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On the  Design of Algorithms for 
VLSl Systolic Arrays 

Abmnct-This paper is concerned with the mappmg of cyclic loop 
a@dthms mto CPedrEpurpose YLSI arrays. The mapping procedure is 
based on the mathematkal tran8fonnati011~ of m d a  sets and data d e  
pendencevectors. Neasgymdsuff&ntconditionsfortheexistenQ 

dependences. Two exam- of diffexeat dgoxithms are given to illus- 
trnte the propod mrpping procedere; first k the LU decomposition of 
amatrixwhiChledstocon8tmtdrtadependenQW~dsecondly 
is the dynamic pqnmmiug which leads to dependences which are 
~ ~ o n t t t e i a d e x s e t P a d u e m o r e ~ t t o b e m . p p e d m t o  
VLSI arrays. 

o f v a l i d t r r n B o r m r t i o n s a r e g i v g ! n f o r ~ w i t h ~ t & t a  

I .  INTRODUCTION 

T HE TECHNOLOGY available to produce  central pro- 
cessor units (CPU) and  computer memories has always 
influenced the  architecture of computers.  Improvements 

in technological processes resulted in higher computer perfor- 
mances. The present semiconductor technology has reached 
already the level of maturity  beyond which no significant 
breakthroughs  are expected  for switching speeds. The level of 
integration, however, continues to  grow and  in  the  next  ten 
years it will be possible to incorporate  one million logic gates 
on a die of a  chip.  This very large scale integration (VLSI) is a 
new technological  environment  which  requires new ideas in 
computer organization, theory of computing,  and other related 
fields. 

In this  paper we are concerned with  the development of 
algorithms for special-purpose VLSI arrays. As will  be seen 
below, while the VLSI  technology  offers  remarkable advant- 
ages to  the system designer, it also imposes  restrictions on  the 
design of algorithms. The most important of these  restrictions 
is the necessity for reduced  communication complexity. 

The paper is organized as follows: in  Section I we discuss the 
implications of the VLSI technology on  computer architec- 
tures  and  algorithm design. Sections I1 and I11 contain  the 
main results of the paper; fmt,  a technique is proposed to  
transform algorithms with  loops  into highly parallel forms 
suitable for VLSI devices; then, a  procedure is proposed to  
map  these  transformed  algorithms into VLSI systolic  arrays. 
In Section  IV, algorithms for  the LU decomposition of a ma- 
trix and  dynamic  programming  are used as  examples to  show 
how previously proposed architectures can be formally derived 
using appropriate algorithm  transformations. 

A .  VLSI Al&-o&hrns and Architectures 
The main advantages offered by  the VLSI technology are: 

large amount of hardware available at very low  cost,  reduced 
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Fig. 1. Organization of a computer system containing several special- 

sor. and main memory. 
purpose VLSI processor  arrays, interconnection network, host proces- 

power consumption  and physical size, and increased reliability 
at  the circuit level. Additionally, the high level of integration 
can conceivably eliminate the need to  physically separate pro- 
cessors from memory, thus eliminating the  bottleneck between 
them. Parallelism and pipelining are two classical concepts 
without which the efficient  utilization of the large hardware 
resources  offered by VLSI is not possible. Parallelism implies 
the  operation of many units  at  the .same time. Pipelining also 
requires  a multitude of resources, but in contrast  with parallel- 
ism, the resources work in a  chain allowing data to flow  only 
from  one  unit t o  the  next one. Both, parallelism and pipe- 
lining, can be seen at different logic levels. The f m t  level of 
parallelism is offered by partitioning  a computational task into 
smaller computational modules. The second level of parallel- 
ism is found within  each computational module. The last level 
of parallelism is offered by  the simultaneous processing of all 
the bits in a word;  and this level is present in almost all com- 
puters. The  focus of this  paper is the parallelism at  the second 
level. 

The  exploitation of parallelism at  the first level is often 
necessary because computational problems are larger than a 
single VLSI device can process at a  time. If a parallel algorithm 
is structured as a network of smaller computational modules, 
then these  modules can be assigned to  different VLSI devices. 
The communications  between  these  modules and  their opera- 
tion  control  dictates  the  structure of the VLSI system and its 
performances. In Fig. 1, a  simplistic  organization of a  com- 
puter system consisting of several VLSI devices, main memory, 
and  an  interconnection  network are shown. Each VLSI device 
has a number of processors working in parallel. 

The  1/0  bottleneck problem in VLSI systems  presents  a 
serious restriction imposed on  the algorithm design. The 
challenge is to  design parallel algorithms which can be parti- 
tioned  such  that  the  amount of communication between mod- 
ules is as small as possible. Moreover, data entering the VLSI 
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device should be utilized  exhaustively  before passing  again 
through  the 1/0 ports. 

Another  potential  problem  which can deteriorate the per- 
formance is the  data  communication within the VLSI  device. 
The  interconnections  between logic gates are as expensive as 
the logic itself and  the signal propagation is comparable  with 
the logic switching  time. An efficient  utilization of silicon 
area,  time,  and  energy is achieved only if the  hardware  contains 
local  interconnections.  The  solution to this problem is to 
design algorithms  which,  when  mapped into VLSI hardware, 
require  only  local  data  transfers.  In  the  next two sections it is 
shown  that  some algorithms  can  be  transformed to meet  these 
requirements. 

