
PROCEEDINGS OF THE IEEE, VOL. 71, NO. 1, JANUARY 1983 113

On the Design of Algorithms for
VLSl Systolic Arrays

Abmnct-This paper is concerned with the mappmg of cyclic loop
a@dthms mto CPedrEpurpose YLSI arrays. The mapping procedure is
based on the mathematkal tran8fonnati011~ of m d a sets and data d e
pendencevectors. Neasgymdsuff&ntconditionsfortheexistenQ

dependences. Two exam- of diffexeat dgoxithms are given to illus-
trnte the propod mrpping procedere; first k the LU decomposition of
amatrixwhiChledstocon8tmtdrtadependenQW~dsecondly
is the dynamic pqnmmiug which leads to dependences which are
~ ~ o n t t t e i a d e x s e t P a d u e m o r e ~ t t o b e m . p p e d m t o
VLSI arrays.

o f v a l i d t r r n B o r m r t i o n s a r e g i v g ! n f o r ~ w i t h ~ t & t a

I . INTRODUCTION

T HE TECHNOLOGY available to produce central pro-
cessor units (CPU) and computer memories has always
influenced the architecture of computers. Improvements

in technological processes resulted in higher computer perfor-
mances. The present semiconductor technology has reached
already the level of maturity beyond which no significant
breakthroughs are expected for switching speeds. The level of
integration, however, continues to grow and in the next ten
years it will be possible to incorporate one million logic gates
on a die of a chip. This very large scale integration (VLSI) is a
new technological environment which requires new ideas in
computer organization, theory of computing, and other related
fields.

In this paper we are concerned with the development of
algorithms for special-purpose VLSI arrays. As will be seen
below, while the VLSI technology offers remarkable advant-
ages to the system designer, it also imposes restrictions on the
design of algorithms. The most important of these restrictions
is the necessity for reduced communication complexity.

The paper is organized as follows: in Section I we discuss the
implications of the VLSI technology on computer architec-
tures and algorithm design. Sections I1 and I11 contain the
main results of the paper; fmt, a technique is proposed to
transform algorithms with loops into highly parallel forms
suitable for VLSI devices; then, a procedure is proposed to
map these transformed algorithms into VLSI systolic arrays.
In Section IV, algorithms for the LU decomposition of a ma-
trix and dynamic programming are used as examples to show
how previously proposed architectures can be formally derived
using appropriate algorithm transformations.

A . VLSI Al&-o&hrns and Architectures
The main advantages offered by the VLSI technology are:

large amount of hardware available at very low cost, reduced

research was partially supported by the National Science Foundation
Manuscript received April 22, 1982; revised October 20, 1982. This

under Grant ECS 81 19509.
The author is with the Electrical Engineering Department-Systems,

University of Southern California, Los Angeles. CA 90089.

Device

1
Interconnection Network

Fig. 1. Organization of a computer system containing several special-

sor. and main memory.
purpose VLSI processor arrays, interconnection network, host proces-

power consumption and physical size, and increased reliability
at the circuit level. Additionally, the high level of integration
can conceivably eliminate the need to physically separate pro-
cessors from memory, thus eliminating the bottleneck between
them. Parallelism and pipelining are two classical concepts
without which the efficient utilization of the large hardware
resources offered by VLSI is not possible. Parallelism implies
the operation of many units at the .same time. Pipelining also
requires a multitude of resources, but in contrast with parallel-
ism, the resources work in a chain allowing data to flow only
from one unit t o the next one. Both, parallelism and pipe-
lining, can be seen at different logic levels. The f m t level of
parallelism is offered by partitioning a computational task into
smaller computational modules. The second level of parallel-
ism is found within each computational module. The last level
of parallelism is offered by the simultaneous processing of all
the bits in a word; and this level is present in almost all com-
puters. The focus of this paper is the parallelism at the second
level.

The exploitation of parallelism at the first level is often
necessary because computational problems are larger than a
single VLSI device can process at a time. If a parallel algorithm
is structured as a network of smaller computational modules,
then these modules can be assigned to different VLSI devices.
The communications between these modules and their opera-
tion control dictates the structure of the VLSI system and its
performances. In Fig. 1, a simplistic organization of a com-
puter system consisting of several VLSI devices, main memory,
and an interconnection network are shown. Each VLSI device
has a number of processors working in parallel.

The 1/0 bottleneck problem in VLSI systems presents a
serious restriction imposed on the algorithm design. The
challenge is to design parallel algorithms which can be parti-
tioned such that the amount of communication between mod-
ules is as small as possible. Moreover, data entering the VLSI

0018-9219/83/0100-0113$01.00 O 1983 IEEE

114 PROCEEDINGS OF THE IEEE, VOL. 71, NO. 1, JANUARY 1983

device should be utilized exhaustively before passing again
through the 1/0 ports.

