CprE / ComS 583 Reconfigurable Computing

Prof. Joseph Zambreno Department of Electrical and Computer Engineering Iowa State University

Lecture #7 - Applications I

Quick Points HW #2 is out Due Tuesday, September 26 (12:00pm) Includes an instant extension from the 21st

••• Recap – Fixed-Point Arithmetic

· Addition, subtraction the same (Q4.4 example):

3.6250 0011.1010 + 2.8125 0010.1101 6.4375 0110.0111

· Multiplication requires realignment:

••• Outline

- Recap
- · Splash / Splash 2 System Architecture
- · Splash 2 Programming Models
- · Splash 2 Applications
 - Text searching
 - Genetic pattern matching
 - · Image processing

September 12, 2006

CprE 583 - Reconfigurable Computing

Lect-07 7

• • Overview

- An early well-known reconfigurable computer was Splash / Splash 2
- Implemented as linear, systolic array
- Developed at Supercomputing Research Center (1990-1994)
- Memory tightly coupled with each FPGA
- Multiple Splash boards can be combined to form larger system

Splash 1 Architecture

September 12, 2006

CprE 583 - Reconfigurable Computing

Lect-07.8

Splash 1

- · Born to solve DNA string matching
- · Operational in 1989
- Features
 - 32 Xilinx XC3090 FPGAs (420 Mλ²)
 - 32 128KB SRAMs (600 Mλ²)
 - VMEbus interface (FIFO 1 MHz clock)
- 33 Gλ² total (not counting interconnect)
- · Linear interconnect only

September 12, 200

orE 583 – Reconfigurable Computing

Splash 2

- Operational in 1992
- · Attached processor system
- Features
 - 17 Xilinx XC4010 FPGAs (500 Mλ²)
 - 17 512KB SRAMs (2 Gλ²)
 - 9 TI SN74ACT8841s (16 port, 4b crossbar)
 - Sbus interface (< 100MB/s)
- 43 Gλ² total (not counting interconnect)
- Supported 2 programming models:
 - Systolic
 - SIMD

Contombor 12 2006

CprE 583 – Reconfigurable Computing

Lect-07.11

Programming Splash 2 Languages VHDL dbC – a C-like language capable of SIMD instructions How many programs? Host Interface board (XL and XR) Splash array board X0 X1 – X16 TI crossbar chips Five programs! Requires intimate knowledge of the architecture

Application #1 – Dictionary Search
 Search through dictionary of words for data hit
 Applicable to internet search engines / databases
 Opportunities for search parallelism
 Splash implementation uses systolic communication

Example Hash Function

Shift amount: 7 bits Hash function: 1100 1000 1010 0011

00 0000 0000 0000 0000 0000 01 1010 0001 1101 00

Clear hash register Input the letters "th'

10 1000 0011 0101 1100 0000

Temporary Result

10 0000 0101 0000 0110 1011

Result for "th"

00 0000 0001 1001 01

Input for letters "e_'

01 0010 0110 0001 1110 1011

Temporary result

10 0101 1010 0100 1100 0011

Result for "the "

- XOR two character value with temp result and hash function
- Rotate result
- Different hash function for each FPGA

Dictionary Search (cont.)

- · Distribute dictionary in parallel to all memories
- · Collect word values in FIFOs
- · Distribute words two characters at a time across all devices
- Perform local hashing and lookup in parallel
- · Collect "hit" result at end
- Splash 2 implementation results
 - 25 MHz
 - Three phases needed
 - Fetch 2 bit-sliced characters
 - Table look-up
 - Takes advantage of both systolic and SIMD modes

Genetic Pattern Matching

- · Comparing strings by edit distance
- Motivation: The Human Genome Project
 - Do two genetic strings match?
 - · How are they related?
- · When biologists characterize a new sequence, they want to compare it to the (growing) database of known sequences
- Abstraction:
 - What is the cost of transforming s into t
 - Given costs for insertion, deletion, substitution