Systolic  array  architectures have been  proposed by Kung [ 1 1, 
[2]  and  others as  a possible solution to these VLSI problems. 
In  the systolic  concept,  VLSI devices consist of arrays of inter- 
connected processing cells with  a high  degree  of modularity. 
Each  processor  operates  on  a  string of data  that flow regularly 
through  the  network. If the  1/0 problem is ignored, the 
throughput of such  computational  structure is proportional 
to the  number of cells. 

In  order to match  better  the characteristics of algorithms 
with  the characteristics of computer  architectures,  and  con- 
sequently to increase the efficiency of computation, a care- 
ful  mapping of the  computational problem to the machine is 
necessary. The mapping of algorithms into systolic  arrays is 
different  than  the mapping of algorithms into  architectures 
with  fixed  number of processors and  interconnections.  In  the 
case of systolic  arrays, one has to deal  with issues  ranging from 
the organization of the  network of cells to the detailed  op- 
eration of the cells. In  fact,  the mapping is nothing  but  the 
design of the VLSI array  according to  the properties of the 
algorithm  and  a set of  design goals. 

A number of special-purpose  VLSI architectures have been 
proposed in  the last few  years.  Kung's early  work in parallel 
algorithms for VLSI  has  stimulated  a  considerable  interest. He 
proposed  systolic  arrays for matrix-vector and matrix-matrix 
multiplications, LU decompositions,  recurrence  evaluations, 
etc., [ 1 I ) [ 21. The VLSI implementation of some  combina- 
tional  algorithms  has  been  investigated by Guibas et al. [ 3 ] .  
Algorithms for solving systems of equations have been pro- 
posed by Kung [4 ] ,  Hwang and Cheng [ 51, and  Preparata [61. 
The special-purpose  VLSI computing  structures have found 
immediate  application  in signal processing  where many algo- 
rithms have  regular structures [ 71, [ 81. 

B. A VLSZ Model of  Computation 
A model of the VLSI computing  structure is needed in  order 

to relate the  features of an  algorithm to the realities of the 
hardware.  Tradeoffs  are possible between various parameters 
of the VLSI  device in  order to improve one performance or 
another.  The  approach  taken here is to distinguish between 
the  operation of the systolic  system at  the array level and  the 
activities  taking place inside the processing  cells. The array 
level is called the global level, and the processor level is called 
the local level. At both levels, the  operation  should  be  ex- 
amined in time and space. Fig. 2 shows the main steps involved 
in the design  of a special-purpose  VLSI chip. 

In  this  paper, we will focus  only  on  the  step  from  the parallel 
algorithm to  the global model. A model of the processing cell 
and  the  transition  from  the global model to the local  model 
can be  found  in [ 9 ] .  The organization and  the  operation of 
the VLSI array can be described by the  network  geometry G, 
the  functions F performed  by the processing cells, and  the  net- 
work  timing 2'. 

I I 
I I 
I I 

1 VLSI Cornputattonal Model I 
L - - - - _ _ _ - - - - - _ _  i 

Fig. 2. Main steps in the design of a special-purpose VLSI device. 

The assumptions about  the VLSI systolic  network  are as 

a) The  network consists of a  planar mesh connected  network 

b)  The cells can  be of different  types  and  perform  different 

c) The  interconnections between cells are buses which  trans- 

d) The  operation of the  network is synchronous. 
The network  geomeny G refers to the geometrical layout of 

the  network.  The position of each processing cell in the plane 
is described by  its Cartesian coordinates. By choosing the grid 
arbitrarily small it is possible to represent  these  coordinates  by 
integers. Then, the interconnections  between cells can easily 
be  described by  the  position of the terminal cells. These  inter- 
connections  support  the  flow of data  through  the  network;  a 
link can be  dedicated  only to one  data  stream of variables or it 
can  be used for  the  transport of several data  streams at differ- 
ent  time instances. A simple and regular geometry is desired. 

The functions F associated to  each processing cell represent 
the  totality of arithmetic  and logic expressions that a cell is 
capable to perform. We assume that each cell consists of a 
small number of registers, ALU, and  control logic. Several 
different  types of processing cells may  coexist in  the same  net- 
work; however, one design  goal should be to reduce the num- 
ber of cell types. 

The network  timing T specifies for each cell the  time when 
the processing  of functions F occurs  and  when  the  data com- 
munications take place. A correct  timing assures that  the right 
data  reach  their  destination  at the right  time. The speed of the 
data  streams  through  the  network is given by  the  ratio  between 
the distance of communication  link over the  communication 
time.  Networks  with  constant data speeds  are  preferable be- 
cause they  require  a  simpler  control Iogic. 

In  summary,  the global model of the VLSI array  can be 
formally described by  a set of 3-tuples ( C ,  F ,  T). The  more 
regular the  network is the simpler  these  functions  become. 
This model is quite general  and it is sufficient  for  the  purpose 
of this  paper of developing a  methodology  for designing VLSI 
algorithms. 

In the  next  section, a  technique is developed to study  and to 
modify  computational  algorithms  for  the  purpose of mapping 
them  into VLSI processing arrays. While any  algorithm can  be 
analyzed using this  technique,  only  some  algorithms  can be 
mapped  directly  into simple systolic  arrays. 

follows: 

of processing cells. 

functions. 

fer parallel words. 

