CprE / ComS 583 Reconfigurable Computing

Prof. Joseph Zambreno Department of Electrical and Computer Engineering Iowa State University

Lecture #2 - Comparing Computing Machines

Quick Points

- · Course survey posted on WebCT
 - Not very anonymous
 - · Will do again around the middle of term
- HW #1 will be out by tonight
 - Due 1 week from Tuesday (September 5)
 - · Will require a couple of concepts introduced next week to be completed
- · Height an issue

Provisional Course Schedule

- · Introduction to Reconfigurable Computing
- FPGA Technology, Architectures, and Applications
- FPGA Design (theory / practice)
 - · Hardware programming models
 - Behavioral synthesis
 - Hardware / software codesign
- · Other Reconfigurable Architectures and Platforms
- · Emerging Technologies
 - Dynamic / run-time reconfiguration
 - High-level FPGA synthesis
- · Weekly schedule: http://class.ece.iastate.edu/cpre583

Course Project

- · Perform an in-depth exploration of some area of reconfigurable computing
- Whatever topic you choose, you must include a strong experimental element in your project
- Work in groups of 2+ (3 if very lofty proposal)
- · Deliverables:
 - Project proposal (2-3 pages, middle of term)
 - Project presentation (25 minutes, week 15)
 - Project report (10-15 pages, end of term)

Some Suggested Topics

- Design and implementation of \boldsymbol{X}
 - Pick any application or application domain
 - Library application or application domain Identify whatever objectives need to optimized (power, performance, area, etc.)
 - Design and implement X targeting an FPGA
 - Compare to microprocessor-based implementation
- Network processing

 Explore the use of an FPGA as a network processor that can support flexibility in protocol through reconfiguration
- Flexibility could be with respect to optimization Could provide additional processing to packets/connections
- Implement a full-fledged FPGA-based embedded system From block diagram to physical hardware

 - Examples:

 Image/video processor

 - Digital picture frame
 Digital clock (w/video)
 Sound effects processor
 Any old-school video game ©
 - Voice-over-IP

Suggested Project Topics (cont.)

- Prototype some microarchitectural concept using FPGA
 - See proceedings of MICRO/ISCA/HPCA/ASPLOS from last 5 years
 - Survey some recurring topic
 - Compare results from simulation (Simplescalar) to FPGA prototype results
- Evaluation of various high-level synthesis tools and methodology
 - Survey 4-5 different open-source high-level synthesis tools
 - Pick a representative (pre-existing) benchmark set, see how they fare...how well do they work?
 - Compare to microprocessor-based implementation of same
- Others from past years (see CprE 583 web page)
- · Anything else that interests you!

Recap

- · Reconfigurable Computing:
 - (1) systems incorporating some form of hardware programmability - customizing how the hardware is used using a number of physical control points [Compton, 2002]
 - (2) computing via a post-fabrication and spatially programmed connection of processing elements [Wawrzynek, 2004]
 - (3) general-purpose custom hardware [Goldstein, 1998]

Spatial Mapping grade = 0.25*homework + 0.25*midterm + 0.50*project hw 0.25 mt 0.25 pr 0.50 · A hardware resource (multiplier or adder) is allocated for each operator in the compute graph

- The compute graph is transformed directly into the implementation template

- · A hardware resource (ALU) is time-multiplexed to implement the actions of the operators in the compute graph
- Sequential / general purpose / software solution

••• FPGAs are **RE**configurable...

- · ...but good luck getting it to work!
 - · Commercial tool support is nonexistent
 - Not ready for prime-time
- Uses for reconfiguration
 - Product life extension
 - · Tolerance for manufacturing faults
- Runtime reconfiguration time multiplexing specialized circuits to make more efficient use of existing resources
- Dynamic reconfiguration hardware sharing (multiplexing) on the fly
 - DPGA v. FPGA
 - · Active area of research

August 24, 2006

CarE E92 Reconfigurable Computing

Lect-02 14

••• Outline

- Recap
- · Design Exercise: The Quadratic Equation
- · Terms and Definitions
- Measuring Computing Density
- · Quantitatively Comparing Computing Machines