Alphabet and Costs

- Alphabet
 - · Letters in the string. For DNA, there are four:
 - · A (Adenine)
 - · C (Cytosine)
 - T (Thymine)
 - G (Guanine)
- **Transformation Costs**
- Insert:1, Delete:1, Substitute:2, match:0
- · Type of comparison
 - · One target to many sources
 - One target to one source

Substitution Example

Word	Move	Cost	
baboon	Delete 'o'	1	
bab <mark> </mark> on	Substitute 'o'	2	
bobon	Insert 'u'	1	
bo <mark>u</mark> bon	Insert 'r'	1	
bourbon	Match?	0	
bourbon	Total cost: 5		

Dynamic Programming Solution

- Source sequence: s₁, s₂, ... s_m
- Target sequence: t₁, t₂, ... t_n
- $d_{i,j}$ = distance between subsequence $s_1, s_2, ... s_i$ and subsequence $t_1, t_2, ...t_r$, where

$$d_{0,0} = 0$$

$$d_{i,0} = d_{i-1,0} + \text{Delete}(s_i)$$

$$d_{0,j} = d_{0,j-1} + \text{Insert}(t_j)$$

$$d_{i,j} = \min \begin{cases} d_{i-1,j} + \text{Delete}(s_i) \\ d_{i-1,j} + \text{Insert}(t_j) \\ d_{i-1,j-1} + \text{Substitute}(s_i, t_j) \end{cases}$$
stance(Source, Target) = d

Distance(Source, Target) = d_{m,n}

••• Bidirectional Summary

- 16 CLBs/PE
- · 384 PEs/Board
- · 2,100 Million Cells/sec
- Requires 2*(m+n) PEs
- · Uses only half the processors at any one time
- Must stream both source and target for each comparison
 - Makes comparison against large DB impractical

September 12, 200

CprE 583 – Reconfigurable Computing

Lect-07.28

Genetic Search Performance

- Nearly linear scaling in cell updates per second (CUPS)
- · Need to reuse array for large patterns

Hardware	CUPS	λ	Area	CUP/λ ² s
Splash 2 x16	43,000M	0.60μ	500Mλ ² x17x16	0.32
Splash 2	3,000M	0.60μ	500Mλ ² x16	0.38
Splash 1	370M	0.60μ	420Mλ ² x32	0.028
P-NAC (34)	500M	2.0µ	7.8Mλ ² x34	1.9
CM-2 (64K)	150M	?		
CM-5 (32)	33M	?		
SPARC 10	1.2M	0.40μ	1.6GMλ ²	0.00075
SPARC 1	0.87M	0.75µ	273Mλ ²	0.0032
Sentember 12, 2006	entember 12 2006 CorF 583 – Reconfigurable Computing		Lect-07 20	

Application #3 – Image Processing

- Reconfigurable computers well suited to image processing due to high parallelism and specialization (filtering)
- Algorithms change sufficiently fast such that ASIC implementations become outdated
- · Examine two issues with Splash
 - · Image compression
 - Image error estimation
- Parallelize across array in SIMD and systolic fashion

September 12, 2006

rE 583 – Reconfigurable Computing

Lect-07.30

Gaussian Pyramid Operations

- · Gaussian Pyramid
 - Down sample image to compress image size for communication

$$g_{k}(i, j) = \sum_{m=-2}^{2} \sum_{n=-2}^{2} w(m, n) g_{k-1}(2i + m, 2j + n)$$

· Average over a set of points to create new point

- · Laplacian Pyramid
 - · Determine error found from Gaussian Pyramid
 - Expand contracted picture and compare with original

Sentember 12, 2006

CprE 583 - Reconfigurable Computing

Lect-07 31

- Other Image Processing
- Target recognition
- · Break image into "chips"
- Each chip passed through linear array in attempt to match with stored image
- · Images can be rotated, mirrored
- · Zoom in if suspicious object found

September 12, 200

prE 583 – Reconfigurable Computing

••• Summary

- Splash 2 effective due to scalability and programming model
- Parameterizable applications benefit that are regular and distributed
- High bandwidth effective for searching/signal processing
- Challenges remain in software development

September 12, 2006

CprE 583 – Reconfigurable Computing

Lect-07.35