11. TRANSFORMATIONS OF ALGORITHMS FOR 
SYSTEMS 

A .  Data  Dependences 

The  intention of mapping  computational  algorithms  into 
VLSI circuits  implies  first  a  transformation of algorithms into 
equivalent but  more  appropriate  forms  for VLSI. The basic 
structural  features of an algorithm  are  dictated by  the  data  and 
control dependences.  These  dependences  refer to precedence 
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relations of computations which  need to be satisfied in  order 
to compute  the  problem  correctly.  The absence of depen- 
dences  indicates the possibility of simultaneous  computations. 
These  dependences  can  be  studied at several distinct levels: 
blocks of computations level, statement  (or expression) level, 
variable level, and even bit level. In  this paper,  since we con- 
centrate  on algorithms for V U 1  systolic  arrays, we will focus 
only  on  data dependences at  the variable level which is the 
lowest possible level before  the  bit level. 

The analysis of data  dependences  in high-level  language 
(HLL)  programs for  the purpose of detecting  concurrency 
of operations  has received considerable attention in the last 
decade.  Muraoka [ 101 and Kuck et  al. [ 11 ] have studied  the 
parallelism  of simple  loops  and have introduced  the  notion of 
dependence  relations  between  assignment  statements.  Towle 
[ 121, Banergee [ 131,  and  Banejee et  al. [ 141  extended  the 
methodology of transforming  ordinary  programs into highly 
parallel forms. Based upon dependences  between  statements, 
they have provided  algorithms for  exploiting parallelism in 
loops.  Techniques  such as loop freezing, wave from  method, 
the splitting-lemma,  and loop interchanging have been  intro- 
duced.  Recently,  Kuhn [ 151 has  proposed  a  methodology to 
analyze  data  dependences using transformations  on  convex 
index  sets.  Results on program  transformations were also 
reported  by  Lamport [ 16 1 .  

All these  results were aimed  mostly  towards  program  speed-up 
and compiler design. Although  the program  transformations 
proposed  before  contain  many basic results, they are not 
adequate  enough  for VLSI implementations.  In  addition to a 
high  degree  of  parallelism,  VLSI arrays suggest pipelining and 
reduced  communication  distance  and  time. 

Previous work  in  algorithm  transformations  has  focused on 
deciding  whether  a  pair of Occurrences is dependent  or  not. 
The present  approach is based not  only  on  the  detection of 
dependences but also on  their modification. The very  struc- 
ture of algorithm  interconnections  has to be  modified in  order 
to increase the "locality" of communications  and to meet 
other VLSI requirements. 

In what  follows,  algorithms  written in HLL are  considered. 
Other  forms to express  algorithms  are possible, but  the results 
would be similar. Consider  a Fortran  loop  structure of the 
form 

DO 10 I' = 1 ' ,  u' 
DO 10 I' = 1 2 ,  u2 

sN(f) 
10 CONTINUE 

where l i  and ui are  integers value linear  expressions involving 
1', * * , Zi- '  andf  = (Z', I * ,  * , I " ) .  SI,S2,  * - , S N  are as- 
signment statements of the  form X = E where X is a  variable 
and E is an  expression of some  input variables. 

Let 3 denote  the  set of all integers and 9" denote  the  set of 
n-tuples of integers. The  index  set of loop  (1) is a  subset of 
9" and is defined as 

P(i) = {(Z', * , I " ) :  I' <I' < u ' ,  * , I "  <I" g u n ) .  

When loop  (1) is executed, the elements of L" are  ordered  in 
a  lexicographical  ordering.  This is an  induced ordering  which 
is not essential and can be modified.  Let f and g be two integer 

functions defined on  the  set L". Denote X and Y two vari- 
ables whose indices  are f andg; we write X ( f ( 1 ) )  and Y(g(1)). 
Variables X and Y are  generated in  statements S(il)  and S(iz), 
respectively.  Variable Y(g(f)) is said -to be  dependent  on 
variable X ( f ( - j ) )  and  wiite X ( f ( Z ) )  + Y(g(1)) if 

a) Il < i2 (throughout  the  paper "e' means "less than" 

b) f (TI ) = A f z  1 
c) X(f(i)) is an  input variable in  statement S ( f 2 ) .  

in lexicographical sense) 

The  vector 2 =I2 - fl is called the data  dependence  vector. 
An algorithm  has  a number of such  dependence  vectors.  In 
general, the  dependence  vectors  are  functions of the  elements 
of set L", i.e., d = d ( i ) ,  as will be  seen  in  Section 111-B. There 
is, however,  a large  class of algorithms  with  fixed, or  constant 
data  dependence vectors. 

B. Transformation of Index  Set and Data  Dependences 
Denote the ordering  imposed  by the data  dependences on set 

L" with R. The  elements of L" and  orderingR  form  together 
a well-defined  algebraic structure (P, R). We seek  now  a  trans- 
formation T such  that 

T :  (P, R) + (J$ ,  RT) (2) 

with the following  properties: 

a) Tis a  bijection  and  a monotonic  function  (2a) 
b)  The  data dependences of the new structure (LF, RT) 

can be  selected  by us. (2b) 

Since T is a  bijection,  the  two  structures are said to be  isomor- 
phic, and since Tis monotonic  with respect to R and RT 

d > O + E = T ( ; i ) > O .  
It  simply  means that  the  transformation T preserves the sense 
of the  data dependences. The meaning of the second  condition 
will soon become clear. The  transformation Tis partitioned  in 
two  functions as follows: 

T =  [ z]. 
The mapping I l  is defined as 

II: L"+L$, n > k  

n(Z',IZ;..,In)=(J',J2;..,Jk), with jEJ$ .  