Another potential problem which can deteriorate the per-
formance is the data communication within the VLSI device.
The interconnections between logic gates are as expensive as
the logic itself and the signal propagation is comparable with
the logic switching time. An efficient utilization of silicon
area, time, and energy is achieved only if the hardware contains
local interconnections. The solution to this problem is to
design algorithms which, when mapped into VLSI hardware,
require only local data transfers. In the next two sections it is
shown that some algorithms can be transformed to meet these
requirements.

Systolic array architectures have been proposed by Kung [1 1,
[2] and others as a possible solution to these VLSI problems.
In the systolic concept, VLSI devices consist of arrays of inter-
connected processing cells with a high degree of modularity.
Each processor operates on a string of data that flow regularly
through the network. If the 1/0 problem is ignored, the
throughput of such computational structure is proportional
to the number of cells.

In order to match better the characteristics of algorithms
with the characteristics of computer architectures, and con-
sequently to increase the efficiency of computation, a care-
ful mapping of the computational problem to the machine is
necessary. The mapping of algorithms into systolic arrays is
different than the mapping of algorithms into architectures
with fixed number of processors and interconnections. In the
case of systolic arrays, one has to deal with issues ranging from
the organization of the network of cells to the detailed op-
eration of the cells. In fact, the mapping is nothing but the
design of the VLSI array according to the properties of the
algorithm and a set of design goals.

A number of special-purpose VLSI architectures have been
proposed in the last few years. Kung's early work in parallel
algorithms for VLSI has stimulated a considerable interest. He
proposed systolic arrays for matrix-vector and matrix-matrix
multiplications, LU decompositions, recurrence evaluations,
etc., [1 I) [21. The VLSI implementation of some combina-
tional algorithms has been investigated by Guibas et al. [3] .
Algorithms for solving systems of equations have been pro-
posed by Kung [4] , Hwang and Cheng [51, and Preparata [61.
The special-purpose VLSI computing structures have found
immediate application in signal processing where many algo-
rithms have regular structures [71, [81.

B. A VLSZ Model of Computation
A model of the VLSI computing structure is needed in order

to relate the features of an algorithm to the realities of the
hardware. Tradeoffs are possible between various parameters
of the VLSI device in order to improve one performance or
another. The approach taken here is to distinguish between
the operation of the systolic system at the array level and the
activities taking place inside the processing cells. The array
level is called the global level, and the processor level is called
the local level. At both levels, the operation should be ex-
amined in time and space. Fig. 2 shows the main steps involved
in the design of a special-purpose VLSI chip.

In this paper, we will focus only on the step from the parallel
algorithm to the global model. A model of the processing cell
and the transition from the global model to the local model
can be found in [9] . The organization and the operation of
the VLSI array can be described by the network geometry G,
the functions F performed by the processing cells, and the net-
work timing 2'.

I I
I I
I I

1 VLSI Cornputattonal Model I
L - - - - _ _ _ - - - - - _ _ i

Fig. 2. Main steps in the design of a special-purpose VLSI device.

The assumptions about the VLSI systolic network are as

a) The network consists of a planar mesh connected network

b) The cells can be of different types and perform different

c) The interconnections between cells are buses which trans-

d) The operation of the network is synchronous.
The network geomeny G refers to the geometrical layout of

the network. The position of each processing cell in the plane
is described by its Cartesian coordinates. By choosing the grid
arbitrarily small it is possible to represent these coordinates by
integers. Then, the interconnections between cells can easily
be described by the position of the terminal cells. These inter-
connections support the flow of data through the network; a
link can be dedicated only to one data stream of variables or it
can be used for the transport of several data streams at differ-
ent time instances. A simple and regular geometry is desired.

The functions F associated to each processing cell represent
the totality of arithmetic and logic expressions that a cell is
capable to perform. We assume that each cell consists of a
small number of registers, ALU, and control logic. Several
different types of processing cells may coexist in the same net-
work; however, one design goal should be to reduce the num-
ber of cell types.

The network timing T specifies for each cell the time when
the processing of functions F occurs and when the data com-
munications take place. A correct timing assures that the right
data reach their destination at the right time. The speed of the
data streams through the network is given by the ratio between
the distance of communication link over the communication
time. Networks with constant data speeds are preferable be-
cause they require a simpler control Iogic.

In summary, the global model of the VLSI array can be
formally described by a set of 3-tuples (C , F , T). The more
regular the network is the simpler these functions become.
This model is quite general and it is sufficient for the purpose
of this paper of developing a methodology for designing VLSI
algorithms.

In the next section, a technique is developed to study and to
modify computational algorithms for the purpose of mapping
them into VLSI processing arrays. While any algorithm can be
analyzed using this technique, only some algorithms can be
mapped directly into simple systolic arrays.

follows:

of processing cells.

functions.

fer parallel words.