August 24, 2006

CprE 583 - Reconfigurable Computing

ect-02.15

••• Design Exercise

- Consider the function: y = Ax2 + Bx + C
- In groups of 2, design an architecture for this function
 - Building blocks adders, multipliers, muxes
 - · Don't worry too much about control or timing
- · Best circuit design wins a prize

August 24, 200

CprE 583 – Reconfigurable Computing

Lect-02.16

Comparing Different Designs

- Design A
 - Requires 3 multiply and 2 add area units
 - Requires 2 multiply and 1 add time units
- Design B
 - Requires 2 multiply and 2 add area units
 - · Requires 2 multiply and 2 add time units
- Design C
 - Requires 1 multiply, 1 add, and 2 2:1 mux area units
 - · Requires 2 multiply and 2 add time units
- Design D
 - Requires 1 compound add/multiply unit, 1 3:1 mux, and 1 2:1 mux area units
 - Requires 2 multiply and 2 add time units

August 24, 2006

CprE 583 – Reconfigurable Computing

Towards Computational Comparison

••• Computational Density (Quantitative)

- Alpha 21164 processor (1994):
 - Built using 0.35-micron process
 - Two 64-bit ALUs
 - 433 MHz
 - Theoretical computational throughput 2 x 64 / 2.3ns = 55.7 bit operations / ns
- Xilinx XC4085XL-09 FPGA (1992):
 - Same 0.35-micron process
 - 3,136 CLBs | 6,272 4-LUTs
 - 217 MHz (peak clock rate)
 - Theoretical computational throughput 3136 / 4.6ns = 682 bit operations / ns
- · Comments: clunky comparison, very out of date

August 24, 2006

CprE 583 – Reconfigurable Computing

Lect-02.23

Computational Density (Quantitative)

- Intel Pentium 4 "Prescott" processor (2004):
 - Built using 90-nm process
 - 2 simple double-speed ALUs, 1 complex single-speed ALU = approx. 5 32-bit ALUs
 - 3.2 GHz
 - * Theoretical computational throughput -5×32 / .3125 ns = 512 bit operations / ns
- Xilinx XC4VLX200 FPGA (2004):
 - · Same 90-nm process
 - 22,272 CLBs | 178,176 4-LUTs
 - 500 MHz (peak clock rate)
 - Theoretical computational throughput 89,088 / 2.0ns = 44,544 bit operations / ns
- · Too good to be true?

August 24, 2006

CprE 583 – Reconfigurable Computing

Lect-02.24

Notes

- XC4V200 is 87 times faster than Pentium 4?
- · Only simple integer arithmetic
 - · Division, sqrt, etc.
 - · Microprocessors have dedicated FP logic
- · How efficiently are resources used?
 - Ex: if only 8-bit operations being used, FPGA is an additional 4x more computationally dense than 32-bit CPU
 - Challenges making FPGAs run consistently at their peak rate
- · What about cost?

August 24, 2006

CarE 592 Bosonfigurable Computing

l act-02 25

••• Storing Instructions

- Each FPGA bit operator requires an area of 500K–1M λ²
- Static RAM cells: 1,200λ² per bit
 - Storing a single 32-bit instruction: 40,000λ²
 - 25 instructions in space of 1M λ² FPGA bit op
 - FPGA 32-bit op unit = 800 instructions
 - · CPU must also store data
- Conclusion: once more than 400 instructions/data words are stored on the CPU then the FPGA becomes more area efficient
 - Prescott P4 has more than 1MB L2 cache alone

August 24, 2006

CprE 583 - Reconfigurable Computing

••• Functional Unit Optimization

- A hardwired functional unit can be made several orders of magnitude faster than a programmable logic version
 - · Ex: 16x16 multiplier
 - Balances the density equation
 - Can be too generalized, or not used frequently enough
 - Now included in high-end FPGAs

August 24, 2006

CprE 583 – Reconfigurable Computing

Lect-02.27

••• Summary

- · FPGAs spatial computation
- · CPU temporal computation
- FPGAs are by their nature more computationally "dense" than CPU
 - In terms of number of computations / time / area
 - · Can be quantitatively measured and compared
- Capacity, cost, ease of programming still important issues
- Numerous challenges to reconfiguration

August 24, 200

CprE 583 – Reconfigurable Computing

Lect-02.28