The mapping S is defined as 

s: L" + e;+ 
s ( I ~ , z 2 , .  . . ,zn) = (Jk+l, ]k+Z . . . , , J").  

The dimensionality of functions n and S is marked by k; and 
k is selected  such that n alone  establishes the ordering RT. 
The first k coordinates of elements 7 E J$ can  now  be  related 
to time  and  the last n - k coordinates  be  related to the geo- 
metrical  properties of the algorithm. In  other words, the time 
is associated io the new lexicographical  ordering  imposed on 
the  elements J and this is given only  by  their first k coordinates. 
The last n - k coordinates can be  chosen by us to satisfy our 
expectations  about  the geometrical  properties of the algorithm. 
For all elements c€ f for which n ( f )  = constant,  the first 
k coordinates of J ( j )  are also constant. It follows that all 
such f E f can be processed concurrently. n(7) = constant 
represents  hypersurfaces  with  property to contain  elements 
which  are not  data  dependent. 
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The  freedom of selecting (Jk+', , J")  can be used advan- 
tageously to satisfy property  (2b);  that is, to localize the  data 
communications  in  the VLSI system. 

Consider the case when an algorithm of form  (1)  with n 
loops provides m constant d g a  Cependenze  vectors.  These are 
grouped  in  a  matrix D=[dl,d2,*.-,d,],~ER"Xm. A 
linear  transformation T &  stught, i.e., J = T - I .  Since T is lin- 
ear T(f  + di) - T(I) = Tdi = ai for  1 < j g m. These  equations 
can be written as 

TD = A  (4) 

where A = [a,, a 2 ,  * e a , Zm I .  The  matrix A represents  the 
modified  data  dependences  in  the new index space .e", and 
according to  the requirements  (2b)  they are  assumed  known. 

The interesting  question  now is under  what  conditions can 
such T exist?  System (4) represents n x m diophantine  equa- 
tions  with n2 unknowns. T exists if system (4) has solution 
and  the  solution  consists of integers,  The  following  theorem 
indicates  the necessary and  sufficient  conditions for valid linear 
transformations  and it can be used as a  tool to preselect A. 

Theorem I :  For an algorithm  with  a  constant  set of data 
dependences D, the necessary and  sufficient  conditions that  a 
valid transformation T exists  are as follows: 

i) The new data  dependence  vectors Ei are  congruent to  the 
dependences 4 modulo ci, where ci is the greatest 
common divisor (gcd) of the  elements of 4 

%E &(mod ci). ( 5 )  

- -  

ii) System (4) can be solved for T. 
iii) The first  nonzero  element of vector gi is positive. 

R o o f :  Sufficient: Condition  i)  indicates  that  the  elemetts 
of 8i are  multiples of the gcd  of the  elements of respective di .  
This is a necessary and  sufficient  condition that  each of the 
n X m diophantine  equations can be  solved for integers [ 171. 
According to ii) system (4) has solution. Since tke f i t  non- 
zero  elements of gj are  positive it follows  that n d i  > 0, thus 
T is a valid transformation. NecessaTy: Transformation Tis a 
bijection  and  consists of integers,  hence  i)  and ii) arz  required 
conditions. Because T preserves the  ordering RT, ai > 0 and 
this  implies  that  the f i t  nonzero  element is positive. QED 

In  the selection of A one  should  choose  the smallest possible 
integers for  its  elements.  In this  way, the processing time  and 
the  communication  requirements of the  transformed  algorithm 
are being optimized. 

C. Mapping Algorithms  into Hardware 
The  transformation of the  index sets  described  above is the 

key  towards  an  efficient  mapping of an algorithm  into  a special- 
purpose  VLSI  array. It is shown  in  what  follows  how  the 
global model of the VLSI device introduced  in  Section  I can 
be derived directly  from the  transformed  algorithm. 

The  functions F performed  by  the cells are derived directly 
from  the  mathematical  expressions  indicated  in  the  algorithm. 
An algorithm of form  (1)  contains assignment statements in 
one  loop  body which is executed  repeatedly  for all  iteration 
points  in  set f . This implies  that all the processing cells can be 
made  identical.  The  peripheral cells performing  input/output 
operations  are, of course,  different than  the rest. If the  mathe- 
matical  expressions inside the  loop involve too many  com- 
putations,  the  loop can be split into several simpler  loops. 
Algorithms  with several distinct loop  bodies  normally  require 
different processing cells. 