11. TRANSFORMATIONS OF ALGORITHMS FOR
SYSTEMS

A . Data Dependences

The intention of mapping computational algorithms into
VLSI circuits implies first a transformation of algorithms into
equivalent but more appropriate forms for VLSI. The basic
structural features of an algorithm are dictated by the data and
control dependences. These dependences refer to precedence

MOLDOVAN: ALGORITHMS FOR VLSI SYSTOLIC ARRAYS 115

relations of computations which need to be satisfied in order
to compute the problem correctly. The absence of depen-
dences indicates the possibility of simultaneous computations.
These dependences can be studied at several distinct levels:
blocks of computations level, statement (or expression) level,
variable level, and even bit level. In this paper, since we con-
centrate on algorithms for V U 1 systolic arrays, we will focus
only on data dependences at the variable level which is the
lowest possible level before the bit level.

The analysis of data dependences in high-level language
(HLL) programs for the purpose of detecting concurrency
of operations has received considerable attention in the last
decade. Muraoka [101 and Kuck et al. [11] have studied the
parallelism of simple loops and have introduced the notion of
dependence relations between assignment statements. Towle
[121, Banergee [131, and Banejee et al. [141 extended the
methodology of transforming ordinary programs into highly
parallel forms. Based upon dependences between statements,
they have provided algorithms for exploiting parallelism in
loops. Techniques such as loop freezing, wave from method,
the splitting-lemma, and loop interchanging have been intro-
duced. Recently, Kuhn [151 has proposed a methodology to
analyze data dependences using transformations on convex
index sets. Results on program transformations were also
reported by Lamport [16 1 .

All these results were aimed mostly towards program speed-up
and compiler design. Although the program transformations
proposed before contain many basic results, they are not
adequate enough for VLSI implementations. In addition to a
high degree of parallelism, VLSI arrays suggest pipelining and
reduced communication distance and time.

Previous work in algorithm transformations has focused on
deciding whether a pair of Occurrences is dependent or not.
The present approach is based not only on the detection of
dependences but also on their modification. The very struc-
ture of algorithm interconnections has to be modified in order
to increase the "locality" of communications and to meet
other VLSI requirements.

In what follows, algorithms written in HLL are considered.
Other forms to express algorithms are possible, but the results
would be similar. Consider a Fortran loop structure of the
form

DO 10 I' = 1 ' , u'
DO 10 I' = 1 2 , u2

sN(f)
10 CONTINUE

where l i and ui are integers value linear expressions involving
1', * * , Zi- ' andf = (Z', I * , * , I ") . SI,S2, * - , S N are as-
signment statements of the form X = E where X is a variable
and E is an expression of some input variables.

Let 3 denote the set of all integers and 9" denote the set of
n-tuples of integers. The index set of loop (1) is a subset of
9" and is defined as

P(i) = {(Z', * , I ") : I' <I' < u ' , * , I " <I" g u n) .

When loop (1) is executed, the elements of L" are ordered in
a lexicographical ordering. This is an induced ordering which
is not essential and can be modified. Let f and g be two integer

functions defined on the set L". Denote X and Y two vari-
ables whose indices are f andg; we write X (f (1)) and Y(g(1)).
Variables X and Y are generated in statements S(il) and S(iz),
respectively. Variable Y(g(f)) is said -to be dependent on
variable X (f (- j)) and wiite X (f (Z)) + Y(g(1)) if

a) Il < i2 (throughout the paper "e' means "less than"

b) f (TI) = A f z 1
c) X(f(i)) is an input variable in statement S (f 2) .

in lexicographical sense)

The vector 2 =I2 - fl is called the data dependence vector.
An algorithm has a number of such dependence vectors. In
general, the dependence vectors are functions of the elements
of set L", i.e., d = d (i) , as will be seen in Section 111-B. There
is, however, a large class of algorithms with fixed, or constant
data dependence vectors.

B. Transformation of Index Set and Data Dependences
Denote the ordering imposed by the data dependences on set

L" with R. The elements of L" and orderingR form together
a well-defined algebraic structure (P, R). We seek now a trans-
formation T such that

T : (P, R) + (J$, RT) (2)

with the following properties:

a) Tis a bijection and a monotonic function (2a)
b) The data dependences of the new structure (LF, RT)

can be selected by us. (2b)

Since T is a bijection, the two structures are said to be isomor-
phic, and since Tis monotonic with respect to R and RT

d > O + E = T (; i) > O .
It simply means that the transformation T preserves the sense
of the data dependences. The meaning of the second condition
will soon become clear. The transformation Tis partitioned in
two functions as follows:

T = [z].
The mapping I l is defined as

II: L"+L$, n > k

n(Z',IZ;..,In)=(J',J2;..,Jk), with jEJ$.

The mapping S is defined as

s: L" + e;+
s (I ~ , z 2 , . . . ,zn) = (Jk+l,]k+Z . . . , , J").

The dimensionality of functions n and S is marked by k; and
k is selected such that n alone establishes the ordering RT.
The first k coordinates of elements 7 E J$ can now be related
to time and the last n - k coordinates be related to the geo-
metrical properties of the algorithm. In other words, the time
is associated io the new lexicographical ordering imposed on
the elements J and this is given only by their first k coordinates.
The last n - k coordinates can be chosen by us to satisfy our
expectations about the geometrical properties of the algorithm.
For all elements c€ f for which n (f) = constant, the first
k coordinates of J (j) are also constant. It follows that all
such f E f can be processed concurrently. n(7) = constant
represents hypersurfaces with property to contain elements
which are not data dependent.

