
ification that are unique to configurable computing.

Benchmarking and metrics
Because configurable computing systems are devel-

oped to satisfy the demand for higher performance
systems, there must be some objective method of
benchmarking their success. Without objective per-
formance measures, the entire community runs the
risk of losing credibility. However, we do not hold out
much hope that a meaningful broad-based benchmark
suite will be developed for configurable computing
systems, for a number of reasons.

First, high performance is typically achieved by fine-
tuning and tailoring a circuit description to a specific
application. Most of the time these circuits are used
only once; circuits might even be optimized for a spe-
cific data set. It is unlikely that any general benchmark
will apply to these circuits in a meaningful way. When
implementations are highly optimized, basic system
designs (such as netlists) are not even truly portable
across different FPGA architectures. Performance mea-
sures often evaluate the skill of the designers rather
than the system architecture or the technical approach.

Second, configurable computing systems try to
overlap I/O and computation to increase throughput.
It is difficult to incorporate I/O requirements in a
broad benchmark. Furthermore, I/O characteristics
can change dramatically based on the available hard-
ware ports. This factor can complicate the task of per-
forming a deep and thorough performance evaluation.

We are not suggesting that it is impossible to mea-
sure performance and compare results. On the con-
trary, application-specific benchmarks  are an effective
means of evaluation, and ultimately they are the only
meaningful way to compare systems.

Of course, application-specific benchmarks are no
panacea. They tell us only what is possible and do not
always shed light on how the performance was
achieved; this tends to be true of all benchmarks.
However, in these early stages as researchers experi-
ment with a variety of implementation techniques and
architectures, application-specific benchmarks can be
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useful both as a means of comparison (for the same
problem) and as a demonstration of feasibility.

The benchmarking challenge to the configurable
computing community is straightforward: to develop
a benchmark that is useful for understanding and eval-
uating the performance of a range of configurable
computing systems. The path to this goal is unclear.

Commercial development
Despite published research reports, no companies

are known to use configurable computing for a com-
petitive advantage. (FPGA vendors have suggested in
public forums that some current customers do use
configurable computing techniques but consider these
practices trade secrets. It seems unlikely that the num-
ber of such systems could be large.) A number of ven-
dors have produced systems to enable application
development,5,13 though these do not constitute appli-
cations themselves. While FPGAs have become a com-
mon component in a wide range of commercial
products, the vast majority of these uses are for replac-
ing gate arrays to reduce development cost and time.

Even though there are no shipping products, a num-
ber of companies have announced configurable com-
puting systems. In particular, Metalithic is pursuing
digital recording, and Sundance is developing a system
for image processing through automatic hardware/
software codesign. The earliest commercial successes
will likely involve signal processing, particularly image
processing. Many important image-processing appli-
cations are well matched to existing FPGA architec-
tures, and a number of research papers have reported
impressive performance achievements.

Nonetheless, the lack of any visible market use for
configurable computing continues to cast a suspicious
shadow across the entire field.

LIMITATIONS OF CONFIGURABLE COMPUTING
It is not surprising that many of the most pressing

needs for configurable computing systems can be
lumped into the category of FPGA-related technology,
given the fact that so many configurable computing
systems are based on FPGAs. A number of issues are
being addressed by commercial vendors, but we feel
these currently limit configurable computing systems.

• Equivalent gate capacity. By most measures,
available FPGAs have generally provided the
equivalent of 10K to 50K gates. These devices are
often large enough to experiment with the basic
strategies for configuration, but have limited the
scope of the designs and forced application devel-
opers to turn to pared-down systems. The source
of these capacity limits is the use of conservative
semiconductor processes, particularly with lim-
ited metal layers. Recent devices have moved to

leading-edge processes technology, resulting in
FPGAs with over 100K equivalent gates. The
problem of gate density will likely decrease in the
future as on-chip delays drive designers toward
partitioned designs that can be implemented effi-
ciently on multiple chips.

• Configuration speed. Most existing FPGAs use rel-
atively slow serial-shift paths for device configura-
tion, even when a parallel interface is presented
through the I/O pins. The configuration time is
important for many, but not all, models of com-
putation. In particular, those using fast design
swapping might end up limited by reconfiguration
time. The industry is moving toward parts that
reconfigure faster, partly in response to these needs
as well as customer desires for shorter testing cycles.

• Memory structures and interface. Most FPGAs
have no external memory interface that can be
accessed from the active circuit, which forces sys-
tem designers to sacrifice some programmable
resources to build an application-specific mem-
ory interface. A similar problem occurs on a chip,
where blocks of RAM tend to be scarce and hard
to access. A more efficient approach would be for
FPGA vendors to implement standard memory
interfaces on their devices in dedicated hardware,
which can be optimized to the problem.

C onfigurable computing is a rich area of active
research. Unfortunately, no system to date has
yet proven attractive or competitive enough

to establish a commercial presence. We believe that
ample opportunity exists for work in a broad range of
areas. In particular, the configurable computing com-
munity should focus on refining the emerging archi-
tectures, producing more effective software/hardware
APIs, better tools for application development that
incorporate the models of hardware reconfiguration,
and effective benchmarking strategies. ❖
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