The  network  geometry G refers to  the physical underlying of 
the  network,  and it is derived from  the  mapping S: x" -+ J$-k. 
A processing cell is assigned to each  distinct  element of x$-k. 
Assuming that in  algorithm ( l ) ,  ui - li  = O(N) for all i = 1, 2, 
* * e ,  n where N is the size of the  problem,  it  follows  that  the 
total  number of processing cells is O(N"-'). The  position, 
or  the identification  number of each cell is given by S ( j )  = 
(Jk+', * * , J") .  The  interconnections  between cells necessary 
for  the  data  communication are derived directly  from the last 
n - k components of the  modified  data  dependence  vectors 4 7 S ( j  + &) - S ( j ) ,  which  becomes S q  for linear  transfor- 
mabons. For each cell, the  vectors gy indicate  the relative des- 
tination of the variable associated to  that dependence  vector. 
These  interconnections  are  then  replicated to  the  entire  net- 
work.  Although  three-dimensional  and  multilayer VLSI net- 
works  may be attempted,  the  most practical is the  planar 
arrangement. If n - k > 2, an additional  one-to-one  mapping 
S' is necessary s': .e",-k + x$. 

The  network  timing T is derived from  the  mapping n: f -+ 

(6. The  exact  time  when t_he processing related to an element 
I E f occurs is simply ll(Z). The  communication  time  for  a 
dat?  stream ass_ociated with  a  dependence  vector a is given  by 
n ( I  + 6) - n ( I ) ,  which  in the case of a linear  transformation 
reduces to nz. The  total  running  time  for VLSI algorithm is 
[ max n(1) - min n(r)]. It can be seen that linear  transforma- 
tions yield a  running  time O W k ) ,  while higher order  mappings 
ll will normally  lead to higher order processing times. Notice 
that  the  running  time  includes  only  the  computation  time 
and  the  communication  time  and  not  the  input/output  time. 
Another  observation is that  keeping k as small as the transfor- 
mation  permits  should be one goal in designing  VLSI  algo- 
rithms. This wiU increase  the  concurrency of operations  at  the 
expense of the  number of processors. 

It remains to demonstrate  that  indeed  the VLSI model exe- 
cutes  the  algorithm correctly. Since we consider  here  only  the 
global model,  it will be  sufficient to show  that  the  data  flow 
through  the VLSI network is correct. We say that  the  data 
flow  through  the  network is correct if al l  the variables neces- 
sary to compute  the  mathematical  expressions of the  algorithm 
are available at  the  proper  time  at  the  proper cell. The  follow- 
ing  theorem  refers to linear  transformations. 

Theorem 2: A transformation 

of an  algorithm  which  satisfies  Theorem  1  maps  that  algorithm 
into  a systolic  array  in  which the  data  flow is correct. 

R o o f :  Consider a typical assignment statement x = E(u1, 
u 2 ,  - * * , ur) executed  at f E f . From  the  definition of data 
dependence  vectors we have 

where E f and  correspond to  the generation of variable 
vi. Apply the linear  operators ll and S to ( 6 )  

nF=nfl +nZl =ni2 +nd, nl; + nd, (7) 

If the  computations  at 4 E f produce  correctly ui, then  it 
follows  from (7) and (8) that all the  input variables will  be 
available for i E f at  the same  time a_nd at  the same process- 
ing  cell. For  each ui it corresponds  a di and A can be selected 
as desired. It  follows  that  there is no overlap in  the  flow of 
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Fig. 3. (a) Broadcasted variables. (b) Pipelined variables. 

the  data  streams  and  no cell is required to perform  more  than 
one  operation at  any  one  time. QED 

D. Procedure for Mapping  Algorithms  into VLSI Systolic 
Arrays 

In  this  subsection,  a  procedure is proposed  which  summarizes 
the  technique  introduced above.  This  procedure will then be 
used in the  next section to discuss some  examples. 

Step  1) Pipeline all variables in  the algorithm. 
Step 2) Find  the  set of data  dependence  vectors. 
Step  3)  Identify  a valid transformation for  the  data depen- 

dence  vectors  and the  index  set. 
Step 4) Map the algorithm into hardware. 
Step 5) Prove correctness and analyze  performances, 

Explanation: The role of the first  step is to eliminate all pos- 
sible data  broadcasts  which may exist  in  the original algorithm. 
Consider,-for  example, that a  variable u is generated +t some 
element IO E L" and used at several other  elements Ii E L", 
i = 1,  2, * * * , r. There  are r data  dependence  vectors  for vari- 
able u, as  shown  symbolically in Fig. 3. 

The highest parallelism for variable u is achieved  when all the 
use statements S ( j i ) ,  i = 1 ,  2, * * e ,  r ,  are  performed  in parallel, 
provided that  there are no  other  restrictions;  thus  the gener- 
ated variable u needs to be  broadcasted at once. However, it is 
likely that  in  the VLSI implementation,  this  algorithm will be 
communication  saturated.  The goal is then to reduce the num- 
ber of the original  data  dependences. The  solution to this 
problem is to pipeline the propagation of variable u for  the 
r usage statements, as shown  in Fig. 3(b). New data depen- 
dences have been  created  by  arbitrarily  ordering the usage 
elements. If the new arrangement  offers  fewer  dependences, 
then this will eventually  translate into fewer  communication 
requirements. 

Typically,  broadcasts  are signaled by missing indices of vari- 
ables in  the  loop.  In  order to avoid broadcasts and to increase 
pipelining we f i t  complete all the missing indices  and  intro- 
duce  new  artificial variables such  that  for  each  generated vari- 
able  there is only  one  destination. 