116 PROCEEDINGS OF THE IEEE, VOL. 71, NO. 1, JANUARY 1983

The freedom of selecting (Jk+', , J") can be used advan-
tageously to satisfy property (2b); that is, to localize the data
communications in the VLSI system.

Consider the case when an algorithm of form (1) with n
loops provides m constant d g a Cependenze vectors. These are
grouped in a matrix D=[dl,d2,*.-,d,],~ER"Xm. A
linear transformation T & stught, i.e., J = T - I . Since T is lin-
ear T(f + di) - T(I) = Tdi = ai for 1 < j g m. These equations
can be written as

TD = A (4)

where A = [a,, a 2 , * e a , Zm I . The matrix A represents the
modified data dependences in the new index space .e", and
according to the requirements (2b) they are assumed known.

The interesting question now is under what conditions can
such T exist? System (4) represents n x m diophantine equa-
tions with n2 unknowns. T exists if system (4) has solution
and the solution consists of integers, The following theorem
indicates the necessary and sufficient conditions for valid linear
transformations and it can be used as a tool to preselect A.

Theorem I : For an algorithm with a constant set of data
dependences D, the necessary and sufficient conditions that a
valid transformation T exists are as follows:

i) The new data dependence vectors Ei are congruent to the
dependences 4 modulo ci, where ci is the greatest
common divisor (gcd) of the elements of 4

%E &(mod ci). (5)

- -

ii) System (4) can be solved for T.
iii) The first nonzero element of vector gi is positive.

R o o f : Sufficient: Condition i) indicates that the elemetts
of 8i are multiples of the gcd of the elements of respective di .
This is a necessary and sufficient condition that each of the
n X m diophantine equations can be solved for integers [171.
According to ii) system (4) has solution. Since tke f i t non-
zero elements of gj are positive it follows that n d i > 0, thus
T is a valid transformation. NecessaTy: Transformation Tis a
bijection and consists of integers, hence i) and ii) arz required
conditions. Because T preserves the ordering RT, ai > 0 and
this implies that the f i t nonzero element is positive. QED

In the selection of A one should choose the smallest possible
integers for its elements. In this way, the processing time and
the communication requirements of the transformed algorithm
are being optimized.

C. Mapping Algorithms into Hardware
The transformation of the index sets described above is the

key towards an efficient mapping of an algorithm into a special-
purpose VLSI array. It is shown in what follows how the
global model of the VLSI device introduced in Section I can
be derived directly from the transformed algorithm.

The functions F performed by the cells are derived directly
from the mathematical expressions indicated in the algorithm.
An algorithm of form (1) contains assignment statements in
one loop body which is executed repeatedly for all iteration
points in set f . This implies that all the processing cells can be
made identical. The peripheral cells performing input/output
operations are, of course, different than the rest. If the mathe-
matical expressions inside the loop involve too many com-
putations, the loop can be split into several simpler loops.
Algorithms with several distinct loop bodies normally require
different processing cells.

The network geometry G refers to the physical underlying of
the network, and it is derived from the mapping S: x" -+ J$-k.
A processing cell is assigned to each distinct element of x$-k.
Assuming that in algorithm (l) , ui - li = O(N) for all i = 1, 2,
* * e , n where N is the size of the problem, it follows that the
total number of processing cells is O(N"-'). The position,
or the identification number of each cell is given by S (j) =
(Jk+', * * , J") . The interconnections between cells necessary
for the data communication are derived directly from the last
n - k components of the modified data dependence vectors 4 7 S (j + &) - S (j) , which becomes S q for linear transfor-
mabons. For each cell, the vectors gy indicate the relative des-
tination of the variable associated to that dependence vector.
These interconnections are then replicated to the entire net-
work. Although three-dimensional and multilayer VLSI net-
works may be attempted, the most practical is the planar
arrangement. If n - k > 2, an additional one-to-one mapping
S' is necessary s': .e",-k + x$.

The network timing T is derived from the mapping n: f -+

(6. The exact time when t_he processing related to an element
I E f occurs is simply ll(Z). The communication time for a
dat? stream ass_ociated with a dependence vector a is given by
n (I + 6) - n (I) , which in the case of a linear transformation
reduces to nz. The total running time for VLSI algorithm is
[max n(1) - min n(r)]. It can be seen that linear transforma-
tions yield a running time O W k) , while higher order mappings
ll will normally lead to higher order processing times. Notice
that the running time includes only the computation time
and the communication time and not the input/output time.
Another observation is that keeping k as small as the transfor-
mation permits should be one goal in designing VLSI algo-
rithms. This wiU increase the concurrency of operations at the
expense of the number of processors.

It remains to demonstrate that indeed the VLSI model exe-
cutes the algorithm correctly. Since we consider here only the
global model, it will be sufficient to show that the data flow
through the VLSI network is correct. We say that the data
flow through the network is correct if al l the variables neces-
sary to compute the mathematical expressions of the algorithm
are available at the proper time at the proper cell. The follow-
ing theorem refers to linear transformations.

Theorem 2: A transformation

of an algorithm which satisfies Theorem 1 maps that algorithm
into a systolic array in which the data flow is correct.

R o o f : Consider a typical assignment statement x = E(u1,
u 2 , - * * , ur) executed at f E f . From the definition of data
dependence vectors we have

where E f and correspond to the generation of variable
vi. Apply the linear operators ll and S to (6)

nF=nfl +nZl =ni2 +nd, nl; + nd, (7)

If the computations at 4 E f produce correctly ui, then it
follows from (7) and (8) that all the input variables will be
available for i E f at the same time a_nd at the same process-
ing cell. For each ui it corresponds a di and A can be selected
as desired. It follows that there is no overlap in the flow of

MOLDOVAN: ALGORITHMS FOR VLSI SYSTOLIC ARRAYS 117

Fig. 3. (a) Broadcasted variables. (b) Pipelined variables.

the data streams and no cell is required to perform more than
one operation at any one time. QED

D. Procedure for Mapping Algorithms into VLSI Systolic
Arrays

In this subsection, a procedure is proposed which summarizes
the technique introduced above. This procedure will then be
used in the next section to discuss some examples.

Step 1) Pipeline all variables in the algorithm.
Step 2) Find the set of data dependence vectors.
Step 3) Identify a valid transformation for the data depen-

dence vectors and the index set.
Step 4) Map the algorithm into hardware.
Step 5) Prove correctness and analyze performances,

Explanation: The role of the first step is to eliminate all pos-
sible data broadcasts which may exist in the original algorithm.
Consider,-for example, that a variable u is generated +t some
element IO E L" and used at several other elements Ii E L",
i = 1, 2, * * * , r. There are r data dependence vectors for vari-
able u, as shown symbolically in Fig. 3.

The highest parallelism for variable u is achieved when all the
use statements S (j i) , i = 1 , 2, * * e , r , are performed in parallel,
provided that there are no other restrictions; thus the gener-
ated variable u needs to be broadcasted at once. However, it is
likely that in the VLSI implementation, this algorithm will be
communication saturated. The goal is then to reduce the num-
ber of the original data dependences. The solution to this
problem is to pipeline the propagation of variable u for the
r usage statements, as shown in Fig. 3(b). New data depen-
dences have been created by arbitrarily ordering the usage
elements. If the new arrangement offers fewer dependences,
then this will eventually translate into fewer communication
requirements.

Typically, broadcasts are signaled by missing indices of vari-
ables in the loop. In order to avoid broadcasts and to increase
pipelining we f i t complete all the missing indices and intro-
duce new artificial variables such that for each generated vari-
able there is only one destination.

Example: Consider the following loop which implements a
matrix multiplication C = A B , where A , B E R" x ".

DO 10 k = 1 t o n
DO 10 i = 1 t o n
DO 10 j = 1 t o n (9)
c (i , j) = c (i , j) + a (i , k) - b (k , j)

10 CONTINUE.

This loop can be written in an equivalent form in which vari-
ables a , b , and c are pipelined

DO 10 k = 1 t o n
DO 10 i = 1 t o n
DO 10 j = 1 t o n

s, : a i + l (i , k) = ai(i , k)
s2 : b'+l (k , j) = b'(k, j)
s3 : ck+'(i , j) = ck(i , 1) + ai(i, k) * bi(k, j)

10 CONTINUE.

The data dependence vectors of the algorithm can now be
found using their definition. All possible pairs of generated
(output) and used (input) variables are formed and their indices
are equated. This is equivalent to writing fl + 2 = f2, from
which the data dependence vector 2 can be found directly. It
is possible that two different pairs of variables lead to the same
data dependence vector. Caution should be exercised to iden-
tify only valid generated-used pairs of variables.

As an example, consider loop (10). For variable c , S3 is
both the generate and the use statement. The pair (ck'+'(i, j) ,
c k (i , j)) is formed (in this example we use ' for the indices of
the generatqd variable). This yields a dependence vector Jl =
(I ~ - k ' , i - i , j - j ') ~ = (l , . , O , 0)'.

The generated variable a1 +l(if , k') in S1 is used in S1 and S3.
However only one distinct pair can be formed for variable
a, Le., (a (i ' , k'), aj(i, k)). It follows that & = (k - k', i - i ' ,
j - jf)r = (0, 0, l)r. Similarly, the data dependence vector is
found for variable b , z3 = (0, 1, O)r. For the matrix multi-
plication algorithm pipelined as in loop (lo), there are only
three data dependence vectors d, , d2, and d3. Note that these
vectors are independent of the index set.

Steps 3) and 4) have been discussed only for the case of linear
transformations. As will be seen in the next section, the
dynamic programming algorithm requires a more complex
transformation. Step 5) is necessary in order to validate the
mapping process and to ensure that the performances obtained
are satisfactory.