Example:  Consider the following loop which  implements  a 
matrix  multiplication C = A B ,  where A ,  B E R" x ". 

DO 10 k =  1 t o n  
DO 10 i = 1 t o n  
DO 10 j = 1 t o n  ( 9 )  
c ( i , j ) = c ( i , j ) + a ( i , k ) - b ( k , j )  

10 CONTINUE. 

This loop can be  written  in  an  equivalent  form  in  which vari- 
ables a ,  b ,  and c are  pipelined 

DO 10 k =  1 t o n  
DO 10 i = 1 t o n  
DO 10 j = 1 t o n  

s, : a i + l ( i ,  k) = ai(i ,  k) 
s2 : b'+l (k ,  j )  = b'(k, j )  
s3 : ck+'(i ,  j )  = ck(i ,  1) + ai(i, k) * bi(k,  j )  

10 CONTINUE. 

The  data  dependence  vectors of the algorithm  can  now  be 
found using their  definition. All possible pairs of generated 
(output)  and used (input) variables are  formed  and  their  indices 
are  equated.  This is equivalent to writing fl + 2 = f2, from 
which the  data dependence  vector 2 can be found directly. It 
is possible that  two  different pairs of variables lead to the same 
data  dependence  vector.  Caution  should  be  exercised to iden- 
tify  only valid  generated-used  pairs  of variables. 

As an example,  consider loop  (10).  For variable c ,  S3 is 
both  the  generate  and  the use statement.  The pair (ck'+'(i,  j ) ,  
c k ( i , j ) )  is formed (in this example we use ' for  the indices of 
the generatqd variable). This yields  a  dependence  vector Jl = 
( I ~ - k ' , i - i , j - j ' ) ~ = ( l , . , O ,  0)'. 

The generated variable a1 +l(if ,  k') in S1 is used in S1 and S3. 
However only  one  distinct pair can  be  formed for variable 
a, Le., (a   ( i ' ,  k'), aj(i, k)). It  follows that & = (k - k', i - i ' ,  
j - jf)r = (0,  0, l)r. Similarly, the  data  dependence  vector is 
found  for variable b ,  z3 = (0, 1, O)r. For  the  matrix multi- 
plication  algorithm  pipelined as in  loop (lo),  there are  only 
three  data  dependence  vectors d, , d2, and d3. Note  that these 
vectors  are  independent of the  index set. 

Steps  3)  and 4) have been discussed only  for  the case  of linear 
transformations. As will  be  seen in the  next  section,  the 
dynamic  programming  algorithm  requires  a  more  complex 
transformation.  Step 5) is necessary in  order to validate the 
mapping process and to ensure that  the performances  obtained 
are  satisfactory. 

3'+1 

111. EXAMPLES 
A .  L U Decomposition of a Matrix A 

Consider  a  matrix A which can  be decomposed into a  lower 
and  upper triangular  matrices by Gaussian elimination without 
pivoting.  VLSI computing  structures  for  the LU decomposi- 
tion problem have been  proposed by Kung [ 1 1 ,  Kung [ 41, 
Hwang and Cheng [ 51,  and  others.  In  this  example it is shown 
that previously proposed  architectures can be formally derived 
by using appropriate  algorithm  transformations. 

The algorithm for  the LU decomposition of a  matrix A = [q i ]  
is expressed by  the program  written  in Pidgin ALGOL 

for k + 0 until n - 1 do 
begin 

f o r j + k +  1 untiln - 1 do 

f o r i + k +  1 untiln - 1 do 

f o r i + k +  1 untiln - 1 do 

llkk l/akk 

ukj 4 akj 

hk aikukk 

f o r j + k + l u n t i l n -   1 d o  
aij + aii - lik * "kj  

end. 

This  program  can  be  rewritten into the following  equivalent 
form  in which all the variables  have been  pipelined  and all the 
data  broadcasts have been  eliminated. 
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TABLE I 
DATA DWENDENCRS FOR LU DRCOMFOSI~ON 

The pairs of generated-used 
variables k-kl i - i '  j-j' 

Date  dependences 

1: 

2: 

3: 

4: 

f o r k f o u n t i l n -  1 do 
begin 

i + k ;  
j f k ;  
Ukj  c '/aij k 
f o r j f k +  1 untiln - 1 do 

begin 
i f k ;  
Uki c ak 

II 
end 

f o r i + k + l u n t i l n -   1 d o  
begin 

j + k ;  
.i + . i - l ;  
.ki ki 

lik f a!. - Uki 
II  

end 
f o r i f k +  1 unt i ln-  1 do 

f o r j f k +  1 untiln - 1 do 
begin 

end 
end. 

This algorithm is similar to  the matrix  multiplication (9 ) .  
Indeed,  both algorithms yield the same data dependences. The 
only three distinct pairs of generate  and use variables and  their 
respective data dependence  vectors  are  summarized in Table  I. 

The  data dependences - - -  for  this algorithm have the nice p r o p  
erty  that D = [dld2d3 ] = I .  There are several other algorithms 
which lead to  these simple data dependences,  and they were 
among the first t o  be considered for  the VLSI implementation. 

Following the  methodology of Section 11, the  next  step  (step 
3) is t o  identify a linear transformation of form (3). This trans- 
formation must have the following properties: ndi  > 0, it 
offers the maximum  concurrency,  and Tis a  bijection. Accord- 
ing to  Theorem 1, T exists, and furthermore, T = A. Denote 

ti l   t l2 t13 
- - - - - - - - - - - .-[::: hj. 