3'+1

111. EXAMPLES
A . L U Decomposition of a Matrix A

Consider a matrix A which can be decomposed into a lower
and upper triangular matrices by Gaussian elimination without
pivoting. VLSI computing structures for the LU decomposi-
tion problem have been proposed by Kung [1 1 , Kung [41,
Hwang and Cheng [51, and others. In this example it is shown
that previously proposed architectures can be formally derived
by using appropriate algorithm transformations.

The algorithm for the LU decomposition of a matrix A = [q i]
is expressed by the program written in Pidgin ALGOL

for k + 0 until n - 1 do
begin

f o r j + k + 1 untiln - 1 do

f o r i + k + 1 untiln - 1 do

f o r i + k + 1 untiln - 1 do

llkk l/akk

ukj 4 akj

hk aikukk

f o r j + k + l u n t i l n - 1 d o
aij + aii - lik * "kj

end.

This program can be rewritten into the following equivalent
form in which all the variables have been pipelined and all the
data broadcasts have been eliminated.

118 PROCEEDINGS OF THE IEEE. VOL. 71, NO. 1, JANUARY 1983

TABLE I
DATA DWENDENCRS FOR LU DRCOMFOSI~ON

The pairs of generated-used
variables k-kl i - i ' j-j'

Date dependences

1:

2:

3:

4:

f o r k f o u n t i l n - 1 do
begin

i + k ;
j f k ;
Ukj c '/aij k
f o r j f k + 1 untiln - 1 do

begin
i f k ;
Uki c ak

II
end

f o r i + k + l u n t i l n - 1 d o
begin

j + k ;
.i + . i - l ;
.ki ki

lik f a!. - Uki
II

end
f o r i f k + 1 unt i ln- 1 do

f o r j f k + 1 untiln - 1 do
begin

end
end.

This algorithm is similar to the matrix multiplication (9) .
Indeed, both algorithms yield the same data dependences. The
only three distinct pairs of generate and use variables and their
respective data dependence vectors are summarized in Table I.

The data dependences - - - for this algorithm have the nice p r o p
erty that D = [dld2d3] = I . There are several other algorithms
which lead to these simple data dependences, and they were
among the first t o be considered for the VLSI implementation.

Following the methodology of Section 11, the next step (step
3) is t o identify a linear transformation of form (3). This trans-
formation must have the following properties: ndi > 0, it
offers the maximum concurrency, and Tis a bijection. Accord-
ing to Theorem 1, T exists, and furthermore, T = A. Denote

ti l t l2 t13
- - - - - - - - - - - .-[::: hj.

In this case, it is possible to have k = 1, thus ndi = tli > 0.
The smallest possible positive integers are tl l = t12 = t13 = 1.
The first two conditions are satisfied; and ll is unique. In the
selection of mapping S we are now restricted only by the fact
that T must be a bijection and consists of integers. A large
number of possibilities exist, each leading to different network

geometries. We choose

T =

Eli. 4. VLSI array for the LU decomposition algorithm;

K ; !
r k l

The original indices k, i, j are transformed by T into k, i, j .
The organization of the VLSI array, for n = 5 generated by the
transformation (1 3) is shown in Fig. 4.

In this architecture variables a: do not travel in space, but
y e updated in time. Variables $ move along the direction
j (east) with a speed of one Qd per time unit, and variables
u$ move along the direction i (south) with the same speed.
The network is loaded initially with the coefficients of A , and
at the end the cells below the diagonal contain L and the cells
above the diagonal contain U.

The processing time is nmax - nmb = 3n - 5 . All the cells
have the same architecture. However, their functions at one
given moment may differ. It can be seen from the program
(1 2) that some cells may execute loop 4, while others execute
loops 2 or 3. If we wish to assign the same loops only to
specific cells, then the mapping S must be changed accordingly.
For example, the transformation

A A h

introduces a new data communication link between cells, to-
ward north-west. These new links will support the movement
of variables u t . According to this new transformation, the
cells of the fmt row always compute loop 2, the cells of the
first column compute loop 3, and the rest compute loop 4.
The reader can now easily identify some other valid transfor-
mations which will lead to new organizations. By applying
Theorem 2 to this example, one can prove the validity of an
architecture.

In the next example, we will see data dependences which are
no longer fiied, and this presents a challenge for finding a
proper transformation.

B. Dynamic Rogramming
Many problems in computer science and engineering can be

solved by the use of dynamic programming techniques. We
consider here the VLSI implementation of an optimal paren-

MOLDOVAN: ALGORITHMS FOR VLSI SYSTOLIC ARRAYS 119

TABLE II
DATA DEP~NDMNCPS FOR THE DYNAMIC PROGRAMMING ALGoamr~

L-

Pairs of generated-used Data dependences
variables 1-18 i-i' k-k'

< , mt;l >

(1 0 f) T = a3 < In;::, i,+l, I '

(1 -1 O) T = a,

(1 0 O) T = a1

g)T = a4

c mi' k'+l, i'+ L' ' mk+l,i+L >
L-1

"*

< m!'
11, ~ * + L I , %+I, i+.t ' 1-1

thesization algorithm based on dynamic programming. A
string of n matrices are multiplied

M = M 1 X M 2 X . * . X M n . Fig. 5. Data dependence for the dynamic programming algorithm
(n = 6). The encricled numbem correspond to elements of the index

Let r o , rl , * , rn be the dimensions of the n matrices with set I f k.
r i - l and ri dimensions of Mi. Denote by mii the minimum
cost of computing the product Mi - Mi. The algo- k - k' can take marry possible values
rithm which finally produces mln is written as follows [181 : f = I - 1 ,z - 2 ;* . , 1

for i + 1 to n do mii + 0
for I f 1 t o n - 1 do

f o r i + 1 t o n - I d o
begin

j + i + l

end.