In this case, it is possible to have k = 1,  thus ndi = tli > 0. 
The smallest possible positive integers are tl l  = t12 = t13 = 1. 
The first two conditions  are  satisfied;  and ll is unique.  In the 
selection of mapping S we are now  restricted  only by  the  fact 
that T must be a  bijection and consists of integers. A large 
number of possibilities exist,  each leading to  different  network 

geometries. We choose 

T =  

Eli. 4. VLSI array for the LU decomposition algorithm; 

K ; !  
r k l  

The original indices k,  i, j are  transformed by T into  k,  i, j .  
The organization of the VLSI array, for n = 5 generated by  the 
transformation  (1 3) is shown  in Fig. 4. 

In this architecture variables a: do  not travel in space, but 
y e  updated  in time. Variables $ move along the direction 
j (east)  with  a speed of one Qd per  time unit,  and variables 
u$ move along the direction i (south) with the same  speed. 
The network is loaded  initially with  the coefficients of A ,  and 
at  the end the cells below the diagonal contain L and the cells 
above the diagonal contain U. 

The processing time is nmax - nmb = 3n - 5 .  All the cells 
have the same  architecture. However, their  functions  at  one 
given moment may differ. It can be seen from  the program 
(1 2) that some cells may execute  loop 4, while others  execute 
loops 2 or 3. If  we  wish to assign the same loops only to  
specific cells, then  the mapping S must be changed accordingly. 
For example, the  transformation 

A A h  

introduces a  new  data communication link between cells, to- 
ward north-west. These  new links will support  the movement 
of variables u t .  According to  this new transformation,  the 
cells of the fmt row always compute  loop 2, the cells of the 
first column compute  loop 3,  and the rest compute  loop 4. 
The reader can now easily identify some other valid transfor- 
mations which will lead to  new organizations. By applying 
Theorem 2 to  this example, one can prove the validity of an 
architecture. 

In  the  next example,  we will see data  dependences  which are 
no longer fiied,  and  this presents a challenge for finding  a 
proper transformation. 

B. Dynamic Rogramming 
Many problems in  computer science and engineering can be 

solved by  the use of dynamic programming techniques. We 
consider  here the VLSI implementation of an  optimal paren- 



MOLDOVAN: ALGORITHMS FOR VLSI  SYSTOLIC ARRAYS 119 

TABLE II 
DATA DEP~NDMNCPS FOR THE DYNAMIC PROGRAMMING ALGoamr~ 

L- 

Pairs of generated-used Data  dependences 
variables 1-18 i-i' k-k' 

< , mt;l > 

(1 0 f ) T  = a3 < In;::, i,+l, I ' 

(1 -1 O ) T  = a, 

(1 0 O ) T  = a1 

g)T = a4 

c mi' k'+l, i'+ L' ' mk+l,i+L > 
L-1 

"* 

< m!' 
11,  ~ * + L I  , %+I, i+.t ' 1-1 

thesization  algorithm based on  dynamic programming. A 
string of n matrices are multiplied 

M = M 1  X M 2  X . * . X M n .  Fig. 5. Data dependence for the dynamic programming  algorithm 
(n = 6). The encricled numbem correspond to elements of the index 

Let r o ,  rl  , * , rn be the dimensions of the n matrices  with set I f k. 
r i - l  and ri dimensions of Mi. Denote by mii  the minimum 
cost of computing  the  product Mi - Mi. The algo- k - k' can take marry possible values 
rithm which finally produces mln is written as follows [ 181 : f = I -  1 ,z -   2 ;* . ,  1 

for i + 1 to n do mii + 0 
for I f 1   t o n -  1 do 

f o r i +  1 t o n  - I d o  
begin 

j + i + l  

end. 

Following the methodology of Section 11, this program is trans- 
formed  into  the following  equivalent form: 

fo r i  6 1 to n do mii f 0. 
f o r I +  1 t o n  - 1 do 

f o r i t 1   t o n - I d o  
f o r k + i t o i + I - l  do 

begin (15) 
mik + m1-1 ik 

m:+l,i+l+mlk;'l i + I  
mi,i+l + MIN (m$' +m;L1l , i+l  + r i - l r k r i + l )  

end. 

We will assume that  the  input  data r are  loaded on  the  network 
before the  computations  start, so we can neglect the depen- 
dences caused by  the  constant  data r .  This  assumption is made 
only for  the purpose of simplifying the  explanation;  in  fact, 
the dependences caused by data r are similar t o  those generated 
by variable terms. 

The  data dependences derived from  the above algorithm  are 
shown in Table 11. There are only  four possible distinct pairs 
of used-generated variables. 