Following the methodology of Section 11, this program is trans-
formed into the following equivalent form:

fo r i 6 1 to n do mii f 0.
f o r I + 1 t o n - 1 do

f o r i t 1 t o n - I d o
f o r k + i t o i + I - l do

begin (15)
mik + m1-1 ik

m:+l,i+l+mlk;'l i + I
mi,i+l + MIN (m$' +m;L1l , i+l + r i - l r k r i + l)

end.

We will assume that the input data r are loaded on the network
before the computations start, so we can neglect the depen-
dences caused by the constant data r . This assumption is made
only for the purpose of simplifying the explanation; in fact,
the dependences caused by data r are similar t o those generated
by variable terms.

The data dependences derived from the above algorithm are
shown in Table 11. There are only four possible distinct pairs
of used-generated variables.

The data dependence vectors for the first two pairs of gen-
erated-used variables are easily derived in the same manner as
for the previous examples (see Table 11). The last two depen-
dences, however, require more attention. Consider, f i t , the
pair (m i ; , i , + l , , mi;'); it yields that I - I ' = 1, i - i' = 0, and
k = i' + I . Form program (1 5), k' takes values between i' and
i ' + I ' - l . I f , f o l l o w s t h a t k - & ' = I - 1 , 1 - 2 ; * * , 1 . Similarly,
thepair(m~, , i ,+r t , ,I-1 k + l , i + I) y i e l d s I - l ' = l , i ' + l ' = i + l , a n d
i' = k + 1. From the first two equalities it results that i - i' =
- 1, and finally, since k' = i ' , * * , i ' + I' - 1 it follows that
k - k' = - 1, -2 , * . . , - 2 + 1. Therefore, for both d3 and d4,

g = - 1 , - 2 ; * . , - 1 + 1 .

The difference k - k' is not fixed because the order in which
the minimization in loop k is performed is not specSed. For
instance, in program (15) if mii+, is generated when R takes
the largest value, then f = 1 and g = - I + 1. Notice that, if the
minimization procedure in loop k is performed sequentially,
then either f or g will depend on the value of 1. This fact con-
stitutes an obstacle in finding a linear transformation for the
dynamic programming problem. Fig. 5 shows the dependences
between the iteration elements for n = 6 . Each column corre-
sponds to a different value of I and each group in the column
corresponds to a different loop k, in which the order is not
specified yet. For example, element 512 receives data from
elements 412 and 422, but element 5 11 receives m26, the re-
sult of elements 422,423,424, and 425.

The following mapping n is proposed for the dynamic pro-
gramming algorithm:

n1 (I, i, k) = 22 + i - k
& (I , i , k) = l - i + k + 1

n(Z, i, k) = max

The index set, which constitutes the domain of the mapping
function n, is separated into two disjoint sets, one for nl and
the other for n2. This mapping n has the advantage that by
exploiting possible concurrencies within loop k, it provides a
processing time O(n). The first half of any loop k uses Ill and
the second half uses n2. Because of this new concurrency
between the first and the last index elements of loop k, the de-
pendences d3 and d4 are transformed respectively in (1 0 I)'
and (1 - 1 - 1lr. This is possible because n, applies to d4 -s
while n2 applies to d3 's. The only inconvenience created by
mapping n is that the data flow in data streams does not lave
a constant speed. This is easily seen from the fact that n l d l =

The mapping S is selected such that the resulting VLSI archi-
2f11~& = 1 a n d n l Z 2 = 1 #n2d2 = 2 .

tecture will be simple and regular.

120 PROCEEDINGS O F THE IEEE, VOL. 71, NO. 1, JANUARY 1983

mS6

Fig. 6. VLSI array for the dynamic programming.

The mapping n toge+eK with the mapping S form a transfor-
mation T: (I , i, k) -* (I , i, E)

This transformation leads to the VLSI architecture shown in
Fig. 6. This architecture was first proposed by Guibas et al.
[31. All the processing cells perform the same functions, and
no memories are required. There are O(n2) cells. The opera-
tion of this network and the proof of correctness become now
particular cases of Theorem 2.