The data  dependence  vectors for  the first two pairs of gen- 
erated-used variables are easily derived in the same manner as 
for  the previous examples (see Table 11). The last two depen- 
dences, however, require  more attention. Consider, f i t ,  the 
pair ( m i ; , i , + l , ,  mi;'); it yields that I - I '  = 1, i - i' = 0, and 
k = i' + I . Form program (1 5), k' takes values between i' and 
i ' + I ' - l .   I f , f o l l o w s t h a t k - & ' = I -   1 , 1 - 2 ; * * , 1 .  Similarly, 
thepair(m~, , i ,+r t ,  ,I-1 k + l , i + I ) y i e l d s I - l ' = l , i ' + l ' = i + l , a n d  
i' = k + 1. From  the first two equalities it results that i - i' = 
- 1, and  finally, since k' = i ' ,  * * , i '  + I'  - 1 it follows that 
k - k' = - 1, -2 ,  * . . , - 2  + 1. Therefore,  for  both d3 and d4, 

g = - 1 , - 2 ; * . , - 1 + 1 .  

The difference k - k' is not fixed because the  order  in which 
the minimization in  loop k is performed is not  specSed.  For 
instance, in program (15) if mii+,  is generated when R takes 
the largest value, then f = 1  and g = - I  + 1.  Notice that, if the 
minimization  procedure in  loop k is performed  sequentially, 
then  either f or g will depend on  the value of 1. This fact con- 
stitutes an  obstacle in finding  a  linear transformation  for  the 
dynamic programming problem. Fig. 5 shows the dependences 
between the  iteration elements for n = 6 .  Each column  corre- 
sponds to a different value of I and each group  in  the column 
corresponds to a  different loop k, in which the  order is not 
specified yet. For example,  element 512 receives data  from 
elements 412 and 422,  but element 5 11 receives m26, the re- 
sult of elements 422,423,424,  and  425. 

The following mapping n is proposed for  the dynamic pro- 
gramming algorithm: 

n1 (I, i, k) = 22 + i - k 
& ( I , i , k ) = l -   i + k +  1 

n(Z, i, k) = max 

The  index  set, which constitutes  the domain of the mapping 
function n, is separated into  two disjoint  sets, one  for nl and 
the  other  for n2. This mapping n has the advantage that  by 
exploiting possible concurrencies within loop k, it provides a 
processing time O(n).  The first half of any  loop k uses Ill and 
the second half uses n2. Because of this new concurrency 
between the  first  and the last index elements of  loop k, the de- 
pendences d3  and d4 are transformed respectively in  (1 0 I)' 
and (1 - 1 - 1lr. This is possible because n, applies to d4 -s 
while n2 applies to d3 's. The only  inconvenience  created by 
mapping n is that  the data  flow in data streams  does not  lave 
a constant speed.  This is easily seen from  the  fact  that n l d l  = 

The mapping S is selected such  that  the resulting VLSI archi- 
2f11~& = 1 a n d n l Z 2  = 1 #n2d2 = 2 .  

tecture will be simple and regular. 
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mS6 

Fig. 6. VLSI array  for  the  dynamic programming. 

The mapping n toge+eK with  the mapping S form  a  transfor- 
mation T: ( I ,  i, k) -* ( I ,  i, E) 

This transformation  leads to  the VLSI architecture  shown  in 
Fig. 6. This architecture was first proposed  by  Guibas et al. 
[ 31. All the processing cells perform the same functions,  and 
no memories  are  required.  There  are O(n2)  cells. The  opera- 
tion of this  network  and the proof of correctness  become  now 
particular cases of Theorem 2. 

IV. CONCLUSIONS 
The design of special-purpose VLSI devices is a  multistep 

process  (see Fig.  2).  In  this  paper we  have concentrated  only 
on the  step  concerned  with  the mapping of linear cyclic algo- 
rithms  into high-level VLSI models. The VLSI devices are 
assumed to  be  two-dimensional  array  processors  with  local 
communications.  The  model  resulting  from  the  mapping  pro- 
cedure  specifies the  complexity of processors,  interprocessor 
connections,  and  the  timing of the  data  flow.  Although we 
have concentrated  in  this  paper  only on a class of  algorithms, 
the  methodology  proposed  here  can  constitute  the  foundation 
of a  unifying  approach to  the design of  VLSI algorithms. 

Perhaps  the most important  information  about an algorithm 
is contained in its  data  dependences because they  determine 
the algorithms’s  communication  requirements.  The  basic  idea 
of this  paper is to  modify  the  data  dependences  vectors  such 
that  the new algorithm  satisfies the VLSI requirements,  while 
remaining inputloutput equivalent to  the original  algorithm. 
Transformations of other classes of algorithms  into  parallel 
forms  constitute  a  further research  topic. - 
An important  feature of the technique  proposed  in this paper 

is that  the  idea of data  dependence  vectors  can  be  extended to  
the  next  step of the VLSI  design, that is, the  actual design of 
the processors. This is achieved by  studying  the  dependences 
at  the register level and the bit level. 

The design of algorithmically  specialized VLSI devices is at 
its beginning. The  development of specialized devices to  re- 
place  mathematical software is feasible but is still costly. 
Several important  technical issues remain unresohed, and 
deserve further investigation.  Some of these are: 1/0  com- 
munication  in VLSI technology,  partitioning of algorithms to  
maintain  their  numerical  stability,  and  minimization of the 
communication  among  computational  blocks. Atso, a  better 
understanding of the design of parallel  algorithms  starting 
directly  from the computational  problem is necessary. 

Finally,  the  concepts  introduced  in this paper  are  not re- 
stricted  only to  VLSI systems;  they can also be used for map- 
ping  algorithms  into some other fixed  parallel  computer ar- 
chitectures. 
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