IV. CONCLUSIONS
The design of special-purpose VLSI devices is a multistep

process (see Fig. 2). In this paper we have concentrated only
on the step concerned with the mapping of linear cyclic algo-
rithms into high-level VLSI models. The VLSI devices are
assumed to be two-dimensional array processors with local
communications. The model resulting from the mapping pro-
cedure specifies the complexity of processors, interprocessor
connections, and the timing of the data flow. Although we
have concentrated in this paper only on a class of algorithms,
the methodology proposed here can constitute the foundation
of a unifying approach to the design of VLSI algorithms.

Perhaps the most important information about an algorithm
is contained in its data dependences because they determine
the algorithms’s communication requirements. The basic idea
of this paper is to modify the data dependences vectors such
that the new algorithm satisfies the VLSI requirements, while
remaining inputloutput equivalent to the original algorithm.
Transformations of other classes of algorithms into parallel
forms constitute a further research topic. -
An important feature of the technique proposed in this paper

is that the idea of data dependence vectors can be extended to
the next step of the VLSI design, that is, the actual design of
the processors. This is achieved by studying the dependences
at the register level and the bit level.

The design of algorithmically specialized VLSI devices is at
its beginning. The development of specialized devices to re-
place mathematical software is feasible but is still costly.
Several important technical issues remain unresohed, and
deserve further investigation. Some of these are: 1/0 com-
munication in VLSI technology, partitioning of algorithms to
maintain their numerical stability, and minimization of the
communication among computational blocks. Atso, a better
understanding of the design of parallel algorithms starting
directly from the computational problem is necessary.

Finally, the concepts introduced in this paper are not re-
stricted only to VLSI systems; they can also be used for map-
ping algorithms into some other fixed parallel computer ar-
chitectures.

REFERENCES

H. T. Kung, “Let’s design algorithms for VLSI systems,” in Roc.
Caltech Con5 on VLSZ, pp. 65-90, Jan. 1979. - , “The structure of parallel algorithms,” Adv. Comput., vol.

L. J . Guibas, H. T. Kung, and C. D. Thompson, “Direct VLSI im-
plementation of combinational algorithms,” in Roc. Caltech

19, pp. 65-111, 1980.

Conf. on VLSI, pp. 509-525, Jan. 1979.

sented at the Conf. on Advance Research in Integrated Circuits,
S. Y. Kung, “VLSI array processor for signal processing,” pre-

MIT, Cambridge, MA, Jan. 28-30, 1980.

ing large scale linear system of equations,” in Roc. Parallel Ro-
K. Hwang and Y. H. Cheng, “VLSI computing structures for soh-

cem*ngConf..1980.pp.217-227.
F. P. Reparata and J . Vuillemin, “Optimal integratedcircuit im-

cesdng Conf., 1980, pp. 21 1-216.
plementation of angular matrix inversion,” in Roc. ParaZZel R o -

J . M. Speiser, H. J . Whitehouse, and K. Bromley, “Signal process-
ing applications for systolic arrays,” in Roc. 14th Asilomm Con$
on Circuits,Systems.and Computers, Nov. 1980.
J . G. Nash, S. Hamen, and G. R. Nudd, “VLSI processor array
for matrix manipulation,” presented at the Conf. VLSI Systems,
Carnegie-Mellon Univ., Pittsburgh, PA, Oct. 1981.
D. I. Moldovan, “Computational models for VLSI systems,” Elec-
trical Engineering Dep., Univ. of Southern California, Los Ange-
l s , CA, Rep. DIM-82-3, 1982.
Y. Muraoka, “ParalleIism exposure and exploitation in programs,”

Champaign, Feb. 1971.
Ph.D. dissertation, Dep. Computer Sci., Univ. Illinois, Urbana-

D. J . Kuck, Y. Muraoka, and S. C. Chen, “On the number of
operations simultaneously executable in Fortran-like programs
and their reaulting speedup,” ZEEE Tmm Comput., vol. C-2 1, pp.
1293-1310, Dec. 1972.

mations,” Ph.D. dissertation, Dep. Computer Sci., Univ. Illinois,
R. Toulle, “Control and data dependence for program transfor-

Urbana-Chamoainn, Mar. 1976.
[131 U. Banergee, “Data dependence in ordinary programs,” M.S. the-

sis, Dep. Computer Sci., Univ. Illinois, Urbana-Champaign, Nov.
1976.

[141 U. Banerjee e? al., “Time and parallel processor bounds for For-
tran-like loops,’’ IEEE Tmns. Comput., vol. (2-28, pp. 660470,

[151 R. H. Kuhn, “Optimization and interconnection complexity for:
Sept. 1979.

parallel processors, single stage networks and decision trees,”
Ph.D. dissertation, Dep. Computer Sci., Univ. Illinois, Urbana-

[IS] L. Lamport, “The parallel execution of DO loops,” Commun.
Champaign, 1980.

[17] L. J . Mordell, Diophantine Equations. New York: Academic
ACM. pp. 83-93, Feb. 1974.

[181 A. Aho, J . E. Hopcroft, and J . D. Ullman, The Design and Analysis
Ress, 1969, p. 30.

of Computer Algorithms Reading, MA: Addson-Wesley, 1975.

- - .

